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ABSTRACT

Deep neural networks have attained remarkable performance when applied to data
that comes from the same distribution as that of the training set, but can signif-
icantly degrade otherwise. Therefore, detecting whether an example is out-of-
distribution (OOD) is crucial to enable a system that can reject such samples or
alert users. Recent works have made significant progress on OOD benchmarks
consisting of small image datasets. However, such methods rely on training or
tuning with both in-distribution and out-of-distribution data. The latter is gener-
ally hard to define a-priori, and its selection can easily bias the learning. In this
work, we focus on the feasibility of learning OOD detection without OOD data,
proposing two strategies for the problem. We specifically propose to decompose
confidence scoring as well as a modified input pre-processing method. We show
that both of these significantly help detection performance, all without tuning to
any out-of-distribution data during training. Our further analysis on a larger scale
image dataset shows that the two types of distribution shifts, specifically semantic
shift and non-semantic shift, present a significant difference in the difficulty of the
problem, providing an analysis of when the proposed strategies do or do not work.

1 INTRODUCTION

State-of-the-art machine learning models, specifically deep neural networks, are generally designed
for a static and closed world. The models are trained under the assumption that the input distribution
at test time will be the same as the training distribution. In the real world, however, data distributions
shift over time in a complex, dynamic manner. Even worse, new concepts (e.g. new categories of
objects) can be presented to the model at any time. Such within-class distribution shift and unseen
concepts both may lead to catastrophic failures since the model still attempts to make predictions
based on its closed-world assumption. These failures are therefore often silent in that they do not
result in explicit errors in the model.

The above issue had been formulated as a problem of detecting whether an input data is from in-
distribution (i.e. the training distribution) or out-of-distribution (i.e. a distribution different from the
training distribution). A common baseline is to use the max value of class posterior probabilities
output from a neural network classifier, which can in some cases be a good indicator for distinguish-
ing in-distribution and out-of-distribution inputs (Hendrycks & Gimpel, 2017). However, they also
show that such probabilities tend to be overconfident. Since then, several works (Liang et al., 2017;
Lee et al., 2018b; Vyas et al., 2018; Ren et al., 2019) follow a similar setting and evaluation met-
ric, achieving significant improvement on the problem. However, the success of the above methods
requires tuning hyperparameters with out-of-distribution data. In response, Dhamija et al. (2018)
and Hendrycks et al. (2019) push this idea further by using a carefully chosen out-of-distribution
dataset to regularize the learning of class posteriors so that out-of-distribution data have a much
lower confidence than in-distribution. Lastly, Lee et al. (2018a) use a generative model to generate
out-of-distribution data around the boundary of the in-distribution. All of the above strategies show
the effectiveness of using out-of-distribution data during learning.

The risk of having out-of-distribution data for learning or tuning comes from the bias of the selec-
tion, leading to a concern that hyperparameters tuned with one out-of-distribution dataset might not
generalize to others. Shafaei et al. (2019) investigate this concern and provide a less biased evalu-
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ation procedure by enumerating all combinations of known out-of-distribution datasets (for tuning)
and unknown out-of-distribution datasets (for testing).

One natural choice for avoiding the mentioned bias is to not use out-of-distribution data for learning
or tuning. Therefore in this work we focus on the setting where only in-distribution data are avail-
able during both training and validation stages. Furthermore, we consider a standard classification
setting, in that the class labels and data are the only available information (in contrast, e.g. , to the
work by Shalev et al. (2018) which uses extra supervision from word embeddings for learning).

Contribution: We propose two simple strategies for the problem under the above setting. First,
inspired by the observation of classifier overconfidence (Hendrycks & Gimpel, 2017), we provide
a new probabilistic perspective of re-scaling the logits for decomposing confidence (predicted class
probabilities) during the training. We specifically add a binary variable, representing whether the
data is in-distribution or not, and use this variable to define the probability of the class and this
variable conditioned on the data. We show this decomposes into two terms, both of which can be
learned and used to define a new classifier. Our formulation is general and we show several existing
methods reduce to specific cases for it. Second, we build on the input preprocessing method from
ODIN (Liang et al., 2017) and develop an effective strategy to tune its perturbation magnitude (which
is a hyperparameter of the preprocessing method) with only in-distribution data. We then perform
extensive evaluations on benchmark image datasets such as CIFAR10/100, TinyImageNet, LSUN,
SVHN, as well as a larger scale dataset DomainNet, for investigating the conditions under which
the proposed strategies do or do not work. The results show that the two strategies can significantly
improve upon baseline methods, achieving a performance close to, and in several cases surpassing,
state-of-the-art methods (Lee et al., 2018b) which use out-of-distribution data for tuning. Lastly,
our systematical evaluation with DomainNet reveals the relative difficulties between two types of
distribution shifts: semantic shift and non-semantic shift, which are defined by whether a shift is
related to the inclusion of new semantic categories.

