
Under review as a conference paper at ICLR 2019

ISA-VAE: INDEPENDENT SUBSPACE ANALYSIS WITH
VARIATIONAL AUTOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent work has shown increased interest in using the Variational Autoencoder
(VAE) framework to discover interpretable representations of data in an unsuper-
vised way. These methods have focussed largely on modifying the variational cost
function to achieve this goal. However, we show that methods like β-VAE sim-
plify the tendency of variational inference to underfit causing pathological over-
pruning and over-orthogonalization of learned components. In this paper we take
a complementary approach: to modify the probabilistic model to encourage struc-
tured latent variable representations to be discovered. Specifically, the standard
VAE probabilistic model is unidentifiable: the likelihood of the parameters is in-
variant under rotations of the latent space. This means there is no pressure to
identify each true factor of variation with a latent variable. We therefore employ a
rich prior distribution, akin to the ICA model, that breaks the rotational symmetry.
Extensive quantitative and qualitative experiments demonstrate that the proposed
prior mitigates the trade-off introduced by modified cost functions like β-VAE and
TCVAE between reconstruction loss and disentanglement. The proposed prior al-
lows to improve these approaches with respect to both disentanglement and re-
construction quality significantly over the state of the art.

1 INTRODUCTION

Recently there has been an increased interest in unsupervised learning of disentangled representa-
tions. The term disentangled usually describes two main objectives: First, to identify each true factor
of variation with a latent variable, and second, interpretability of these latent factors (Schmidhuber,
1992; Ridgeway, 2016; Achille & Soatto, 2017). Most of this recent work is inspired by the β-VAE
concept introduced in Higgins et al. (2016), which proposes to re-weight the terms in the evidence
lower bound (ELBO) objective. In Higgins et al. (2016) a higher weight for the Kullback-Leibler
divergence (KL) between approximate posterior and prior is proposed, and putative mechanistic
explanations for the effects of this modification are studied in Burgess et al. (2017); Chen et al.
(2018). An alternative decomposition of the ELBO leads to the recent variant of β-VAE called β-
TCVAE (Chen et al., 2018), which shows the highest scores on recent disentanglement benchmarks.

These modifications of the evidence lower bound however lead to a trade-off between disentangle-
ment and reconstruction loss and therefore the quality of the learned model. This trade-off is directly
encoded in the modified objective: by increasing the β-weight of the KL-term, the relative weight
of the reconstruction loss term is more and more decreased. Therefore, optimization of the modified
ELBO will lead to latent encodings which have a lower KL-divergence from the prior, but at the
same time lead to a higher reconstruction loss. Furthermore, we discuss in section 2.4 that using
a higher weight for the KL-term amplifies existing biases of variational inference, potentially to a
catastrophic extent.

There is a foundational contradiction in many approaches to disentangling deep generative models
(DGMs): the standard model employed is not identifiable as it employs a standard normal prior
which then undergoes a linear transformation. Any rotation of the latent space can be absorbed into
the linear transform and is therefore statistically indistinguishable. If interpretability is desired, the
modelling choices are setting us up to fail.
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We make the following contributions:

• We show that the current state of the art approaches employ a trade-off between reconstruc-
tion loss and disentanglement of the latent representation.

• In section 2.3 we show that variational inference techniques are biased: the estimated com-
ponents are biased towards having orthogonal effects on the data and the number of com-
ponents is underestimated.

• We provide a novel description of the origin of disentanglement in β-VAE and demonstrate
in section 2.4 that increasing the weight of the KL term increases the over-pruning bias of
variational inference.

• To mitigate these drawbacks of existing approaches, we propose a family of rotationally
asymmetric distributions for the latent prior, which removes the rotational ambiguity from
the model. This approach resembles independent component analysis (ICA) for variational
autoencoders.

• We propose to use a prior which allows a decomposition of the latent space using indepen-
dent subspace analysis (ISA) and demonstrate that this prior leads to disentangled repre-
sentations even for the unmodified ELBO objective. This removes the trade-off between
disentanglement and reconstruction loss of existing approaches.

• An even higher disentanglement of the latent space can be achieved by incorporating the
proposed prior distribution into the existing approaches β-VAE and β-TCVAE. Since the
prior distribution already favours a disentangled representation, the new method dominates
previous in terms of the trade-off between disentanglement and model quality.

2 BACKGROUND

We briefly discuss previous work on variational inference in deep generative models and two mod-
ifications of the learning objective that have been proposed to learn a disentangled representation.
We discuss characteristic biases of variational inference and how the modifications of the learning
objective actually accentuate these biases.

2.1 DISENTANGLED REPRESENTATION LEARNING

Variational Autoencoder Kingma & Welling (2014) introduce a latent variable model that com-
bines a generative model, the decoder, with an inference network, the encoder. Training is performed
by optimizing the evidence lower bound (ELBO) averaged over the empirical distribution:

LELBO = Eqφ(z|x) [log pθ(x|z)]−DKL(qφ(z|x)‖p(z)) , (1)

where the decoder pθ(x|z) is a deep learning model with parameters θ and each zl is sampled from
the encoder zl ∼ qφ(z|x) with variational parameters φ. When choosing appropriate families of
distributions, gradients through the samples zl can be estimated using the reparameterization trick.
The approximate posterior qφ(z|x) is usually modelled as a multivariate Gaussian with diagonal
covariance matrix and the prior p(z) is typically the standard normal distribution.

