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Using Noisy Self-Reports to Predict Twitter User Demographics
Anonymous Author(s)

ABSTRACT
Computational social science studies often contextualize content
analysis within standard demographics. Since demographic attributes
are unavailable on many social media platforms, such as Twitter,
numerous studies have inferred demographic traits automatically.
Despite many studies presenting proof of concept inference of
race and ethnicity, training of practical systems remains elusive
since there are few annotated datasets. Existing datasets are small,
errorful, or fail to cover the four most common racial and ethnic
groups in the United States.We present amethod to identify self-reports
of race and ethnicity from Twitter profile descriptions. Despite
errors inherent in automated supervision, we trainmodels sufficiently
accurate to identify demographicswhenmeasured on a gold standard
self-report survey. The result is a reproducible method for creating
large-scale training resources for race and ethnicity.

ACM Reference Format:
Anonymous Author(s). 2019. Using Noisy Self-Reports to Predict Twitter
User Demographics. In Proceedings of ACM Conference (The Web Conference
2020). ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Contextualization of population studieswith demographic characteristics
forms a centralmethod of analysis within the social sciences. Standard
demographic panels included in telephone surveys across political
science, public health and other domains enable the sub-population
analysis of opinions and trends. Demographic attributes such as
age, gender, race/ethnicity and location often serve as proxies for
important socio-cultural groups. As the social sciences increasingly
rely on computational analyses of online text data, limitations
imposed by a lack of availability of demographic attributes hinder
comparison of these studies to traditional methods.

Computational social science increasingly utilizes methods for
the automatic inference of demographic attributes from social
media, such as Twitter [10, 54]. Demographic attributes have been
included in social media studies in varied domains, such as health
[16, 23], politics [49], and linguistics [27]. Off-the-shelf software
packages support the inference of gender [36] and location [24, 58].

Unlike age or geolocation, race and ethnicity are sociocultural
categorieswith competing definitions andmeasurement approaches
[15, 18, 65]. Despite this complexity, understanding race and ethnicity
is crucial for public health research [25]. For example, analyses that
explore Twitter users’ discussions of mental health [42] must be
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able to consider racial disparities in healthcare [1, 61] or online
interactions [11, 21]. Despite the importance of race and ethnicity in
these studies, and multiple proof-of-concept classification studies,
there are no readily-available systems that can cover the major
racial/ethnic groups in the United States. This gap is primarily
because all publicly-available data resources have major limitations.

What challenges prevent the development of a large, high-quality
dataset for training a race/ethnicity inference system for social
media? First, the dataset should include themost common categories
to match standard demographics panels. In this paper, we focus on
the most prominent categories present in the United States. Second,
the dataset must be sufficiently large to support training accurate
systems. Third, the dataset should be reproducible. On Twitter, all
datasets shrink over time as users delete or make private their
accounts. On any social media platform, domain drift will make
learned features less useful over time [33].

We present a method for automatically constructing a large
dataset for race and ethnicity. We initially use keyword-matching
to construct a large corpus of tweets to find Twitter users who
self-identify with a racial or ethnic group, building on past work
that explored considered Twitter self-reports [4, 16]. We then learn
a set of filters to remove users who match keywords but do not
actually self-report their demographics. Our approach can be easily
replicated in the future, constructing an updated dataset for training.
Our use of keywords for automatic supervision is inherently noisy
– self-descriptions can be hard to automatically interpret – but
in aggregate our large dataset enables classification results that
greatly outperform previous small, human-labeled datasets. We
demonstrate the quality of a classifier trained our data by evaluating
on a gold-standard survey dataset of self-reported labels [56].

2 ETHICAL CONCERNS AND
CONSIDERATIONS

Complexities of racial identity raise important ethical considerations,
requiring discussion of the benefits and harms of this work [6].

The benefits of such research are clear. Consider public health,
which has the goal of preventing disease and improving the overall
health of the population. Numerous studies have used Twitter and
other social media data to derive insights on health behaviors and
to create health-based interventions [50, 51, 62], and these methods
have transformed whole areas of public health research which
previously lacked in accessible data [3]. Demographic inference is
key for many of these studies, as it enables alignments between
social media derived insights and data frommore traditional sources.

The concerns and potential harms are more complex. The use
of Twitter data for research entails complex issues of privacy and
informed consent of study participants [28, 43]. While Twitter’s
privacy policy states that the company “make[s] public data on
Twitter available to the world,” many users may not be aware of
the scope or nature of research conducted using their data [45].
As participant consent must be informed to be valid, we should
have increased concerns about the knowledge gaps between user
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Citation % Missing # Users % W % B % H/L % A
Preoţiuc-Pietro et al. [57] 4.7 3572 80.8 9.5 6.1 3.6

Culotta et al. [19] 60.0 308 50.0 19.5 30.5 0
Volkova and Bachrach [66] 36.5 3174 48.0 35.8 8.9 3.0

Total Matching Users - 2.50M 26.8 53.8 11.3 8.1
Group-Person - 122k 50.5 40.5 1.6 7.4

Weighted-Group - 228k 40.1 47.4 5.7 6.9
Balanced-Group-Person - 31k 25.0 25.0 25.0 25.0

Table 1: Top: Previously-published Twitter datasets annotated for race/ethnicity. Bottom: datasets collected in this work.
“% Missing” shows the percent of users that could not be scraped in 2019, and “# Users” shows the number users that are
currently available. The categorical breakdown (White, Black, Hispanic/Latinx, Asian) is based on non-missing data.

understanding of the terms of service when conducting research
on possibly sensitive issues such as race.