2 BACKGROUND

This work considers the OOD detection setting in classification problems. We begin with a dataset
Din = {(xi, yi)}Ni=1, denotion in-distribution data xi ∈ Rk and categorical label yi ∈ {yin} =
{1..C} for C classes. Din is generated by sampling from a distribution pin(x, yin). We then have
a discriminative model fθ(x) with parameters θ learned with the in-domain dataset Din, predicting
the class posterior probability p(yin|x).

When the learned classifier fθ is deployed in the open world, it may encounter data drawn from a
different distribution pout such that pout 6= pin. Sampling from all possible distributions pout that
might be encountered is generally intractable especially when the dimension k is large, such as in
the cases of image data. Note also that we can conceptually categorize the type of differences into
non-semantic shift and semantic shift. Data with non-semantic shift is drawn from the distribution
pout(x, yin). Examples with this shift come from the same object class but are presented in different
forms, such as cartoon or sketch images. In the case of semantic shift, the data is drawn from a
distribution pout(x, yout) with {yout} ∩ {yin} = ∅. In other words, the data is from a class not seen
in the training set Din.

The above separation leads to two natural questions that must be answered for a model to work
in an open world: How can the model avoid making a prediction when encountering an input x ∼
pout(x, yout), or reject a low confidence prediction when x ∼ pout(x, yin)? In this work, we propose
to introduce an explicit binary domain variable d ∈ {din, dout} in order to represent this decision,
with din meaning that the input is x ∼ pin while dout meaning x � pin (or equivalently x ∼ pout).
Note that while generally the model cannot distinguish between the two cases we defined, we can
still show that both of the questions above can be answered by estimating this single variable d.

The ultimate goal, then, is to find a scoring function S(x) which correlates to the domain posterior
probability p(d|x), in that a higher score s from S(x) indicates a higher probability of p(din|x).
The binary decision now can be made by applying a threshold on s. Selecting such a threshold
is subject to the application requirement or the performance metric calculation protocol. With the
above notation, we can view the baseline method (Hendrycks & Gimpel, 2017) as a special case
with a specific scoring function SBase(x) = maxyin p(yin|x), where p(yin|x) is obtained from a
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standard neural network classifier fθ trained with cross entropy loss. However, S(x) can become a
learnable parameterized function, and different OOD methods can then be categorized by specific
parameterizations and learning procedures. A key differentiator between methods is whether the
parameters are learned with or without OOD data.

2.1 RELATED METHODS

This section describes the two methods that are the most related to our work: ODIN (Liang et al.,
2017) and Mahalanobis (Lee et al., 2018b). These two methods will serve as strong baselines in
our evaluation, since Shafaei et al. (2019) reported that ODIN achieved the strongest results among
15 methods (which doesn’t include Mahalanobis), out-performing popular strategies such as MC-
Dropout (Gal & Ghahramani, 2016), DeepEnsemble (Lakshminarayanan et al., 2017), PixelCNN++
(Salimans et al., 2017), and OpenMax (Bendale & Boult, 2016) with a less biased evaluation method.
Mahalanobis has further been shown to have significant advantages over ODIN (Lee et al., 2018b).
Note that both ODIN and Mahalanobis start from a vanilla classifier fθ trained on Din, then have
a scoring function S(x; fθ) which has extra parameters to be tuned. In their original work, those
parameters are specifically tuned for each OOD dataset. Here we will describe the methods to use
them without tuning on OOD data.

ODIN comprises two strategies: temperature scaling and input preprocessing. The temperature
scaling is applied to its scoring function which has fi(x) for the logit of i class:

SODIN (x) = max
i

exp (fi(x)/T )∑C
j=1 exp (fj(x)/T )

(1)

Although ODIN originally involved tuning the hyperparameter T with out-of-distribution data, it
was also shown that a large T value can generally be preferred, suggesting that the gain is saturated
after 1000 (Liang et al., 2017). We follow this guidance and fix T = 1000 in our experiments.