β-VAE Higgins et al. (2016) propose to modify the evidence lower bound objective and penalize
the KL-divergence of the ELBO:

Lβ-ELBO = Eqφ(z|x) [log pθ(x|z)]− βDKL(qφ(z|x)‖p(z)) , (2)

where β > 1 is a free parameter that should encourage a disentangled representation. In Burgess
et al. (2017) the authors provide further thoughts on the mechanism that leads to these disentangled
representations. However we will show in the following that this parameter introduces a trade-off
between reconstruction loss and disentanglement. Furthermore, we show in section 2.4 that this
parameter amplifies biases of variational inference towards orthogonalization and pruning.
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β-TCVAE In Chen et al. (2018) the authors propose an alternative decomposition of the ELBO,
that leads to the recent variant of β-VAE called β-TCVAE. They demonstrate that β-TCVAE allows
to learn representations with higher MIG score than β-VAE (Higgins et al., 2016), InfoGAN (Chen
et al., 2016) and FactorVAE (Kim & Mnih, 2018). The authors propose to decompose the KL-term
in the ELBO objective into three parts and to weight them independently:

Epθ(x) [DKL(qφ(z|x)‖p(z))] =

= DKL(qφ(z|x)‖qφ(z)pθ(x)) +DKL(qφ(z)‖
∏
j

qφ(zj)) +
∑
j

DKL(qφ(zj)‖p(zj)) . (3)

The first term is the index-code mutual information, the second term is the total correlation and the
third term the dimension-wise KL-divergence. Because the index-code mutual information can be
viewed as an estimator for the mutual information between pθ(x) and qφ(z), the authors propose
to exclude this term when reweighting the KL-term with the β weight. In addition to the improved
objective, the authors propose a quantitative evaluation score for disentanglement, the mutual infor-
mation gap (MIG). They propose to first estimate the mutual information between a latent factor and
an underlying generative factor of the dataset. The mutual information gap is then defined as the
difference of the mutual information between the highest and second highest correlated underlying
factor.

2.2 RELATED WORK

Recent work has shown an increased interest into learning of interpretable representations. In ad-
dition to the work mentioned already, we briefly review some of the influential papers: Chen et al.
(2016) present a variant of a GAN that encourages an interpretable latent representation by max-
imizing the mutual information between the observation and a small subset of latent variables.
The approach relies on optimizing a lower bound of the intractable mutual information. Kim &
Mnih (2018) propose a learning objective equivalent to β-TCVAE, and train it with the density ratio
trick (Sugiyama et al., 2012). Kumar et al. (2017) introduce a regularizer of the KL-divergence be-
tween the approximate posterior and the prior distribution. A parallel line of research proposes not
to train a perfect generative model but instead to find a simpler representation of the data (Vedantam
et al., 2017; Hinton et al., 2011b). A similar strategy is followed in semi-supervised approaches that
require implicit or explicit knowledge about the true underlying factors of the data (Kulkarni et al.,
2015; Kingma et al., 2014; Reed et al., 2014; Baydin et al., 2017; Hinton et al., 2011a; Zhu et al.,
2017; Goroshin et al., 2015; Hsu et al., 2017; Denton et al., 2017).

2.3 ORTHOGONALIZATION AND PRUNING IN VARIATIONAL INFERENCE

There have been several interpretations of the behaviour of the β-VAE (Chen et al., 2018; Burgess
et al., 2017). Here we provide a complementary perspective: that it enhances well known statistical
biases in VI (Turner & Sahani, 2011) to produce disentangled, but not necessarily useful, represen-
tations. The form of these biases can be understood by considering the variational objective when
written as an explicit lower-bound: the log-likelihood of the parameters minus the KL divergence
between the approximate posterior and the true posterior

LELBO = log pθ(x)−DKL(qφ(z|x)‖pθ(z|x)) (4)

From this form it is clear that VI’s estimates of the parameters θ will be biased away from the
maximum likelihood solution (the maximizer of the first term) in a direction that reduces the KL
between the approximate and true posteriors. When factorized approximating distributions are used,
VI will therefore be biased towards settings of the parameters that reduce the statistical dependence
between the latent variables in the posterior. For example, this will bias learned components towards
orthogonal directions in the output space as this reduces explaining away (e.g. in the factor analysis
model, VI breaks the degeneracy of the maximum-likelihood solution finding the orthogonal PCA
directions, see appendix B.8). Moreover, these biases often cause components to be pruned out
(in the sense that they have no effect on the observed variables) since then their posterior sits at
the prior, which is typically factorized (e.g. in an over-complete factor analysis model VI prunes
out components to return a complete model, see appendix B.8). For simple linear models these
effects are not pathological: indeed VI is arguably selecting from amongst the degenerate maximum
likelihood solutions in a sensible way. However, for more complex models the biases are more
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(b) Tree visualization of Eq. 9, an Lp-nested ISA model.

Figure 1: Trees representation of Lp-nested distributions. a) Tree of the example provided in Eq. 6.
b) Tree corresponding to an Lp-nested ISA model.

severe: often the true posterior of the underlying model has significant dependencies (e.g. due to
explaining away) and the biases can prevent the discovery of some components. For example, VAEs
are known to over-prune (Burda et al., 2015; Cremer et al., 2018).

2.4 β-VAE EMPHASIZES ORTHOGONALIZATION AND PRUNING

What happens to these biases in the β-VAE generalization when β > 1? The short answer is that
they grow. This can be understood by considering coordinate ascent of the modified objective.
With θ fixed, optimising q finds a solution that is closer to the prior distribution than VI due to the
upweighting of the KL term in 2. With q fixed, optimization over θ returns the same solution as VI
(since the prior does not depend on the parameters θ and so the value of β is irrelevant). However,
since q is now closer to the prior than before, the KL bias in equation 2 will be greater. These
effects are shown in the ICA example in appendix B.8. VI (β = 1) learns components that are
more orthogonal than the underlying ones, but β = 5 prunes out one component entirely and sets
the other two to be orthogonal. This is disentangled, but arguably leads to incorrect interpretation
of the data. This happens even though both methods are initialised at the true model. Arguably, the
β-VAE is enhancing a statistical bug in VI and leveraging this as a feature. We believe that this can
be dangerous, preventing the discovery of the underlying model.

3 LATENT PRIOR DISTRIBUTIONS FOR UNSUPERVISED FACTORIZATION

In this section we describe an approach for unsupervised learning of disentangled representations.
Instead of modifying the ELBO-objective, we propose to use certain families of prior distributions
p(z), that lead to identifiable and interpretable models. In contrast to the standard normal distri-
bution, the proposed priors are not rotationally invariant, and therefore allow interpretability of the
latent space.

3.1 INDEPENDENT COMPONENT ANALYSIS

Independent Component Analysis (ICA) seeks to factorize a distribution into non-Gaussian factors.
In order avoid the ambiguities of latent space rotations, a non-Gaussian distribution (e.g. Laplace or
Student-t distribution) is used as prior for the latent variables.