Specifically regarding demographic prediction, the same tools
that can provide health insights can be used to track or intimidate
minority groups. Recent work has show that women on Twitter,
especially journalists and politicians, receive disproportionate amounts
of abuse [22]. On Facebook, advertisers have used the platform’s
knowledge of users’ racial identities to illegally discriminate when
posting job or housing ads [2, 5]. This abuse and discrimination is
already widespread, even without off-the-shelf tools for predicting
user demographics. Twitter’s developer terms of service prohibit
using Twitter content to “target, segment, or profile individuals”
based on several sensitive categories, including racial or ethnic
origin.1 However, demographic inference tools also have a role in
preventing such abuses, for example, by enabling studies on abusive
behavior and hate speech on social media.

Another concern of any predictive model for sensitive traits
is that a descriptive model could be interpreted as a prescriptive
assessment. Errors made on individual users could subject those
users to possible harm from downstream applications reliant on
demographic inference models or by supporting a reductive or
essentialist framework for racial or gender identity [32].

On the whole, we believe these tools provide significant benefits
that justify the potential risks in their development. However, these
tools should only be used for population-level analyses and not
the identification and analysis of individual users. Even with high
error rates at an single-user level, aggregating predictions across a
population can provide valuable insights. We note that aggregate
analyses of content is explicitly supported by Twitter’s restricted
uses of APIs.2 Future applications must reconsider cost-benefit
trade-offs as technologies and environments change.

Wemake our data available to other researchers, butwith limitations
on its use. Specifically, we require that researchers obtain approval
by an Institutional Review Board (IRB) or similar ethics committee
before obtaining our data.We explicitly exclude certain applications,
such as targeting of individuals based on race or ethnicity. Finally,
our analysis of social media for public health research has been
reviewed and deemed exempt (45 CFR 46.101(b)(4)) by our IRB.

1https://developer.twitter.com/en/developer-terms/agreement
2https://developer.twitter.com/en/developer-terms/more-on-restricted-use-cases.html

3 DATASETS FOR RACE AND ETHNICITY
Historically in the United States, recognized racial categories have
varied over time [31, 40], with the current census – and many
surveys – recording self-reported racial categories as White, Black,
American Indian, Asian, and Pacific Islander. In the U.S., questions
of ethnicity often only ask regarding Hispanic or Latinx origin;
however, there is not necessarily a clear distinction between race
and ethnicity [12, 17, 30]. Individuals may identify as both a race
and an ethnicity, and 2% of Americans identify as multi-racial [35].
Because of the limited availability of data resources, we only consider
the four largest race/ethnicity groups, which we model as mutually
exclusive:White, Black, Asian, andHispanic/Latinx. Ourmethodology
is quite flexible to a more comprehensive choice of demographic
labels, butwe do not yet have themeans to validatemore fine-grained
or intersectional approaches.

The top of Table 1 lists previously published datasets for race/ethnicity.
While each dataset has been used for training computation models,
each has drawbacks that limit their value for downstream modeling
applications. A persistent issue is that since only userids can be
shared, user account deletions over time cause substantial missing
data (e.g. no Asian users remain for Culotta et al. [19]).

There have been a variety of approaches used to create annotated
datasets for demographics. Culotta et al. [19] and Volkova and
Bachrach [66] relied on manual annotation, noting inter-annotator
agreement estimated at 80% and Cohen’s κ of 0.71, respectively.
Preoţiuc-Pietro et al. [57] conducted a survey to collect self-reported
demographics. Pennacchiotti and Popescu [54] automatically label
African American users using profile mentions. Manual annotation
assumes that racial identity can be accurately perceived by others,
an assumption that has serious flaws for gender and age [29, 55].
Rule-based or statistical systems for data collection can be effective [10,
13], but raise concerns about selection bias: if we only label users
who take a certain action, a model trained on those users may not
generalize to users who do not take that action [69]. Explicitly
querying for demographics in a survey provides a gold-standard,
but yields small or skewed datasets due to survey expense [56].

We take a hybrid approach in this paper, relying on automated
labeling based on racial self-identification and usingminimalmanual
labeling to refine our dataset labels. We present our method as an
automated pipeline so that it can be repeated in the future to update
our dataset. We evaluate our label quality via an experimental
evaluation on self-reported attributes [56].
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Raw Color Plural Bigram Quote All
Precision 76.74 78.57 76.74 82.50 78.57 86.84

Users removed by filter(s) - 314k 212k 281k 4k 784k
Table 2: Applying our four WG filters (§ 4) individually
and altogether. Precision is calculated on our
manually-annotated dev set from Appendix B.1.

4 DATA COLLECTION OF SELF-REPORTS
We begin our data collection of racial self-reports by constructing
a regular expression for terms associated with racial identity. We
scrape all tweets with a user description that matches our query
regex:

(black|white|caucasian|asian|hispanic|latin[oax]?)

We apply this filter to tweets collected from Twitter’s public sample
streaming API (1% of tweets) from July 2011 to July 2019, producing
an initial dataset of 88GB (compressed). For users who appear
multiple times in the streamingAPI, we consider their latest descriptions.
We process matching tweets by recursively searching the
retweeted_status and quoted_status fields to extract additional
tweets to match with the regular expression.