Mahalanobis comprises two parts as well: Mahalanobis distance calculation and input preprocess-
ing. The score is calculated with Mahalanobis distance as follows:

S`Maha(x) = max
i
−(f `(x)− µ`i)TΣ−1` (f `(x)− µ`i) (2)

SMaha(x) =
∑
`

α`S
`
Maha(x) (3)

The f `(x) represents the output features at the `th-layer of neural networks, while µi and Σ are the
class mean representation and the covariance matrix, correspondingly. The hyperparameter is α`. In
the original method, α` is regressed with a small validation set containing both in-distribution and
out-of-distribution data. Therefore they have a set of α` tuned for each OOD dataset. As a result, for
the baseline that does not tune on OOD data we use uniform weighting SMaha(x) =

∑
` S

`
Maha(x).

Note that both methods use the input preprocessing strategy, which has a hyperparameter to be tuned.
In their original works, this hyperparameter is tuned for each OOD dataset as well. Therefore we
develop a version that does not require tuning with out-of-distribution data.

3 APPROACH

3.1 THE DECOMPOSED CONFIDENCE

Hendrycks & Gimpel (2017) observed that the softmax classifier tends to output a high confident
prediction, reporting that ”random Gaussian noise fed into an MNIST image classifier gives a pre-
dicted class probability of 91%”. They attribute this to the use of the softmax function which is a
smooth approximation of an indicator function, hence tending to give a spiky distribution instead of
a uniform distribution over classes. We acknowledge this view and further consider it as a limitation
in the design of the softmax classifier. To address this limitation, our inspiration starts from recon-
sidering its outputs, the class posterior probability p(yin|x), which does not consider the domain d at
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all. In other words, current methods condition on domain d = din based on the implicit closed world
assumption. Thus, we use our explicit variable d in the classifier, rewriting it as the quotient of the
joint class-domain probability and the domain probability using the rule of conditional probability:

p(yin|din,x) =
p(yin, din|x)

p(din|x)
(4)

Equation 4 provides a probabilistic view of why classifiers tend to be overconfident. Consider an
example x ∼ pout: It is natural to expect that the joint probability P (yin, din|x) is low (e.g. 0.09)
for its maximum value among C classes. One would also expect its domain probability p(din|x)
is low (e.g. 0.1). Therefore, calculating p(yin|din,x) with Equation 4 gives a high probability
(0.9), demonstrating how overconfidence can result. Based on the form of Equation 4, we call
p(yin, din|x) and p(din|x) the decomposed confidence scores.

One straight-forward solution for the above issue is to learn a classifier to predict the joint prob-
ability p(yin, din|x) by having both supervision on class yin and domain d. Learning to predict
p(yin, din|x) is preferred over p(din|x) because it can serve both purposes for predicting a class by
arg maxyin p(yin, din|x) and rejecting a prediction by thresholding. This idea relates to the work
of Hendrycks et al. (2019), which adds an extra loss term to penalize a predicted non-uniform class
probability when an out-of-distribution data is given to the classifier. In other words, this strategy
requires out-of-distribution data for regularizing the training.

Without having supervision on domain d (i.e. without out-of-distribution data), there is no principled
way to learn p(yin, din|x). This situation is similar to unsupervised learning (or self-supervised
learning) in that we need to insert assumptions or prior knowledge about the task for learning. In
our case, we use the structure in Equation 4 as the prior knowledge to re-design the structure of
classifiers, leading to the decomposed confidence property.

We begin with describing a softmax function with logit fi(x) for class i. The fi(x) is defined by
two functions hi(x) and g(x):

p(yin = i|din,x) =
exp fi(x)∑C
j=1 exp fj(x)

, with fi(x) =
hi(x)

g(x)
. (5)

The hi(x) is a class-specific function similar to p(yin = i, din|x), while the g(x) is shared among
all classes like p(din|x). The quotient of the two scores is then normalized by the exponential
function (i.e. softmax) for outputting a class probability, which is subject to cross entropy loss. With
Equation 5, the cross entropy loss can be minimized in two ways: increasing hi(x) or decreasing
g(x). Here we make an assumption: There exist a pair of functions for hi(x) and g(x) so that
hi(x) will have a harder time to output a large value for the data not in the high density region of
in-distribution, but g(x) can easily output a small value (e.g. close to zero) for that case, making the
logit fi(x) still able to generate a high p(yin = i|din,x) for minimizing cross entropy loss.