Generalized Gaussian Distribution A generalized version of ICA (Lee & Lewicki, 2000; Zhang
et al., 2004; Lewicki, 2002; Sinz & Bethge, 2010) uses a prior from the family of exponential power
distributions of the form

pICA(z) ∝ exp
(
−τ ||z||pp

)
(5)

also called generalized Gaussian, generalized Laplacian or p-generalized normal distribution. Us-
ing p = 2/(1 + κ) the parameter κ is a measure of kurtosis (Box & Tiao, 1973). This family of
distributions generalizes the normal (κ = 0) and the Laplacian (κ = 1) distribution. In general we
get for κ > 0 leptokurtic and for κ < 0 platykurtic distributions. The choice of a leptokurtic or
platykurtic distribution has a strong influence on how a generative factor of the data is represented
by a latent dimension. Fig. 2 depicts two possible prior distributions over latents that represent the
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Figure 2: Leptokurtic and platykurtic priors encourage different orientations of the encoding of
the (x,y) location of a sprite in the dSprites dataset. A leptokurtic distribution (here the Laplace
distribution) has, in two dimensions, contour lines along diagonal directions and expects most of
the probability mass around 0. Because the (x,y) locations in dSprites are distributed in a square,
the projection of the coordinates onto the diagonal fits better to the Laplace prior. A platykurtic
distribution however is more similar to a uniform distribution, with axis aligned contour lines in two
dimensions. This fits better to an orthogonal projection of the (x,y) location. The red and blue colour
coding denotes the value of the latent variable for the respective (x,y) location of a sprite.

(x,y) spatial location of a sprite in the dSprites dataset (Matthey et al., 2017). The leptokurtic distri-
bution expects most of the probability mass around 0 and therefore favours a projection of the x and
y coordinates, which are distributed in a square, onto the diagonal. The platykurtic prior is closer to
a uniform distribution and therefore encourages an axis-aligned representation. This example shows
how the choice of the prior will effect the latent representation.

Obviously the normal distribution is a special instance of the class of Lp-spherically symmetric
distributions, and the normal distribution is the only L2-spherically symmetric distribution with in-
dependent marginals. Equivalently (Sinz et al., 2009a) showed that this also generalizes to arbitrary
values of p. The marginals of the p-generalized normal distribution are independent, and it is the
only factorial model in the class of Lp-spherically symmetric distributions.

We investigate the behaviour of Lp-spherically symmetric distributions as prior distributions for
p(z) in the experiments in section 4.

3.2 INDEPENDENT SUBSPACE ANALYSIS

ICA can be further generalized to include independence between subspaces, but dependencies within
them, by using a more general prior, the family of Lp-nested symmetric distributions (Hyvärinen &
Hoyer, 2000; Hyvärinen & Köster, 2007; Sinz et al., 2009b; Sinz & Bethge, 2010).

Lp-nested Function To start, let’s consider functions of the form(
|z1|p0 + (|z2|p1 + |z3|p1)

p0
p1

) 1
p0
, (6)

with p0, p1 ∈ R. This function is a cascade of two Lp-norms. To aid intuition we provide a
visualization of this distribution in figure 1a, which depicts (6) as a tree that visualizes the nested
structure of the norms. We call the class of functions which employ this structure Lp-nested.

Lp-nested Distribution Given an Lp-nested function f and a radial density ψ0 : R 7→ R+ we
define the Lp-nested symmetric distribution following Fernandez et al. (1995) as

pISA(z) =
ψ0(f(z))

f(z)n−1Sf (1)
, (7)

where Sf (1) is the surface area of the Lp-nested sphere. This surface area can be obtained by using
the gamma function:

Sf (R) = Rn−12n
∏
i∈I

∏l1
k=1 Γ

[
ni,k
pi

]
pli−1i Γ

[
ni
pi

] , (8)

where li is the number of children of a node i, ni is the number of leaves in a subtree under the node
i, and ni,k is the number of leaves in the subtree of the k-th children of node i. For further details
we refer the reader to the excellent work of Sinz & Bethge (2010).
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Independent Subspace Analysis The family of Lp-nested distributions allows a generalization
of ICA called independent subspace analysis (ISA). ISA uses a subclass of Lp-nested distributions,
which are defined by functions of the form

f(z) =


 n1∑
j=1

|zj |p1


p0
p1

+ · · ·+

 n∑
j=n1+···+nl−1+1

|zj |pl


p0
pl


1
p0

, (9)

and correspond to trees of depth two. The tree structure of this subclass of functions is visualized in
figure 1b where each vi, i = 1, . . . , l0 denotes the function value of the Lp-norm evaluated over a
node’s children. The components zj of z that contribute to each vi form a subspace

Vi =

{
zj

∣∣∣ j = a . . . b with a =

i−1∑
k=1

nk + 1, b = a+ ni

}
. (10)

Sinz & Bethge (2010) showed that the subspaces V1, . . . ,Vl0 become independent when using the
radial distribution

ψ0(v0) =
p0v

n−1
0

Γ
[
n
p0

]
s
n
p0

exp

(
−v

p0
0

s

)
(11)

which we can interpret as a generalization of the Chi-distribution.

ISA-VAE We propose to choose the latent prior pISA(z) (Eq. 7) with f(z) from the family of ISA
models of the form of Eq. 9, which allows us to define independent subspaces in the latent space.
The Kulback-Leibler divergence of the ELBO-objective can be estimated by Monte-Carlo sampling.
This leads to an ELBO-objective of the form

LISA-VAE = Ez∼qφ(z|x) [log pθ(x|z) + log pISA(z)− log qφ(z|x)] , (12)

which only requires to compute the log-density of the prior that is readily accessible from the density
defined in Eq. 7. As discussed in Roeder et al. (2017) this form of the ELBO even has potential
advantages (variance reduction) in comparison to a closed form KL-divergence.

ISA-TCVAE The proposed latent prior can also be combined with the β-TCVAE approach and
we get the objective

LISA-TCVAE = Ez∼qφ(z|x) [log pθ(x|z)]− Iq(z;x)− βDKL(qφ(z)‖
∏
j

qφ(zj))−
∑
j

DKL(qφ(zj)‖pISA(zj)) ,

(13)

where Iq denotes the index code mutual information. To compute the terms in Eq. 13, Chen et al.
(2018) propose a Monte-Carlo sampling approach called minibatch-weighted sampling, which also
only requires to compute the log density of the prior.