Our initial user extraction relies on exact matches (using word
boundaries) for our We begin by counting users with an exact
match (with word boundaries) of a query word to establish an
upper bound of the total possible users who self-report with our
identified terms. This heavily skews towards ‘white’ and ‘black’,
since those are colors used in many contexts. This produces 2.67M
matching users, of which 2.50M match exactly one racial/ethnic
category. The distribution of these categories are shown in the
‘Total Matching Users’ row in the bottom of Table 1, which also
contains statistics for the following three datasets we consider.

Group-Person (GP). We use a regex that matches a query word
followed by (and separated only by whitespace from) one of the
following self-report words: man, woman, person, individual,
guy, gal, boy, or girl, e.g. “Black woman” or “Asian guy.” This
approach exacerbates the skewness of the previous data, as 91.0%
of the resulting 122k users are labeled as either white or black.

Weighted-Group (WG). While the Group-Person dataset uses a
more restrictive regex, we now consider filtering users’ descriptions
to more accurately identify self-reports. We learn a ‘self-report’
score which gives high scores to descriptions which are more
likely to be self-reporting race/ethnicity, and low scores to user
descriptionswhichmatch our initial keywords but are not self-reporting.
We learn this score by leveraging lexical co-occurrence, an important
cue for word associations [14, 63]. Our score combining the relative
frequencies of co-occurring words within a fixed window, which
we down-weigh by the distance between query and co-occurring
self-report words. The intuition here is that if we believe “farmer” is
a valuable self-report word such that “Black farmer” is a high-scoring
self-report, then “Black beans farmer” should have a lower score
due to the distance between the query term and the self-report
word. We consider two approaches for this weighting, one which
leverages the concept of TF-IDF scoring of query terms, and another
which does not [59]. These scoring details are in Appendix B. We

use a small manually-labeled tuning set to threshold this score,
described in Appendix B.1.

We found four techniques helpful in improving our WG dataset.
First, many non-self-report descriptionsmatched “black” and “white”
in addition to other colors, so we filtered out all words from a
color-list [7]. Second, we used NLTK TweetTokenizer [8] to obtain
part-of-speech tags, and found that an adjective queryword preceding
plural nouns were unlikely to be self-reports (e.g. “white people”).
Third, we curate a list of word bigrams that most frequently contain
a query but are unlikely to be self-reports (e.g. “black sheep”).3 This
produces an intersection of 286 non-self-report bigrams, which we
filter out. Finally, query words that appear inside quotation marks
are ignored. Table 2 shows how these methods decrease the size of
our datasets but increase precision on our tuning set.

Balanced Group-Person ( BGP ). While theWeighted-Group dataset
contains more users than the Group-Person Dataset, both are quite
class-imbalanced. To build a dataset with equal representation
across all four groups, we start with our smallest group and extract
all 7756 Hispanic/Latinx-labeled users. Then, using our self-report
scores, we take the 7756 highest-scoring users from each of the other
three categories and add them to our dataset. Thus, our balanced
dataset includes all Asian-labeled users from the Group-Person
dataset and most from the Weighted-Group dataset, only a fraction
of theWhite and Black-labeled users from the Group-Person dataset
and no users from the Weighted-Group dataset.

We highlight these datasets and their label distributions in the
bottom half of Table 1 and refer to them by their acronyms
(GP, WG, BGP) in the experimental results in Table 3.

5 EXPERIMENTAL EVALUATION
Given our use of automated methods to label the collected datasets,
we need an independent approach to validate the quality of our
labels. For each collected dataset, we train a demographic classifier
on our data and then use the trained model to predict labels for the
gold-standard data [57]. If models trained on our data accurately
classify self-reported demographics, then our data is valuable for
downstream applications.

The evaluation test set is the gold-standard dataset [57]. While
this dataset has the highest-quality labels of any published work
on social media demographics, due to the high cost of surveys, the
dataset only contains 4.1k users, of which we can collect data on
only 3.6k. We use other previously-published datasets to produce
a development set and a baseline dataset. Both the dataset from
Culotta et al. [19] and that of Volkova and Bachrach [66] used
manual crowdsourced annotations to label Twitter users.We combine
these to produce a dataset of 3.5k users, which we randomly split
into a 60% training and 40% dev set. Our experimental evaluation
compares models trained on this crowdsourced training set, models
trained on our self-report data alone, and models trained on both.
We use the dev set to perform model selection in all experiments.

As the test set has an extremely imbalanced distribution over its
four racial/ethnic categories (see Table 1), we build sub-sampled dev
and test sets that contain an equal proportion of each demographic
group. The balanced dev set contains only 168 users; the balanced
3 Frequencies are from the Google N-gram corpus [44]. We only use bigrams in the
form of query + word with more than 100k occurrences.
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Names Unigrams
Dataset/Baseline F1 Acc % F1 Acc %
Random baseline .250 25.0 .250 25.0
Majority baseline .224 80.8 .224 80.8
Crowdsourced .264 78.4 .372 83.5

GP .325 80.5 .352 84.2
Crowdsourced+GP .314 79.9 .368 83.9

WG .323 78.7 .357 84.3
Crowdsourced+WG .233 78.1 .345 83.9

BGP .339 65.9 .396 82.9
Crowdsourced+BGP .319 57.8 .422 84.0

(a) Imbalanced prediction task for both single-tweet name
and many-tweet unigram models.

