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ABSTRACT

Motivated by the flexibility of biological neural networks whose
connectivity structure changes significantly during their lifetime,
we introduce the Unrestricted Recursive Network (URN) and demon-
strate that it can exhibit similar flexibility during training via gradi-
ent descent. We show empirically that many of the different neural
network structures commonly used in practice today (including
fully connected, locally connected and residual networks of differ-
ent depths and widths) can emerge dynamically from the same URN.
These different structures can be derived using gradient descent
on a single general loss function where the structure of the data
and the relative strengths of various regulator terms determine the
structure of the emergent network. We show that this loss function
and the regulators arise naturally when considering the symmetries
of the network as well as the geometric properties of the input data.

1 INTRODUCTION

A remarkable property of biological neural netowrks (BNNs) is their
adaptability in the face of new environments, different tasks and
when coping with structure damage [1]. In contrast, despite their
successes, artificial neural networks (ANNs) are limited in their
applicability, and structures need to be designed for each particu-
lar task. Inspired by the genetic evolution of BNNs, an active field
of neural architecture search has emerged leading to specialized
networks which excel at specific tasks [3]. However, there is no
ANN analog of the lifetime evolution of the structure of BNNs which
provide flexibility in the face of new challenges or damage.

The question therefore naturally arises of 1. whether there exist
flexible ANNs which can adapt their connectivity structure to the
task they are trained on during their lifetime and 2. whether there
exists a new machine learning paradigm based on these flexible
networks which can compete with the highly specialized networks
in use today. The present work is a small step towards answering
some of these questions. In particular, we introduce the Unrestricted
Recursive Network (URN), and show that when trained end to
end via stochastic gradient descent, a URN dynamically chooses
its structure. Specifically, depending on the geometric structure of
the data and the choice of regulator hyperparameters, the same
URN can turn into networks which are recursive or feedforward,
fully connected or locally connected (as in CNNs), and can choose
whether or not to have residual skip connections. We also show that
the specific form of the URN and the loss function used is mostly
determined by various symmetry arguments.

Related work

Dynamical network architectures where perviously discussed in
Fahlman and Lebiere [4], where the network is grown one neural at

a time. More recently, it was shown that recurrent neural networks
with linear and convolutional layers can improve performance in
specific circumstances [2, 7].

2 EMERGENT STRUCTURES
Motivation

We start the discussion by the simple observation that (almost) any
network architecture can be embedded in a recursive network.
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(a) Original network.

(b) Equivalent structure.

Figure 1: Embedding a multi-layer perceptron (a) in an unrolled
unstructured recursive network (b). The purple nodes denote neu-
rons that are identically zero.

For demonstration, let us consider a feed-forward neural network
with two hidden layers. Fig. 1a shows a cartoon of this network
with Wi=1, 2 3 denoting the weights of each layer. We can embed
this feed-forward architecture inside a larger recursive structure by
concatenating the neurons of all layers as in Fig. 1b and similarly
embedding the weights of the different layers inside a larger weight
matrix W defined as (biases are treated similarly):

0 0 0 0
Wi 0 0 0
0 W, 0 0
0 0 W o.

It is simple to verify that consecutively applying the W matrix
(along with the activation function) 3 times as in Fig. 1b is equivalent
to the original MLP network. This block sub-diagonal structure of
the weight matrix is a signature of MLPs. In a similar manner, almost
all feed-forward neural networks can be embedded in recursive
networks.

W= (0

The Unstructured Recursive Network

We now show that it is possible to perform the converse of the
above demonstration: starting from a general recursive structure
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without layers, we can arrive at an emergent network which can
be interpreted as a feedforward multi-layered perceptron.

Consider a learning task with d;, and dyy,; specifying the dimen-
sion of the vectorized input and output. Motivated by the embed-
ding arguments of the previous section, we define a network with as
little structure as possible as follows. First, we embed the input data
in the first d;;, elements of N, a vector of length S representing all
the neurons of the system:

NO _ )% i <din , @
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where x; denotes the i’th component of each vectorized training
sample and the superscript (0) denotes that this is the input of the
network (zeroth iteration). We then define define a discreet iterative
update rule for processing the data:

N = gwi Ny b, )

where W is an S X S matrix, b is the bias, and ¢ is the non-linear
activation function. Note that W is initialized as a (He normal)
dense matrix and does not have the block structure of Eq. 1 at the
beginning of training. We apply this update rule a total of I times
and then read off the output as the final dyy,; nodes of the neurons.

gi = N_(SI_)I" l S dout (4)

A cartoon of this structure is given in Fig. 2. We call this architecture
the Unstructured Recursive Network (URN). The only structural
hyperparameters here are the total number of neurons S and the
number of iterations I. We will see that neither of these parameters
are indicative of the structure of the final emergent network.
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Figure 2: Schematic of the Unstructured Recurrent Network.