Sampling and the Reparameterization Trick If we want to sample from the generative model
we have to be able to sample from the prior distribution. Sinz & Bethge (2010) describe an exact
sampling approach to sample from an Lp-nested distribution, which we reproduce as Algorithm 1 in
the appendix. Note that during training we only have to sample from the approximate posterior qφ,
which we do not have to modify and which can remain a multivariate Gaussian distribution following
the original VAE approach. As a consequence, the reparameterization trick can be applied (Kingma
& Welling, 2014).

Experiments in the following section demonstrate that the proposed prior supports unsupervised
learning of disentangled representation even for the unmodified ELBO objective (β = 1).

4 EXPERIMENTS

In our experiments, we evaluate the influence of the proposed prior distribution on disentanglement
and on the quality of the reconstruction on the dSprites dataset (Matthey et al., 2017), which contains
images of three different shapes undergoing transformations of their position, scale and rotation.
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(b) ISA-TCVAE, β = 2.5, MIG: 0.54

Figure 3: Disentangled representations for ISA-VAE and ISA-TCVAE on the dSprites dataset. We
follow standard practice established in Chen et al. (2018) for visualizing latent representations and
additionally show images generated by traversals of the latent along the respective axis. The red and
blue colour coding in the first column denotes the value of the latent variable for the respective x,y-
coordinate of the sprite in the image. Coloured lines indicate the object shape with red for ellipse,
green for square, and blue for heart. (a) Even without a modification of the ELBO (β = 1.0) the
proposed ISA prior leads to a disentangled representation. (b) When combining the ISA-model with
β-TCVAE, a model with a high disentanglement score of MIG = 0.54 can be reached. This is the
highest score reported for dSprites in the literature. ISA-layouts: (a) l0 = 5, l1,...,5 = 5, p0 = 2.1,
p1,...,5 = 2.2 (b) l0 = 5, l1,...,5 = 4, p0 = 2.1, p1,...,5 = 2.2

Disentanglement Metrics To provide a quantitative evaluation of the disentanglement we com-
pute the disentanglement metric Mutual Information Gap (MIG) that was proposed in Chen et al.
(2018). The MIG score measures how much mutual information a latent dimension shares with
the underlying factor, and how well this latent dimension is separated from the other latent factors.
Therefore the MIG measures the two desired properties usually referred to with the term disentan-
glement: a factorized latent representation, and interpretability of the latent factors. Chen et al.
(2018) compare the MIG metric to existing disentanglement metrics (Higgins et al., 2016; Kim &
Mnih, 2018) and demonstrate that the MIG is more effective and that the other metrics do not allow
to capture both properties in a desirable way.

Reconstruction Quality To quantify the reconstruction quality, we report the expected
(log-)likelihood of the reconstructed data Eqφ(z|x) [log pθ(x|z)]. In our opinion this measure is
more informative than the ELBO, frequently reported in existing work, e.g. (Chen et al., 2018),
especially when varying the β parameter, the weighting of the KL term, which is part of the ELBO.

Comparison Baselines Chen et al. (2018) demonstrate that β-TCVAE, a modification of the β-
VAE, enables learning of representations with higher MIG score than β-VAE (Higgins et al., 2016),
InfoGAN (Chen et al., 2016), and FactorVAE (Kim & Mnih, 2018). Therefore we choose to compare
against β-TCVAE and β-VAE in our experiments.

Architecture of the Encoder and Decoder To allow an accurate comparison we use the same
architecture for the decoder and encoder as presented in Chen et al. (2018). We reproduce the
description of the encoder and decoder in appendix A.5

Choosing the ISA-layout We follow the practice of Sinz et al. (2009b) and perform a search
over different values for the parameters of the ISA model and choose the model with the highest
disentanglement (MIG) score. A comparison of different parameter settings and more details about
this procedure are provided in appendix A.1
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Figure 4: Comparison of the proposed ISA-VAE model with β-VAE and β-TCVAE. Evaluation is
performed with respect to the quality of the disentanglement (MIG score, solid line) and reconstruc-
tion quality (dashed line) for different values of β. The proposed models ISA-VAE and ISA-TCVAE
reach a disentangled representation for small values of β which allows better reconstructions due to
the trade-off between the β-weight of the KL-term and the reconstruction loss in the modified ELBO.
Shaded regions depict 90% confidence intervals. Evaluated on the dSprites dataset with n = 16 for
each value of β. ISA layout: l0 = 5, l1,...,5 = 4, p0 = 2.1, p1,...,5 = 2.2.

4.1 SUPPORT OF THE PRIOR TO LEARN DISENTANGLED REPRESENTATIONS

First, we investigate the ability of the prior to support unsupervised learning of disentangled repre-
sentations for the unmodified ELBO-objective. Figure 3a depicts the structure of the latent represen-
tation after training for ISA-VAE, a combination of the Lp-nested ISA prior with the standard VAE
approach. Because our prior allows independent subspaces the latent space becomes interpretable
even when using the unmodified ELBO objective with β = 1. The plots were produced with the
reference implementation of Chen et al. (2018) for visualizing latent representations for the dSprites
dataset. When combining the ISA-model with β-TCVAE and varying the β parameter, a model
with a high disentanglement score of MIG = 0.54 can be reached. This is the so far highest score
reported for dSprites in the literature.

4.2 QUANTITATIVE COMPARISON OF THE DIFFERENT APPROACHES

This benefit of the proposed prior, that it encourages disentangled representations becomes even
more obvious in our quantitative comparison. We compare the approaches ISA-VAE and ISA-
TCVAE, that use the proposed Lp-nested prior pISA with their respective counterpart β-VAE (Hig-
gins et al., 2016) and β-TCVAE (Chen et al., 2018) that use the standard normal prior pN . Because
the amount of disentanglement depends on the choice of the parameter β, we vary β in the interval
between 1 and 6 with a stepsize of 0.5. We compare the performance of the four different approaches
in figure 4 with 16 experiments for each value of β. Clearly in both cases a higher disentanglement
score can be achieved already for smaller values of β with ISA-β-VAE and ISA-β-TCVAE in com-
parison to the original approaches. Even when choosing the individually best value of β, that reaches
the highest MIG score for each method, the poposed approaches reach a higher MIG score than their
respective counterparts. Fig. 5 depicts the distribution of MIG scores for the individually best value
of β: Both average and mean of the MIG scores are higher for the variants that use the ISA-model.