Names Unigrams
Dataset/Baseline F1 Acc % F1 Acc %
Random baseline .250 25.0 .250 25.0
Majority baseline .100 25.0 .100 25.0
Crowdsourced .177 28.6 .252 36.3

GP .282 33.3 .277 39.4
Crowdsourced+GP .293 34.8 .245 33.4

WG .274 35.5 .262 35.6
Crowdsourced+WG .139 25.1 .260 38.9

BGP .367 36.8 .409 45.1
Crowdsourced+BGP .360 37.0 .424 46.9

(b) Balanced prediction task for both single-tweet name
and many-tweet unigram models.

Table 3: Experimental results for models trained on the crowdsourced datasets and our self-report datasets. The best result in
each column is in bold. Dataset abbreviations are defined in § 4. ‘+’ indicates a combined dataset of crowdsourced data plus
our self-report data. Section 5 and Appendix C contain the training and evaluation details.

test set contains only 452 users. Tables 3a and 3b shows imbalanced
results and balanced results, respectively.

To further highlight the differences between the imbalanced
and balanced datasets, we evaluate on both total accuracy and
macro-averaged F1. We also show the performance of two naïve
strategies: randomly guessing across the four demographic categories,
and deterministically guessing the majority category. Because of
the class imbalance, ‘Majority Baseline’ strategy will achieve 80.8%
imbalanced accuracy. However, it only achieves an imbalanced F1
score of .224.

Finally, we include a method of adapting across disparities in
the training versus test dataset. After training our models, we use
the dev set to estimate the per-class precision and recall of our
classifier, and then use a greedy prediction-rebalancing algorithm
to match our test-time prediction to a prior over the test set’s class
distribution. The full details of this rebalancing approach and its
effects on our classification accuracy are in Appendix D.

We stress these evaluation details because extreme class-imbalance
can cause serious complications. Models trained to do well on
the majority class at the expense of minority classes could bias
downstream analyses by under-representing minority groups. In
health, which has well known disparities between majority and
minority groups [39], this could produce research results that exacerbate
rather than ameliorate inequalities.

5.1 Demographic Prediction Models
We consider two demographic inference models, which we train
on each training set and evaluate in both imbalanced and balanced
experimental settings. First, we consider a system that only has
access to a single tweet per user, which severely reduces its feature
set, but can be run over a large Twitter corpus without requiring
an extensive tweet history from each user. We use the model of
Wood-Doughty et al. [68], which learns a character-based convolutional
neural network (CNN) of the user’s name as well as features from
the user metadata, such as the user’s verification status and ratio of
followers to friends. These features are passed through a two-layer

MLP to produce a distribution over the label classes. This model is
referred to as ‘Names’ in Table 3.

Second, while the name-based model requires only a single tweet
per user, models that rely on content tend to perform better [66,
68]. Therefore, we consider a content-based method that examines
aggregated features across many tweets for a user. We use the
model of Volkova and Bachrach [66] who include unigrams from a
user’s tweet history in a logistic regression classifier. We include as
features the 77k non-stopword unigrams that occur at least twice
in the development set. We (attempted to) download the 200 most
recent tweets for each user from the Twitter API. The total number
of users for which we could download data is reflected in Table 1;
users for which API queries failed count towards the ‘% Missing’
column. Further data collection details are in Appendix C. This
model is referred to as ‘Unigrams’ in Table 3.

6 EXPERIMENTAL RESULTS AND
DISCUSSION

Table 3 shows the results for eachmodel and dataset. Themany-tweet
Unigrams model outperformed the single-tweet Names model in
both F1 and accuracy across multiple datasets. This is consistent
with past published work; the Unigrams model has much more data
per user than the Names model.

On the balanced evaluation sets, models trained on our collected
datasets obtain improvements of up to 10.6% accuracy and .172 F1
over models trained only on the previously-published datasets.

In the imbalanced evaluations, we see a large trade-off between
accuracy and F1, as the models can achieve better overall accuracy
when they learn to ignore the Asian and Hispanic/Latinx classes.
In the imbalanced setting, the trivial ‘Majority Baseline’ strategy
achieves a better accuracy than any of the Name-based models we
trained, yet still has the worst F1 score. Our BGP dataset, which is
explicitly designed to learn a model that does not ignore any of the
four demographic labels, achieves the best F1 scores in both the
imbalanced and balanced evaluations. In the balanced evaluations
where overall accuracy cannot be improved by ignoring infrequent
labels, the BGPmodels also achieve the best accuracy. In many cases,

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Using Noisy Self-Reports to Predict Twitter User Demographics The Web Conference 2020, April 2020, Taipei, Taiwan

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Asian Black Hispanic/Latinx White
love np love mytwitteranniversary
asian soundcloud tbt blessed
mytwitteranniversary tbt music soundcloud
tbt love beliebers tbt
gameofthrones mytwitteranniversary mytwitteranniversary love
food blessed family gameofthrones
giveaway music believe newprofilepic
selfie gameofthrones nyc np
lol nowplaying mtvhottest sorrynotsorry
bts blackgirlmagic soundcloud loveisland

(a) Top 10 hashtags by the number of users who tweet about it for each racial group.
Note the hashtags are lowercased to combine ones with the same topic.

Asian Black Hispanic/Latinx White
liked avrillavigne justinbieber bc
visit ni##as justin realdonaldtrump
hahaha black online snapchat
art ni##a follow dog
youtube wit unfollower holy
lunch dat unfollowers drunk
found sis stats dad
haha libra follower pizza
hi da followers cat
sexy capricorn la f##king

(b) Top 10 keywords via lexical variation
computed by SAGE. Inserted # partially mask
explicit language.