We train this network using standard loss functions and gradient
descent methods. Specifically, we demonstrate our methodology
on classification tasks using a multi-class cross-entropy loss func-
tion with added L; regulators on both network weights as well
as the neuron activations after each iteration of the update rule.
Correspondingly we have two hyperparameters cyy and ¢y which
control the strengths of these regulator terms:

I
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The use of these regulators is to promote sparsity in the number of
active neurons and nonzero weights of the network, which in turn
make the emergent structure simpler to interpret.

Emergent structures

A primary finding of this paper is that when training a URN on
a classification task with high values of weight and activity reg-
ulation, the topology of the emergent network is a feed-forward
multi-layer perceptron. As an example we train a URN with a total
of § = 5000 neurons and I = 4 iterations on a binary classification
task comprised of distinguishing inputs sampled from two uniform
concentric 10-d spherical shell distributions. Fig. 3 shows a generic
result for neural activities and the weight matrix for a network
trained on 4000 training samples for 200 epochs with Adam Opti-
mizer and learning rate 7 x 1074, ¢y = 5x 1077 and ¢y = 2 X 1075
(Because of the simplicity of the task in this section, we only choose
hyperparameters which consistently lead to 100% test accuracy).
For these plots, we have discarded the inactive neurons (i.e. neurons
with zero activation) and sorted the remaining neurons according
to the iteration number at which they are first activated.

Of the 5000 total initial neurons, only 123+ 15 (mean + STD across
5 trials) neurons remain active at the end of training. Comparing
Fig. 3 to the weight and neural activity structure of the previous
section (see Eq. 1 and Fig. 1b), we see that the neurons have neatly
organized into an MLP with 3 hidden layers comprised of 115 + 15,
4+1.4,and 3+0.7 neurons. In order to ascertain that this structure is
indeed the correct topology of the emergent network, we manually
set all other weights of the network to zero and verify there is no
change in the network output empirically. For a video of the evolu-
tion of a URN during training see https://youtu.be/hvlAnwW-IyY.

URN with emergent number of layers

In the previous section, the number of layers of any emergent
MLP is by construction equal to I, the number of the iterations
of the recursive network. This is necessarily true since there are
I applications of the update rule (Eq. 3) in the derivation of the
final values of the output (Eq. 4). In order to relax this requirement,
we need to allow for pathways in the computation graph of the
output values which include different numbers of the update rule.
The network can then choose dynamically how many ’layers’ to
utilize. This can be done using residual connections either on the
input or on the output nodes.
Residual output nodes. Consider the following update rule:

NUD _ {¢(WijN}l) +b;) i<S—doyr
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This modification has the simple interpretation that it allows for
the output of the neural network to accumulate gradually in the
output nodes. The network can therefore dynamically cut off further
changes to the output after iteration L < I. The number of layers
of the emergent network would then effectively be L. Fig. 4 depicts
the results of the training of a URN on the same problem as in the
previous section (Fig. 3), with the modified update rule in Eq. 6.
The emergent network now has one hidden layer (compared to
three in the previous section) despite the number of iterations
I being 4. This can be attributed to the (lack of) complexity of
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Figure 3: Activities (left) and weight matrix (right) of a URN of total size S = 5000 and I = 4 iterations on the concentric sphere dataset with
d = 10. The weight matrix and activities of neurons exhibit an emergent MLP structure.
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Figure 4: Same setting as Fig. 3 with output nodes which have a residual update rule (Eq. 6).

the dataset which becomes linearly separable after one layer. This
observation is further reinforced in Sec. 3 where in a more difficult
problem (classification on CIFAR-10) the emergent network utilizes
the maximum allowed number of layers (i.e. L = I).

Residual input nodes. This alternative modification has the intu-
itive interpretation of continuously feeding the input into the input
nodes at every step of the iteration:
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The implementation of residual connections on the input nodes has
the advantage that it allows for the formation of skip connections in
the emergent network. However, because of this mixing of different
layers (i.e. neurons that have different numbers of iterations of the
update rule applied), it also leads to neural activity patterns that are
harder to interpret in terms of a simple feed-forward network. We

leave the analysis of the emergence of more complicated networks
with skip connections and feedback loops to future work.
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3 INCORPORATING INPUT STRUCTURE

In this section we discuss the circumstances under which convo-
lutional NNs (CNN) or rather locally connected networks (LCN)
which are CNNs without weight sharing can arise from a URN. In
an LCN, the neurons of each layer are connected to a small neigh-
borhood of neurons in the previous layer. The definition of this
neighborhood implicitly requires a proximity or a distance mea-
sure defined on the neurons or on the individual components of

the input. Consequently, a dataset which has no such proximity
information, or more generally datasets which are invariant under
permutation of the components of the input (such as the spheres in
Sec. 2), combined with an update rule which preserves this symme-
try (e.g. Eq. 3), would generally lead to emergent structures which
also respect this permutation symmetry and hence do not have lo-
cal connectivity structure. This permutation symmetry is naturally
broken in many tasks. Here, we specialize to image recognition as
an example and show how this symmetry breaking naturally leads
to emergent networks with local connectivity structure.