4.3 TRADE-OFF BETWEEN DISENTANGLEMENT AND RECONSTRUCTION LOSS

Since the proposed prior facilitates learning of disentangled representations, not only a higher dis-
entanglement score can be reached, but also higher scores are reached for smaller values of β, when
compared to the original approaches. This leads to a clear improvement of the trade-off between
disentanglement and reconstruction loss. The improvement of this trade-off is demonstrated in fig-
ure 4, where we plot both the disentanglement score and the reconstruction loss for varying values
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Figure 5: Comparison of the different approaches using the optimal β value in terms of MIG score.
(a) Box plot of the distribution of MIG-scores (b) Scatter plot of MIG-score and reconstruction loss
with error bars denoting the standard error. Note that when comparing β-TCVAE with β-VAE the
MIG score has improved, but at the same time the reconstruction quality decreases significantly.
The proposed approaches ISA-VAE and ISA-TCVAE allow a better trade-off between disentangle-
ment and the reconstruction loss, almost reaching the reconstruction quality of the standard, non-
disentangling VAE. Number of experiments: 16 each. Layout of the ISA model in all experiments:
l0 = 5, l1,...,5 = 4, p0 = 2.1, p1,...,5 = 2.2. β-values of each approach: β-VAE: 3.5, β-TCVAE: 5,
ISA-VAE: 3.5, ISA-TCVAE: 2.5

of β. ISA-β-VAE and ISA-β-TCVAE reach high values of the disentanglement score for smaller
values of β which and at the same time preserves a higher quality of the reconstruction than the
respective original approaches. At the same time we observe that with the proposed prior the quality
of the reconstruction decreases at a smaller rate than for the original approaches.

This improvement of the trade-off between disentanglement and the reconstruction loss becomes
also obvious in figure 5b where we plot the MIG score with respect to the reconstruction loss for
the individually best value of β. The proposed approaches ISA-VAE and ISA-TCVAE allow higher
MIG scores than their respective base lines while at the same time providing a better reconstruction
quality, almost reaching the reconstruction quality of the standard, non-disentangling VAE. Inter-
estingly the plot also shows that the increase of the MIG score for the baseline method β-TCVAE
comes at the cost of a much lower reconstruction quality. This difference in the reconstruction qual-
ity becomes obvious in the quality of the reconstructed images. Please refer to the appendix where
we present latent traversals in appendix A.3 and image reconstruction experiments in appendix A.4.
With the proposed approach ISA-TCVAE the reconstruction quality can be increased significantly
while at the same time providing a higher disentanglement.

5 CONCLUSION

We presented a structured prior for unsupervised learning of disentangled representations in deep
generative models. We choose the prior from the family of Lp-nested symmetric distributions which
enables the definition of a hierarchy of independent subspaces in the latent space. In contrast to
the standard normal prior that is often used in training of deep generative models the proposed
prior is not rotationally invariant and therefore enhances the interpretability of the latent space. We
demonstrate in our experiments, that a combination of the proposed prior with existing approaches
for unsupervised learning of disentangled representations allows a significant improvement of the
trade-off between disentanglement and reconstruction loss.
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A APPENDIX

A.1 CHOOSING THE ISA-LAYOUT

We vary l0 between 4 and 10 and choose the same value for l1 = l2,...,l0 between 2 and 10. We set
the parameter range of the exponents pi to pi ∈ [0.9, 2.4] with a discretization step size of 0.1, which
includes lepto- and platokyrtic distributions. Fig. 2 depicts how lepto- and platykurtic distributions
at the child subspaces lead to different representations of the x and y coordinate. Because the MIG
metric evaluates axis-alignment of the latent dimensions to the underlying factors, here the x and y
coordinate, platykurtic priors in general achieve a higher MIG score. The child subspaces share the
same parameter p1 = p2,...,l0 and we choose the exponent of the root node as p0 6= p1 to ensure
independence of the subspaces. To study the influence of the layout on the reconstruction quality
and MIG score we compare the results for different values of p0, p1,...,5 and l1, and vary the value
of β in the interval β ∈ [1, 4] with a step size of 0.5 and repeat each experiment four times. We
compare four layouts with the highest MIG score for each subspace layout in Fig. 6 where we plot
the mean and standard error of MIG score and reconstruction loss.
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Figure 6: Disentanglement score (MIG) with respect to the reconstruction quality for different lay-
outs of the ISA subspaces. The number of subspaces l0 = 5 is constant throughout all experiments.
For this dataset, the confguration p0 = 2.1, p1,...,5 = 2.2 and l1 = 4 (denoted in black) is most
appropriate as it achieves high MIG scores while maintaining a good reconstruction quality, both for
the ISA-VAE and the ISA-TCVAE model.
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A.2 SAMPLING FROM Lp-NESTED SYMMETRIC DISTRIBUTIONS

Algorithm 1: Exact sampling algorithm for Lp-nested symmetric distributions
from Sinz & Bethge (2010)
Input : The radial distribution ψ0(v0) of an Lp-nested symmetric distribution pLp for the

Lp-nested function f
Output: Sample x from pLp

1. Sample v0 from a beta distribution β[n, 1]

2. For each inner node i of the tree associated with f , sample the auxiliary variable si from a
Dirichlet distribution Dir

[
ni,1
pi
, . . . ,

ni,l1
pi

]
where ni,k are the number of leaves in the

subtree under node i, k. Obtain coordinates on the Lp-nested sphere within the positive

orthant by si 7→ s
1
pi
i = ũi (the exponentiation is taken component-wise)

3. Transform these samples to Cartesian coordinates by vi · ũi = vi,1:li for each inner node,
starting from the root node and descending to lower layers. The components of vi,1:li
constitute the radii for the layer direct below them. If i = 0, the radius had been sampled
in step 1