Table 4: Top hashtags and keywords per group.

a combination of our self-report datasets and the crowdsourced
datasets does better than our self-report dataset alone, but this
is not true across all evaluations. Further ablation studies could
provide more explanation as to how features learned from our data
differ from features learned from the crowdsourced datasets.

These empirical results demonstrate that incorporating our self-report
datasets into a training set produces better demographic inference
models on held-out, gold-standard labels. However, any downstream
application to analyzing real-world demographic trends in aggregate
may require considering problem-specific trade-offs. If a researcher
wants to study health behaviors within a specific racial group, they
may be willing to compromise classification accuracy in all but that
specific group.

In many health surveillance tasks, a researcher may want to
know if a health behavior or exposure to a risk factor varies significantly
between two groups [37]. If we want to conduct such an analysis
on Twitter using a demographic classifier such as the ones trained
in this work, the accuracy of a trained classifier may have a direct
link to what magnitude of health disparities can be detected. Such
research requires a careful contextualization of what conclusions
can be drawn from the available data and models; differences
between groups may be under- or over-exaggerated by classifier
errors.

7 DIFFERENCES IN TWITTER BEHAVIORS
ACROSS RACIAL GROUPS

Our experimental results demonstrate that our noisy self-report
data, in aggregate, offers better predictive power than a smaller
dataset of human-labeled data. However, these classification results
do not provide insights about the users we collect who self-report
their demographic categories. Are these users representative of
the typical Twitter user? Or is our dataset collection technique
producing a biased sample of users, and if so how? A particular
challenge with our work is that our initial collections of keyword
matching yielded a dataset that is heavily skewed towards the
‘White’ and ‘Black’ keywords. Are users’ propensity to use these
keywords in their profile descriptions were completely independent
of the other ways in which they use Twitter?

We explore these questions using a variety of quantitative analyses
of linguistic and platform-specific behaviors. There are two different
interpretations to keep in mind when considering these group-level

Figure 1: Plots of the Lexical diversity andTTR scoreswithin
each group. Lexical diversity is quite similar across groups,
whereas TTR has larger divergences between groups.

differences. On the one hand, the Twitter user behaviors wemeasure
may correlate with demographic categories [69]. However, it may
also be that the behavior of self-reporting correlates with these
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behaviors. These are notmutually-exclusive, and our currentmethods
cannot distinguish between group differences themselves or selection
bias that may depend on racial category or Twitter usage behaviors.

List-based Features. We first seek to understand possible topical
differences between groups in our collected datasets, by compiling
a ranked list of the most popular hashtags per group. We then
take a similar approach and compile ranked lists of popular emojis,
emoticons, and part-of-speech tags. We also use a SAGE [26] lexical
variation implementation to find the words that most distinguish
each demographic group, following [46]. We treat each of the lists
as a categorization of each group. To compare across groups, we
look at the top k items in each list and calculate Kendall τ rank
correlation coefficients for each pair of demographic groups [47].
These coefficients vary between -1 for a perfect negative correlation
and 1 for a perfect positive correlation. For emojis and emoticons,
all correlations are negative for smaller k values, but they tend in
a positive direction as we increase k . Despite this general trend,
we see strong differences in content usage between groups. For
hashtags, in particular, correlations are strongly negative for all
values ofk , suggesting that groups labeled by ourmethod substantially
differ in the topics they discuss. As a qualitative look at topical
differences, we show the top-10 hashtags and SAGE keywords for
each group in Table 4. The table of all pairwise Kendallτ calculations
is in Table 8 in the Appendix.

We see that some hashtags, e.g. #MyTwitterAnniversary and
#GameOfThrones are popular across all the labeled groups, yet
many hashtags only appear in the top 10 for a single group. A
more thorough analysis could conduct such an analysis periodically,
to explore whether universally-popular hashtags are popular with
each group simultaneously.While our initial data collection keywords
are all in English, we do not make an attempt to limit our analysis
to English-language speakers. Thus, differences in topic discussion
may be confounded by users’ native language(s).

Quantitative Linguistic Features. Lexical features are widely used
for classifying users on Twitter [9, 54, 60]. To understand possible
linguistic differences between collected groups, we follow §3.1 of
Inuwa-Dutse et al. [34] and for each user in our group, we calculate
Type-Token Ratio (TTR), Lexical Diversity [64], and the proportion
of English contractions they use. TTR is defined as the number of
unique tokens in a tweet divided by the total number of tokens in the
tweet. We compute lexical diversity as the total number of tokens in
a tweet without URLs, user mentions and stopwords divided by the
total number of tokens in the tweet. A comparison of the mean of
each quantitative linguistic features are in the Appendix in Table 7.