Let us assume that the input of the network is a two-dimensional
matrix of size dy Xdy,. Implicit in this notation is the assumption of a
Euclidean metric which determines the relative distance of different
pixels on the 2D plane (the argument also applies to curved or other
non-trivial geometries). It is therefore natural that when we embed
this metric space inside the larger structure of the URN, there will
be also be a metric induced on this larger space given by the uplift
of the 2D Euclidean metric of the input. The simplest such metric
would be a product metric where there is a single extra dimension
perpendicular to the nodes assigned as the input (see Fig. 5):

ds® = ds2 , + pdz°, ()
where f is a hyperparameter determining the perpendicular length
scale compared to the directions parallel to the input.

This induced geometric structure on the neurons of the network
allows us to add extra regulator terms to the loss function which are
interpretable as penalizing the synaptic length connecting different
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Figure 5: Embedding an input with geometric structure in the neu-

rons of the URN. A metric on the input samples (left) naturally in-
duces a metric structure on this larger space (right).

neurons. This term was not allowed under the permutation symme-
try of the previous section. Also, this term is still invariant under
the parts of the permutation symmetry which remain unbroken
after the addition of the metric structure (e.g. discrete 90 degree
rotations).
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where cyy and cn are as before, d;; is the distance of the i’th and
Jj’th neuron under the metric in Eq. 8, y is the distance power hyper-
parameter, and cje,, determines the strength of the new regulator
term penalizing the length of each synapse.

We performed an experiment using monochromatic CIFAR-10
images using a URN with an uplift geometry equivalent to a x Xy Xz
cube of 60 X 60 X 6 = 21, 600 total neurons (see Fig. 5). The input
embedding rule (Eq. 2) is modified as follows: the 32 x 32 inputs are
expanded to 60 X 60 using interpolation and are embedded in the
z = 1 neurons. We use I = 4 iterations of the residual output update
rule described in Eq. 6. Finally, the center 10 neurons at z = 6 or
designated as the output nodes. The emergent network structure is
depicted in Fig. 6, where forward going weights (connecting smaller
z neurons to larger z neurons) are depicted in red, backward going
weights in green and equal z weights are depicted in black. A clear
feedforward and locally connected structure is apparent with a very
few green/black weights. Without hyperparameter fine-tuning this
network achieves a test accuracy of 52%, a 10% improvement over
the same structure with only weight and activity regulators.

Figure 6: Connectomics of a URN trained on CIFAR-10 with synap-
tic length regularization.
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4 DISCUSSION

In this paper we have an empirical demonstration that many of the
neural network structures in use today can dynamically emerge
from the same general framework of the URN. We showed in exam-
ples that the final topology of these networks is easily interpretable
as feed-forward MLPs with number of layers and number of neu-
rons per layer determined during training. Furthermore, we showed
that given input data with proximity information (e.g. a metric), we
can naturally extend the URN loss function such that we can derive
locally connected networks whose generalization performance is
considerably improved. These demonstrations, however, are only
the first stages of this project and much work remains to be done.
For example, one can ask, how does the emergent network topology
vary with task difficulty. This question is currently under study
and beyond the scope of the demonstrations in this paper. One can
also ask many other questions: e.g. under what circumstances, if
any, recurrent neural NNs emerge from a URN or if it is possible to
somehow naturally incorporate weight sharing such that we can
arrive at a convolutional network. Finally, a theoretical understand-
ing of why we generically arrive at feed-forward networks beyond
simple intuitive arguments is still needed.

Never-Ending Structure Accumulation. In light of the recent
works in continual and never-ending learning [6], and to circle
back to the points raised in the introduction, we propose the follow-
ing alternative learning scheme. Let us assume that we are given a
series of related tasks of gradually increasing difficulty. For example,
in vision, these can start from simple edge detection and end with
image classification. We can intuitively predict what will happen if
we train a network with dynamically chosen architecture on these
tasks consecutively using a compatible lifelong learning algorithm
which minimizes performance loss on prior tasks. When trained on
the simple tasks, the emergent network would be shallow with few
layers. However, as more complex tasks are trained, the depth of the
network would grow and each consecutive tasks would naturally
build on top of the structures already present in the architecture.
Preliminary results show that this expectation is borne out when
training a URN in conjunction with the lifelong learning algorithm
from Golkar et al. [5] on a series of simple to difficult image tasks.

This line of argument and experiments suggest an alternative
learning paradigm to today’s highly specialized networks specifi-
cally built for each task. In this learning paradigm, which we dub
Never-Ending Structure Accumulation or NESA, the structure is
simply determined by the series of simple to difficult tasks which
culminate in the final ML problem of interest. The responsibility of
the ML practitioner in NESA would then be to design this series
tasks. While this is not a trivial undertaking for many ML problems,
it brings the problem of training ANNs much closer to how BNNs
learn to perform new tasks during their lifetime.
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