There are several simple design choices for hi(x) and g(x) which satisfy the above assumption.
Specifically we have g(x) = σ(BN(wgf

p(x) + bg)), which uses features fp(x) from the penulti-
mate layer of neural networks sequentially through another linear layer, batch normalization (BN ,
optional for a faster convergence), and a sigmoid function σ. For hi(x), we investigate three sim-
ilarity measures, including inner-product (I), negative Euclidean distance (E), and cosine similarity
(C) for hIi (x), hEi (x), and hCi (x), correspondingly:

hIi (x) = wT
i f

p(x) + bi; hEi (x) = −‖fp(x)−wi‖2; hCi (x) =
wT
i f

p(x)

‖wi‖‖fp(x)‖
(6)

The overall neural network model fθ therefore has two branches (hi and g) after its penultimate
layer. At training time, the model calculates the logit fi followed by the softmax function with cross
entropy loss on top of it. At testing time, the class prediction can be made by either calculating
arg maxi fi(x) or arg maxi hi(x) (both will give the same predictions). For out-of-distribution
detection, we use the scoring function SDeConf (x) = maxi hi(x).
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Note that when hi(x) = hIi (x) and g(x) = 1, this method reduces to the baseline (Hendrycks &
Gimpel, 2017). Additionally, the method in a concurrent work done by Techapanurak & Okatani
(2019) can be regarded as a specific way to instantiate our framework when hi(x) = hCi (x). The
above compatibility indicates that the proposed framework is general. Lastly, we call the three
variants of our method DeConf-I, DeConf-E, and DeConf-C based the three different similarity
measures (I, E, C) used in hi(x).

3.2 A MODIFIED INPUT PREPROCESSING STRATEGY

This section describes a modified version of the input preprocessing method proposed in ODIN
(Liang et al., 2017). The main purpose of modification is making the search of the perturbation
magnitude ε to not rely on out-of-distribution data. The perturbation of input is given by:

x̂ = x− εsign(−∇xS(x)) (7)

In the original method (Liang et al., 2017) the best value of ε is searched with a half-half mixed
validation dataset of Dval

in ∼ pin and Dval
out ∼ pout over a list of 21 values. The perturbed images

x̂ are fed into the classification model fθ for calculating the score S(x). The performance of each
magnitude is evaluated with the benchmark metric (TNR@TPR95, described later) and the best
one is selected. This process repeats for each out-of-distribution dataset, and therefore the original
method results in a number of ε values equal to the number of out-of-distribution datasets in the
benchmark.

In our method, we search for the ε∗ which maximizes the score S(x) with only the in-distribution
validation dataset Dval

in :

ε∗ = arg max
ε

∑
x∈Dval

in

S(x̂) (8)

Our searching criteria is still based on the same observation made by Liang et al. (2017). They
observe that the in-distribution images tend to have their score s increased more than the out-of-
distribution images when the input perturbation is applied. We therefore use Eq. 8 since we argue
that an ε which makes a large score increase for in-distribution data should be sufficient to create
a distinction in score. Our method also does not even require class labels although it is available
in Dval

in . More importantly, our method selects only one ε based on Dval
in without access to the

benchmark performance metric (e.g. TNR@TPR95), greatly avoiding the hyperparameter from
fitting to a specific benchmark score. Lastly, we perform the search of ε on a much coarser grid,
which has only 5 values: [0.0025, 0.005, 0.01, 0.02, 0.04]. Therefore, our search is much faster.
Although overshooting is possible (e.g. the maximum value is at the middle of two scales in the
grid) due to the coarser grid, it can be mitigated by reducing the found magnitude by one scale (i.e.
divide it by two). This simple strategy consistently gains or maintains the performance on varied
scoring functions, such as SBase, SDeConf , SODIN , and SMaha.