To explore difference between groups using previously-trained
linguistic models, we consider quantitative models for evaluating
formality [53] and politeness [20] of online text. The formality
score is estimated with a regression model over lexical and syntactic
features including n-grams, dependency parse, andword embeddings.
For bothmodels, we compute the average score over all the text from
one user, and average over all the users within certain demographics
group. We use the implementation released by the authors.4 The
linguistically-informed politeness classifier considers unigram features,
as well as multiple politeness strategies including lexicons for

4https://github.com/YahooArchive/formality-classifier

(a) Formality classifier scores

(b) Politeness classifier scores

(c) Average tweets per month

Figure 2: Plots of the formality [53] and politeness [20]
scores within each group, as well as the average tweets
per month. X-axis is truncated to highlight differences, but
all three plots contain more than 95% of their respective
distribution density.
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Asian Black Hispanic/Latinx White
% users in dataset 6.71 49.44 5.83 38.02
(m) % tweets from Android sources 24.37∗† 25.34∗‡ 23.96†‡ 16.57
(m) % tweets from iPhone sources 46.15 47.56 40.88 64.98
(m) % tweets from iPad sources 1.46 1.07 1.40∗ 1.29∗
(m) % tweets from desktop web 10.23 7.29∗ 13.21 6.09∗

% users with 1+ tweets from Android 38.95∗† 38.33∗ 39.41† 25.46
% users with 1+ tweets from iPhone 60.28 58.21 54.89 75.37
% users with 1+ tweets from Desktop 43.34 30.59 44.87 31.04
% users with profile URL 34.09∗ 29.71 34.75∗ 24.78
% users with custom profile image 98.83 99.29∗† 99.24∗‡ 99.33†‡
% users with geotagging enabled 48.65∗ 53.27 49.54∗ 56.04
% users with 1+ geotagged tweet 8.35∗ 6.46 7.81∗ 5.43
Average statuses count 11974 18709 12449 14177
Average tweets per month 177.83 255.41 182.13 200.85
(m) % tweets that mention a user 59.73 58.71 60.44∗ 61.77∗
(m) % tweets that include an image 20.44∗ 17.20 18.39 19.17∗
(m) % tweets that include a URL 20.99 21.64 24.01 17.22

Table 5: Profile Behavioral Features. (m) indicates that a percent or average was computed via micro-averaging across users’
tweets; all others aremacro-averaged across users. Almost all differences in a row are statistically significant from one another,
according to a Mann-Whitney U Test. However, if two entries in the same row share a superscript symbol, they are not
significantly different at a 0.05 confidence level.

gratitude and positive or negative sentiment.We use the implementation
released by the authors.5 Plots of these metrics across each group
are shown in Figures 2a and 2b. The plots of formality and politeness
both appear roughly Normal except for a spike near 0.44 in the
politeness plot. As the politeness classifier uses lexicon features,
it may be that some of the spike is capturing a binary indicator
of whether certain lexicon entries are present in a tweet. As with
list-based features, these features may be heavily influenced by
users’ native language(s).

Profile Behavioral Features. Finally, we consider a few basicmeasures
of Twitter usage, computed from the profile information of each
user, followingWood-Doughty et al. [69]. Table 5 contains these the
mean value of these features, describing broad range of basic user
behaviors on the Twitter platform.We then plot the full distribution
of average tweets per month for users in each group in Figure 2c.
Almost all differences in these behavioral features are significant
across groups. The biggest difference appears in device usage, where
we see that White users are much more likely to have used an
iPhone to tweet and much less likely to have used an Android to
tweet, when compared against users of the other three demographic
groups.

This table also provides interesting comparisons to prior work.
Pavalanathan and Eisenstein [52] demonstrated that the use of
Twitter geotagging was more prevalent in metropolitan areas and
among younger users. Our construction of Table 5 follows past
work that calculated similar profile behavior features for a random
sample of 1M Twitter users in 2017 [69]. Comparing against those
numbers, we see that across all our demographic groups, users in
our datasets are much more likely to include a custom profile image
or profile URL, or to enable geotagging on their profile.
5https://github.com/sudhof/politeness

Across all types of features we consider, we see many substantial
differences between the different groups labeled by our data collection
methods. This provides strong evidence that our data collection
based on description keywords is correlated with actual underlying
differences with how users in each group use the Twitter platform.
However, it cannot reveal to us whether these differences are
primarily correlated with racial/ethnic groups, or whether we see
these differences primarily based on how users make the decision
whether to self-report a race/ethnicity keyword.

8 LIMITATIONS AND FUTUREWORK
This work has presented a reproducible approach for automatically
identifying self-reports of race and ethnicity to construct an annotated
dataset for learning demographic inference models. While the
automated annotations produced by our method are imperfect, we
show that our data can supplement or replace manually-annotated
data. This enables the development and distribution of tools to
facilitate demographic contextualization in computational social
science research.

There are several important extensions that should be considered.
Our analysis only focuses on the United States; most countries have
a unique cultural conceptualizations of race/ethnicity and unique
demographic composition, andmay require a country-specific focus.
Our method covers four categories of race/ethnicity, it ignores
smaller populations and multi-racial categories [35]. Additionally,
we use a limited set of query terms, which ignores the diversity
of how people may choose to self-report their identities. Finally, it
is well known that there are biases in demographic inference [52,
69]. Aside from mislabeled users, selection bias and generalization
are serious concerns. In future work, we strongly encourage the
study of racial self-identities and social cultural issues as supported
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by computational analyses. Furthermore, these issues should be
considered with a global perspective, especially with regards to
biases in our collection methods [38].

We will release our code and our annotated Twitter userids to
enable comparison to our method, the training of new models, and
for the construction of future updated datasets. Use of our data
or models will require complying with a data use agreement and
obtaining approval from an appropriate ethics board.

A PREPROCESSING, TOKENIZING, AND
TAGGING

We lowercase all descriptions, and replace line break with full stop,
as such symbols are commonly used to separate descriptors of
themselves. We use NLTK Tweet Tokenizer [8] and its PoS tagging
toolkit to tokenize the text and get the PoS tags. We collect a large
dataset of candidate self-report words based on their co-occurrence
with the regex and PoS tag pattern, {I‘/I a}m (+ RB)( + DT) (+
JJ) + NN, in a collection of 177M Twitter descriptions. We collect
both adjectives and nouns from the pattern above. To reduce the
impact of noisy PoS tagging, we then refine the candidate self-report
words by keeping the words which are majorly tagged desirably
for corresponding adjective and noun collections, based on Google
N-gram tagging.