4. Once the two previous steps have been repeated until no inner node is left, we have a
sample x from the uniform distribution in the positive quadrant. Normalize x to get a
uniform sample from the sphere u = x

f(x)

5. Sample a new radius ṽ0 from the radial distribution of the target radial distribution ψ0 and
obtain the sample via x̃ = ṽ0 · u

6. Multiply each entry xi of x̃ by and independent sample zi from the uniform distribution
over {−1, 1}.

A.3 DISENTANGLEMENT REPRESENTATIONS AND LATENT TRAVERSALS

We follow standard practice established in Chen et al. (2018) for visualizing latent representations
and additionally show images generated by traversals of the latent along the respective axis. The red
and blue color coding in the first column denotes the value of the latent variable for the respective
x,y-coordinate of the sprite in the image. Colored lines indicate the object shape with red for ellipse,
green for square, and blue for heart.

ISA-layouts:
ISA-VAE: l0 = 5, l1,...,5 = 5, p0 = 2.1, p1,...,5 = 2.2
ISA-TCVAE l0 = 5, l1,...,5 = 4, p0 = 2.1, p1,...,5 = 2.2
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(d) ISA-TCVAE, β = 2.5, MIG: 0.54

Figure 7: Disentangled representations for β-VAE, β-TCVAE, ISA-VAE and ISA-TCVAE and latent
traversals for the ellipse shape.
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(d) ISA-TCVAE, β = 2.5, MIG: 0.54

Figure 8: Disentangled representations for β-VAE, β-TCVAE, ISA-VAE and ISA-TCVAE and latent
traversals for the square shape.
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(d) ISA-TCVAE, β = 2.5, MIG: 0.54

Figure 9: Disentangled representations for β-VAE, β-TCVAE, ISA-VAE and ISA-TCVAE and latent
traversals for the heart shape.
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A.4 IMAGE RECONSTRUCTION RESULTS
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Figure 10: Reconstructed images for β-VAE, β-TCVAE, ISA-VAE and ISA-TCVAE using the mod-
els from figure 5 and appendix A.3. Note that because of the trade-off between disentanglement and
reconstruction loss the images reconstructed with β-VAE and β-TCVAE appear much noisier than
the models with the ISA prior. Further, the ISA prior allows to reconstruct more details of the heart
shape than β-VAE and β-TCVAE.

A.5 MODEL ARCHITECTURE (PYTORCH)

The models were trained with the optimization algorithm Adam (Kingma & Ba, 2015) using a
learning rate parameter of 0.01

All unmentioned hyperparameters are PyTorch v0.41 defaults.

c l a s s MLPEncoder ( nn . Module ) :
d e f i n i t ( s e l f , o u t p u t d i m ) :

s u p e r ( MLPEncoder , s e l f ) . i n i t ( )
s e l f . o u t p u t d i m = o u t p u t d i m

s e l f . f c 1 = nn . L i n e a r ( 4 0 9 6 , 1200)
s e l f . f c 2 = nn . L i n e a r ( 1 2 0 0 , 1200)
s e l f . f c 3 = nn . L i n e a r ( 1 2 0 0 , o u t p u t d i m )

s e l f . conv z = nn . Conv2d ( 6 4 , o u t p u t d i m , 4 , 1 , 0 )

# s e t u p t h e non− l i n e a r i t y
s e l f . a c t = nn . ReLU( i n p l a c e =True )

d e f f o r w a r d ( s e l f , x ) :
h = x . view (−1 , 64 ∗ 64)
h = s e l f . a c t ( s e l f . f c 1 ( h ) )
h = s e l f . a c t ( s e l f . f c 2 ( h ) )
h = s e l f . f c 3 ( h )
z = h . view ( x . s i z e ( 0 ) , s e l f . o u t p u t d i m )
r e t u r n z

c l a s s MLPDecoder ( nn . Module ) :
d e f i n i t ( s e l f , i n p u t d i m ) :

s u p e r ( MLPDecoder , s e l f ) . i n i t ( )
s e l f . n e t = nn . S e q u e n t i a l (

nn . L i n e a r ( i n p u t d i m , 1 2 0 0 ) ,
nn . Tanh ( ) ,
nn . L i n e a r ( 1 2 0 0 , 1 2 0 0 ) ,
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nn . Tanh ( ) ,
nn . L i n e a r ( 1 2 0 0 , 1 2 0 0 ) ,
nn . Tanh ( ) ,
nn . L i n e a r ( 1 2 0 0 , 4096)

)

d e f f o r w a r d ( s e l f , z ) :
h = z . view ( z . s i z e ( 0 ) , −1)
h = s e l f . n e t ( h )
mu img = h . view ( z . s i z e ( 0 ) , 1 , 64 , 64)
r e t u r n mu img

Architecture of the encoder and decoder which is identical to the architecture in Chen et al. (2018).
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B TOY EXAMPLES SHOWING BIASES IN VI AND β-VI

This section provides the details of the toy examples that reveal the biases in variational methods.

First we will consider the factor analysis model showing that VI breaks the degeneracy of the
maximum-likelihood solution to 1) discover orthogonal weights that lie in the PCA directions, 2)
prune out extra components in over-complete factor analysis models, even though there are solu-
tions with the same likelihood that preserve all components. We also show that in these examples
the β-VI returns identical model fits to VI regardless of the setting of β.

Second, we consider an over-complete ICA model and initialize using the true model. We show that
1) VI is biased away from the true component directions towards more orthogonal directions, and
2) β-VI with a modest setting of β = 5 prunes away one of the components and finds orthogonal
directions for the other two. That is, it finds a disentangled representation, but one which does not
reflect the underlying components.

B.1 BACKGROUND

The β-VAE optimizes the modified free-energy, Fβ(q(z1:N ), θ), with respect to the parameters θ
and the variational approximation q(z1:N ),

Fβ(q(z1:N ), θ) = Eq(z1:N )(log p(x1:N |z1:N , θ))− βKL(q(z1:N )||p(z1:N )).