The method in this section is orthogonal to all the methods evaluated in this work. For convenience,
we will add a * after the name of other methods to indicate a combination, for example Baseline*
and DeConf-C*.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Overall procedure: In all experiments, we first train a classifier fθ on an in-distribution training set,
then tune the hyperparameters (e.g. the perturbation magnitude ε) on an in-distribution validation set
without using its class labels. At testing time, the OOD detection scoring function S(x) calculates
the scores s from the outputs of fθ. The scores s is calculated for both in-distribution validation
set Dval

in and out-of-distribution dataset Dout ∼ pout. The scores s are then sent to a performance
metric calculation function. The above procedure is the same as related works in this line of research
(Liang et al., 2017; Lee et al., 2018b; Hendrycks et al., 2019; Shafaei et al., 2019; Vyas et al., 2018;
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Table 1: Performance of four OOD detection methods. All methods in the table have no access to
OOD data during training and validation. ODIN* and Mahalanobis* are modified versions that don’t
need any OOD data for tuning (see Section 2.1). The base network used in the table is DenseNet.
All values are percentages averaged over three runs and the best results are indicated in bold. A
more comprehensive version of the table is available in Appendix Table 5.

ID OOD AUROC TNR@TPR95

Baseline / ODIN* / Mahalanobis* / DeConf-C*
C

IF
A

R
-1

00
Imagenet(c) 79.0 / 90.5 / 92.4 / 97.6 25.3 / 56.0 / 63.5 / 87.8
Imagenet(r) 76.4 / 91.1 / 96.4 / 98.6 22.3 / 59.4 / 82.0 / 93.3
LSUN(c) 78.6 / 89.9 / 81.2 / 95.3 23.0 / 53.0 / 31.6 / 75.0
LSUN(r) 78.2 / 93.0 / 96.6 / 98.7 23.7 / 64.0 / 82.6 / 93.8

iSUN 76.8 / 91.6 / 96.5 / 98.4 21.5 / 58.4 / 81.2 / 92.5
SVHN 78.1 / 85.6 / 89.9 / 95.9 18.9 / 35.3 / 43.3 / 77.0

Uniform 65.0 / 91.4 / 100. / 99.9 2.95 / 66.1 / 100. / 100.
Gaussian 48.0 / 62.0 / 100. / 99.9 0.06 / 33.3 / 100. / 100.

C
IF

A
R

-1
0

Imagenet(c) 92.1 / 88.2 / 96.3 / 98.7 50.0 / 47.8 / 81.2 / 93.4
Imagenet(r) 91.5 / 90.1 / 98.2 / 99.1 47.4 / 51.9 / 90.9 / 95.8
LSUN(c) 93.0 / 91.3 / 92.2 / 98.3 51.8 / 63.5 / 64.2 / 91.5
LSUN(r) 93.9 / 92.9 / 98.2 / 99.4 56.3 / 59.2 / 91.7 / 97.6

iSUN 93.0 / 92.2 / 98.2 / 99.4 52.3 / 57.2 / 90.6 / 97.5
SVHN 88.1 / 89.6 / 98.0 / 98.8 40.5 / 48.7 / 90.6 / 94.0

Uniform 95.4 / 98.9 / 99.9 / 99.9 59.9 / 98.1 / 100. / 100.
Gaussian 94.0 / 98.6 / 100. / 99.9 48.8 / 92.1 / 100. / 100.

Lee et al., 2018a), except that we do not use OOD data for tuning the hyperparameters in the scoring
function S(x).

In-distribution Datasets: We use CIFAR-10/100 images with size 32x32 (Krizhevsky et al., 2009)
for the classification task. Detecting OOD with CIFAR-100 classifier is generally harder than
CIFAR-10, since a larger amount of classes usually involves a wider range of variance thus has
a higher tendency to treat random data (e.g. Gaussian noise) as in-distribution. For that reason we
use CIFAR-100 in our ablation and robustness study.

Out-of-distribution Datasets: We include all the OOD datasets used in ODIN (Liang et al., 2017),
which are TinyImageNet(crop), TinyImageNet(resize), LSUN(crop), LSUN(resize), iSUN, Uniform
random images, and Gaussian random images. We further add SVHN (Netzer et al., 2011), a colored
street numbers image dataset, to serve as a difficult OOD dataset. The selection is inspired by the
finding in the line of works which uses a generative model for OOD detection (Ren et al., 2019;
Nalisnick et al., 2018; Choi & Jang, 2018). Those works report that a generative model of CIFAR-
10 assigns higher likelihood to SVHN images, indicating a hard case for OOD detection.