We filter out plural candidate self-report words using a PoS
tag pattern, JJ + NNPS/NNS. This plural filter removes likely
false-positives such as “white people.”We refer to the set of non-plural
self-report words as S .

B CALCULATING THE ‘SELF-REPORT’ SCORE
The weighting strategies mentioned in § 4 are discussed in detail.
The simple co-occurrence weighting is obtained by considering the
occurrence Os (ws ) of self-report word ws appears as self report
and its occurrence O(ws ) in general, denoted as

R=
∑

ws ∈Swin

1
D(ws ,q)

·
Os (ws )

O(ws )
,

where Swin is the self-report words in the fixed window size,
D(ws ,q) denotes the distance betweenws and query word q.

The TFIDF weighting is computed as

Rtfidf=
∑

ws ∈Swin

1
D(ws ,q)

·
Os (ws )

O(ws )
· log

∑
w ∈S Os (w)

Os (ws )

B.1 Self-report Score Hyperparameters
To fine-tune our self-report score, we manually labeled a tuning
set of 400 descriptions as to whether the user was self-reporting
a matching query word. We discarded 6 that were organizations,
and had an Krippendorff α 0.8058 within three annotators on the
remaining 394. We adopted majority voting strategy for deciding
the labels.

For the self-report score’s hyperparameters of window size, We
select these hyperparameters based on the precision calculated on
the development set. The performance of collected dataset based
on different hyperparameter settings are shown in Table 6a and
Table 6b, corresponding to the simple co-occurrence weighting
and TFIDF weighting schema. We also considered increasing the
exponent of the 1/D(ws ,q) term, but found it had no effect on
precision.

To ensure that these chosen hyperparameters did not overfit to
the tuning set, we sampled an additional 199 users for a test set.
For those users, three authors manually annotated whether the
Twitter users were actually self-reporting the racial demographics
possibly implied by the query word matches. Using a three-label
nominal scale of ‘yes,’ ‘no,’ or ’unsure,’ the three annotators achieved
a Krippendorff’s alpha of 0.625. When we convert the manual
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Window size
Threshold 3 5 7 9 11 13

1e-5 50.64 / 1091k 49.51 / 1421k 49.08 / 1527k 49.11 / 1578k 48.90/ 1604k 48.91 / 1622k
1e-3 52.32 / 1069k 49.75 / 1397k 49.07 / 1499k 49.55 / 1553k 49.11 / 1580k 48.68 / 1600k
1e-1 59.57 / 613k 62.62 / 734k 61.82 / 793k 58.62 / 836k 58.97 / 864k 57.98 / 887k
3e-1 80.00 / 256k 78.72 / 286k 77.55 / 307k 77.55 / 322k 77.55 / 333k 76.00 / 341k
3.5e-1 85.29 / 205k 86.84 / 227k 82.50 / 244k 79.07 / 258k 79.55 / 267k 79.55 / 274k
4e-1 81.82 / 134k 83.33 / 152k 84.62 / 169k 78.57 / 180k 78.57 / 188k 79.31 / 194k
4.5e-1 100 / 64k 100 / 80k 100 / 96k 100 / 107k 100 / 114k 100 / 120k

(a) Selection of hyper-parameters for simple co-occurrence weighting
based on the development set. The contents are in the form of
precision on dev set / # of users in the dataset.

Window size
Threshold 3 5 7 9 11 13

0.3 53.23 / 861k 53.33 / 1077k 51.83 / 1161k 51.45 / 1222k 51.98 / 1258k 51.10 / 1286k
0.7 56.00 / 666k 56.14 / 804k 53.72 / 869k 52.80 / 919k 53.54 / 950k 54.20 / 975k
1.3 65.71 / 467k 66.67 / 549k 65.06 / 596k 64.71 / 634k 61.54 / 659k 61.29 / 679k
1.7 73.81 / 329k 73.47 / 388k 66.67 / 427k 66.67 / 456k 67.19 / 477k 66.67 / 495k
2.3 85.00 / 134k 80.95 / 171k 78.26 / 220k 80.00 / 249k 76.92 / 268k 76.92 / 280k
2.5 86.67 / 103k 87.50 / 133k 88.24 / 164k 89.47 / 184k 89.47 / 200k 85.00 / 211k
2.7 81.82 / 79k 84.62 / 105k 85.71 / 130k 86.67 / 146k 86.67 / 158k 86.67 / 167k

(b) Selection of hyper-parameters for TFIDF weighting based on the
development set. The contents are in the form of precision on dev set
/ # of users in the dataset.

Table 6: Hyper-parameter selection for simple and TFIDF weighting.

# Users Lexical
Diversity

Contractions
per tweet TTR Hashtags

per tweet Formality Politeness

Asian 9442 0.75120 0.07544 0.53285 0.15543∗ -1.76991 0.45948
Black 70838 0.74655 0.06657 0.53228 0.09560† -1.74977 0.45840

Hispanic/Latinx 8349 0.73061 0.05065 0.56258 0.14521∗ -1.80172 0.46091
White 57724 0.75913 0.08521 0.51000 0.08132† -1.69685 0.46136

Table 7: Comparison of the mean values for each numerical feature between racial groups. Almost all differences are
significant. Within each column, only numbers with a shared superscript symbol are not significantly different at a 0.05
confidence level when using a Mann-Whitney U test.