Consider the case where M = 1
β is a positive integer, M ∈ N, we then have

Fβ(q(z1:N ), θ) =

N∑
n=1

[
Eq(zn)(M(β) log p(xn|zn, θ))−KL(q(zn)||p(zn))

]
In this case, the β-VAE can be thought of as attaching M replicated observations to each latent
variable zn and then running standard variational inference on the new replicated dataset. This can
equivalently be thought of as raising each likelihood p(xn|zn, θ) to the power M .

Now in real applications β will be set to a value that is greater than one. In this case, the effect of
β is the opposite: it is to reduce the number of effective data points per latent variable to be less
than one M < 1. Or equivalently we raise each likelihood term to a power M that is less than one.
Standard VI is then run on these modified data (e.g. via joint optimization of q and θ).

Although this view is mathematically straightforward, the perspective of the β-VAE i) modifying
the dataset, and ii) applying standard VI, is useful as it will allow us to derive optimal solutions for
the variational distribution q(z) in simple cases like the factor analysis model considered next.

B.2 FACTOR ANALYSIS

Consider the factor analysis generative model. Let x ∈ RL and z ∈ RK .
for n = 1...N

zn ∼ N (0, I),

xn ∼ N (Wzn, D) where D = diag([σ2
1 , ..., σ

2
D]) (14)

The true posterior is a Gaussian p(zn|xn, θ) = N (z;µz|x,Σz|x) where

µz|x = Σz|xW
>D−1x and Σz|x = (W>D−1W + I)−1. (15)

The true log-likelihood of the parameters is

log p(x1:N |θ) =

N∑
n=1

logN (xn,0,WW> +D)

= −N
2

log det(2π(WW> +D))− 1

2

N∑
n=1

x>n (WW> +D)−1xn

= −1

2
N
[
log det(2π(WW> +D)) + trace((WW> +D)−1(µxµ

>
x + Σx))

]
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Here we have defined the empirical mean and covariance of the observations µx = 1
N

∑N
n=1 xn and

Σx = 1
N

∑N
n=1(xn − µx)(xn − µx)> i.e. the sufficient statistics.

The true likelihood is invariant under orthogonal transformations of the latent variables: z′ = Rz
where RR> = I.

Interpreting β-VI as running VI in a modified generative model (see previous section) we have the
new generative process

for n = 1...N

zn ∼ N (zn;0, I),

for m = 1...M(β)

xn,m ∼ N (Wzn, D) where D = diag([σ2
1 , ..., σ

2
D])

We now observe data and set xn,m = xn.

The posterior is again Gaussian p(zn|xn, θ,M(β)) = N (zn; µ̃z|x(β, n), Σ̃z|x(β)) where

µ̃z|x(β, n) = Σ̃−1z|x(β)M(β)W>D−1xn and Σ̃z|x(β) = (M(β)W>D−1W + I)−1

Here we have taken care to explicitly reveal all of the direct dependencies on β.

Mean-field variational inference, q(zn) =
∏
k qn,k(zk,d), will return a diagonal Gaussian approxi-

mation to the true posterior with the same mean and matching diagonal precision,

q(zn|xn, θ,M(β)) = N
(
zn; µ̃z|x(β, n),Σq(β)

)
where Σ−1q (β) = diag

(
Σ̃−1z|x(β)

)
We notice that the posterior mean is a linear combination of the observations µ̃z|x(β, n) = R(β)xn
where R(β) = Σ̃z|x(β)M(β)W>D−1 are recognition weights. Notice that the recognition weights
and the posterior variances are the same for all data points: they do not depend on n. The free-energy
is then

F(q, θ, β) = Eq(z)(log p(x|z))−KL(q(z)|p(z))
with the reconstruction term being

Eq(z)(log p(x|z)) = − 1

2β

N∑
n=1

x>n (D−1 − 2R>W>D−1 +R>W>D−1WR)xn

− N

2β
log det(2πD)− N

2β
trace(W>D−1Σq)

= −N
2β

(
trace

(
(D−1 − 2R>W>D−1 +R>W>D−1WR)(Σx + µxµ

>
x )
)

+ log det(2πD) + trace(W>D−1WΣq)

)
(16)

and the KL or regularization term being

KL(q(z)|p(z)) = −NK
2
− N

2
log det(Σq) +

N

2
trace(Σq) +

1

2

N∑
n=1

x>nR
>Rxn

= −N
2

(
K + log det(Σq)− trace(Σq)− trace(R>R(Σx + µxµ

>
x ))
)
.

We will now consider the objective functions and the posterior distributions in several cases to reason
about the parameter estimates arising from the methods above.

B.3 EXPERIMENT 1: MEAN FIELD VI APPLIED TO FACTOR ANALYSIS YIELDS THE PCA
DIRECTIONS

Consider the situation where we know a maximum likelihood solution of the weights WML. For
simplicity we select the solution WML which has orthogonal weights in the observation space. We
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then rotate this solution by an amount θ so that W ′ML = R(θ)WML. The resulting weights are no
longer orthogonal (assuming the rotation is not an integer multiple of π/2). We compute the log-
likelihood (which will not change) and the free-energy (which will change) and plot the true and
approximate posterior covariance (which does not depend on the datapoint value xn).

First here are the weights are aligned with the true ones. The log-likelihood and the free-energy take
the same value of -17.82 nats.
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Second, here are the weights rotated π/4 and the log-likelihood is -17.82 nats and the free-energy
-57.16 nats.
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When varying the rotation away fom the orthogonal setting, θ, the plots above indicate that orthogo-
nal settings of the weights (θ = mπ/2 where m = 0, 1, 2, ...) lead to factorized posteriors. In these
cases the KL between the approximate posterior and the true posterior is zero and the free-energy is
equal to the log-likelihood. This will be the optimal free-energy for any weight setting (due to the
fact that it is equal to the true log-likelihood which is maximal, and the free-energy is a lower bound
of this quantity.) For intermediate values of θ the posterior is correlated and the free-energy is not
tight to the log likelihood.

Now let’s plot the free-energy and the log-likelihood as θ is varied. This shows that the free-energy
prefers orthogonal settings of the weights as this leads to factorized posteriors, even though the log-
likelihood is insensitive to θ. So, variational inference recovers the same weight directions as the
PCA solution.
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The above shows that the bias inherent in variational methods will cause them to break the sym-
metry in the log-likelihood and find orthorgonal latent components. This occurs because orthoginal
components result in posterior distributions that are factorized. These are then well-modelled by the
variational approximation and result in a small KL between the approximate and true posteriors.

B.4 EXPERIMENT 2: MEAN FIELD VI APPLIED TO OVER-COMPLETE FACTOR ANALYSIS
PRUNES OUT THE ADDITIONAL LATENT DIMENSIONS

A similar effect occurs if we model 2D data with a 3D latent space. Many settings of the weights
attain the maximum of the likelihood, including solutions which use all three latent variables. How-
ever, the optimal solution for VI is to retain two orthogonal components and to set the magnitude of
the third component to zero. This solution a) returns weights that maximise the likelihood, and b)
has a factorised posterior distribution (the pruned component having a posterior equal to its prior)
that therefore incurs no cost KL(q(z)||p(z|x, θ)) = 0. In this way the bound becomes tight.

Here’s an example of this effect. We consider a model of the form:

x =
α√
2

[
1
1

]
z1 +

β√
2

[
1
1

]
z2 +

ρ√
2

[
1
−1

]
z3 + ε (17)

We set α2 + β2 = 1 so that all models imply the same covariance and set this to be the maximum
likelihood covariance by construction. We then consider varying α from 0 to 1/2. The setting equal
to 0 attains the maximum of the free-energy, even though it has the same likelihood as any other
setting.
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B.5 EXPERIMENT 3: THE β-VAE ALSO YIELDS THE PCA COMPONENTS, CHANGING β HAS
NO EFFECT ON THE DIRECTION OF THE ESTIMATED COMPONENTS IN THE FA MODEL

How does the setting of β change things? Here we rerun experiment 1 for different values of β.
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In this example, changing β in this example just reduces the amplitude of the fluctuations in the
free-energy, but it does not change the directions found. A similar observation applies to the pruning
experiment.

Increasing β will increase the uncertainty in the posterior as it is like reducing the number of obser-
vations (or increasing the observation noise, from the perspective of q).

B.6 SUMMARY OF FACTOR ANALYSIS EXPERIMENTS

The behaviours introduced by the β-VAE appear relatively benign, and perhaps even helpful, in the
linear case: VI is breaking the degeneracy of the maximum likelihood solution in a sensible way:
selecting amongst the maximum likelihood solutions to find those that have orthogonal components
and removing spurious latent dimensions. This should be tempered by the fact that the β generaliza-
tion recovered precisely the same solutions and so it was necessary to obtain the desired behaviour
in the PCA case.

Similar effects will occur in deep generative models, not least since these typically also have a
Gaussian prior over latent variables, and these latents are initially linearly transformed, thereby
resulting in a similar degeneracy to factor analysis.

However, the behaviours above benefited from the fact that maximum-likelihood solutions could be
found in which the posterior distribution over latent variables factorized. In real world examples,
for example in deep generative models, this will not be case. In such cases, these same effects will
cause the variational free-energy and its β-generalization to bias the estimated parameters far
away from maximum-likelihood settings, toward those settings that imply factorized Gaussian
posteriors over the latent variables.

B.7 INDEPENDENT COMPONENT ANALYSIS

We now apply VI and the β free-energy method to ICA. We’re interested the properties of the
variational objective and the β-VI objective and so we 1. fit the data using the true generative model
to investigate the biases in VI and β-VI 2. do not use amortized inference, just optimizing the
approximating distributions for each data point (this is possible for these small examples).

The linear independent component analysis generative model we use is defined as follows. Let
x ∈ RL and z ∈ RK .
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for n = 1...N

for k = 1...K

zn,k ∼ Student-t(0, σ, v),

xn ∼ N (Wzn, D) where D = diag([σ2
1 , ..., σ

2
D])

We apply mean-field variational inference, q(zn) =
∏
k qn,k(zk,d), and use Gaussian distributions

for each factor qn,k(zn,k) = N (zn,k;µn,k, σ
2
n,k).

The free-energy is computed as follows: The reconstruction term is identical to PCA: an avergage
of a quadratic form wrt to a Gaussian, which is analytic. The KL is broken down into the differ-
ential entropy of q which is also analytic and the cross-entropy with the prior which we evaluate
by numerical integration (finite differences). There is a cross-entropy term for each latent variable
which is one reason why the code is slow (requiring N 1D numerical integrations). The gradient of
the free-energy wrt the parameters W and the means and variances of the Gaussian q distributions
are computed using autograd.

In order to be as certain as possible that we are finding a global maximum of the free-energies, all
experiments initialise at the true value of the parameters and then ensure that each gradient step
improves the free-energy. Stochastic optimization or a procedure that accepted all steps regardless
of the change in the objective would be faster, but they might also move us into the basis of attraction
of a worse (local) optima.

B.8 EXPERIMENT 1: LEARNING IN OVER-COMPLETE ICA

Now we define the dataset. We use a very sparse Student’s t-distribtion with v = 3.5. For v < 4 the
the kurtosis is undefined so the model is fairly simple to estimate model (it’s a long way away from
the degenerate factor analysis case which is recovered in the limit v →∞).

We use three latent components and a two dimensional observed space. The directions of the three
weights are shown in blue below with data as blue circles.
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First we run variational inference finding components (shown in red below) which are more or-
thogonal than the true directions. This bias is in this directions as this reduces the dependencies
(explaining away) in the underlying posterior.
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Second we run β-VI with β = 5. Two components are now found that are orthogonal with one
component pruned from the solution.
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In this case the bias is so great that the true component directions are not discovered. Instead the
components are forced into the orthogonal setting regardless of the structure in the data.

B.9 SUMMARY OF INDEPENDENT COMPONENT ANALYSIS EXPERIMENT

The ICA example illustrates that this approach – of relying on a bias inherent in VI to discover
meaningful components – will sometimes return meaningful structure (e.g. in the PCA experiments
above). However it does not seem to be a sensible way of doing so in general. For example,
explaining away often means that the true components will be entangled in the posterior, as is the
case in the ICA example, and the variational bias will then move us away from this solution. The
β-VI generalisation only enhances this undesirable bias.
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