Emojis Emoticons Hashtags PoS bigrams PoS trigrams
Top k 20 50 80 20 50 80 20 50 80 20 50 80 20 50 80
A vs. B -0.67 -0.26 -0.05 -0.19 0.10 0.19 -0.85 -0.87 -0.86 0.29 0.19 0.79 0.18 0.19 0.46
A vs. H/L -0.10 -0.07 0.00 -0.02 0.08 -0.84 -0.86 -0.86 0.55 0.02 0.58 0.20 0.02 0.25
A vs. W -0.38 0.13 0.04 -0.09 0.26 0.31 -0.83 -0.80 -0.75 0.02 -0.02 0.56 -0.04 -0.02 0.15
B vs. H/L -0.65 -0.38 -0.09 -0.31 0.03 -0.83 -0.82 -0.83 0.52 0.03 0.56 -0.08 0.03 0.08
B vs. W -0.48 -0.16 0.16 -0.18 0.30 0.30 -0.79 -0.72 -0.69 0.04 0.24 0.68 0.47 0.24 0.25
H/L vs. W -0.40 -0.13 -0.01 -0.07 0.19 -0.91 -0.89 -0.87 -0.17 -0.28 0.34 -0.29 -0.28 -0.16

Table 8: Kendall’s τ correlation coefficients for top items of different features. Missing entries are due to a lack of unique
emoticons for the Hispanic/Latinx group.

annotations to binary ‘yes’ and ‘no’ by taking majority voting and
discarding 7 users who were majority ‘unsure,’ the best self-report
score model achieves 72.4% accuracy on the 192 users.

C MODEL HYPERPARAMETER AND
TRAINING DETAILS

Our namemodel uses a CNN implementation released inWood-Doughty
et al. [68]. We use a CNN with 256 filters of width 3. The user’s
name (not screen name) is truncated at 50 characters and embedded
into a 256 dimensional character embedding. We fine-tuned the
learning rate on our dev data, trained for 250 epochs, and used
early-stopping on dev-set F1 to pick which model to evaluate on
the test set.

Our unigram model follows Volkova and Bachrach [66], using a
simple sparse logistic regression. We use an implementation from
Scikit-Learn, and tune the regularization parameter on the dev set.
We introduce a hyperparameter to down-weight the contribution of
our users compared to the baseline users; we also set that parameter
on the dev set.

D REBALANCING ALGORITHM
All Twitter demographics datasets considered in this and previous
work, unless they were explicitly class-balanced, have major class
imbalances. This creates challenges when training on a dataset
with one label distribution and then evaluating on a dataset with
a different distribution. Variations of this challenge have been
widely studied [41, 48]. To address this, after training our classifier
we explicitly calculate its per-class recall on the development set.
Then, we order each class from most to least-frequent, and adjust
a threshold for predicting that class that should maximize total
overall accuracy given the known label distribution of the dev or
test set. Explicit details are in our released code.

Table 9 below shows that without our rebalancing approach, the
accuracy of all trained models decreases, irrespective of the data
on which they were trained. However, the F1 score of some models
increases compared to the trained models which were rebalanced
to target an imbalanced test set, because the model will make more
predictions for low-probability labels.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

The Web Conference 2020, April 2020, Taipei, Taiwan Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Names Unigrams
Dataset/Baseline F1 Acc % F1 Acc %
Random baseline .250 25.0 .250 25.0
Majority baseline .224 80.8 .224 80.8
Crowdsourced .272 74.4 .396 83.3

GP .342 72.6 .350 75.6
Crowdsourced+GP .313 69.5 .426 81.8

WG .335 64.3 .345 75.6
Crowdsourced+WG .198 54.0 .406 79.6

BGP .299 48.2 .304 43.8
Crowdsourced+BGP .250 35.8 .456 76.8

Table 9: Imbalanced task prediction, without rebalancing. Accuracy decreases for all trained models, but F1 increases in some
cases.

Using this method at test time requires prior knowledge on
the cumulative label distribution which in many cases may be
known due to high-level survey data [67], even when nothing is
known about individuals in an dataset of interest. When we have
no information on the true label distribution, this approach could
be replaced with a more flexible Bayesian method, or we could
abandon the rebalancing algorithm to avoid introducing any bias.

E DATA COLLECTION FOR GENDER
SELF-REPORTS

It is notable that our data collection method could be extended
to other demographics traits like gender and age, and it is also
flexible with the label selection. We did a initial trial on gender data
collection following the framework described above, with query
regex:

\b((wo)?man|uncle|male|guy|dude|dad|father|brother|
husband|boy|papa|mr\.?]|mister|girl|lady|mom|mama|
wife|mother|sister|gal|girl|mr?s\.?)\b

Besides the plural and quote filter, we also explored two ad-hoc
techniques. First, we filtered out query affected by possessive pronouns.
Second, ignore the query in a frequently used self report pattern that
causesmany false positive in the collection like “daughter” in “dad of
a lovely daughter”. To evaluate the gender dataset, three annotators
independently labeled 200 users that matched the gender queries,
with Krippendorff’s alpha of 0.8130. The matching for gender less
noisy than the one for race. 68% users self report their gender as
the matched query. We were able to collect a dataset of 207k users,
with 90% precision on the manually labeled dataset.
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