Networks and Training Details: We use DenseNet (Huang et al., 2017), ResNet (He et al., 2016),
and WideResNet (Zagoruyko & Komodakis, 2016) for the classifier backbone. DenseNet has 100
layers with growth rate 12. It is trained with batch size 64 for 300 epochs with weight decay 0.0001.
The ResNet and WideResNet-28-10 are trained with batch size 128 for 200 epochs with weight
decay 0.0005. In both training, the optimizer is SGD with momentum 0.9, and the learning rate
starts with 0.1 and decreases by factor 0.1 at 50% and 75% of the training epochs. Note that we do
not apply weight decay for the weights in the hi(x) function of DeConf classifier since they work
as the centroids for classes, and those weights are initialized with He-initialization (He et al., 2015).

Evaluation Metrics: We use the two most widely adopted metrics in the OOD detection literature.
The first one is the area under the receiver operating characteristic curve (AUROC), which plots
the true positive rate (TPR) of in-distribution data against the false positive rate (TPR) of OOD
data by varying a threshold. Thus it can be regarded as an averaged score. The second one is true
negative rate at 95% true positive rate (TNR@TPR95), which simulates an application requirement
that the recall of in-distribution data should be 95%. Having a high TNR under a high TPR is
much more challenging than having a high AUROC score, thus TNR@TPR95 can discern between
high-performing OOD detectors better.
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Table 2: OOD detection with OOD data versus without OOD data. The values of ODINorig and
Mahaorig (abbreviation of Mahalanobis) are copied from the Mahalanobis paper (Lee et al., 2018b)
which are tuned with OOD data. The values of ODIN*, Maha*, and DeConf-C* are copied from
Table 1 of our paper which do not have any access to OOD data. All methods in this table use the
same DenseNet for backbone. Note that the Mahalanobis paper (Lee et al., 2018b) only has three
OOD datasets for the table, so we only compare with those cases.

ID OOD AUROC TNR@TPR95

ODINorig / Mahaorig/ ODIN* / Maha* / DeConf-C*

CIFAR-100
Imagenet(r) 85.2 / 97.4 / 91.1 / 96.4 / 98.6 42.6 / 86.6 / 59.4 / 82.0 / 93.3

LSUN(r) 85.5 / 98.0 / 93.0 / 96.6 / 98.7 41.2 / 91.4 / 64.0 / 82.6 / 93.8
SVHN 93.8 / 97.2 / 85.6 / 89.9 / 95.9 70.6 / 82.5 / 35.3 / 43.3 / 77.0

CIFAR-10
Imagenet(r) 98.5 / 98.8 / 90.1 / 98.2 / 99.1 92.4 / 95.0 / 51.9 / 90.9 / 95.8

LSUN(r) 99.2 / 99.3 / 92.9 / 98.2 / 99.4 96.2 / 97.2 / 59.2 / 91.7 / 97.6
SVHN 95.5 / 98.1 / 89.6 / 98.0 / 98.8 86.2 / 90.8 / 48.7 / 90.6 / 94.0

4.2 RESULTS AND DISCUSSION

OOD benchmark performance: We show an overall comparison for methods that train without
OOD data in Table 1 with 8 OOD benchmark datasets. The ODIN* and Mahalanobis* are signif-
icantly better than the baseline, while DeConf-C* still outperform them with a significant margin.
These results clearly show that learning OOD detection without OOD data is feasible, and the two
methods we proposed in Sections 3.1 and 3.2 combined are very effective for this purpose.

In Table 2 We further compare our results with the original ODIN (Liang et al., 2017) and Maha-
lanobis (Lee et al., 2018b) methods which are tuned on each OOD dataset. We refer to the results of
both original methods reported by Lee et al. (2018b) since it uses the same backbone network, OOD
datasets, and metrics to evaluate OOD detection performance. In the comparison we find our ODIN*
and Mahalanobis* perform worse than the ODINorig and Mahalanobisorig in a major fraction of the
cases. The result is not surprising because the original methods gain the advantage from using OOD
data. However, our DeConf-C* still outperforms the two original methods with a margin in most of
the cases. The cross-setting comparison further supports the effectiveness of proposed strategies.

Ablation Study: We study the effect of applying DeConf and our modified input preprocessing
(IPP) strategy separately in Figure 1 and 2. Figure 1 shows that all three variants (I, E, C) of
the DeConf strategy help OOD detection performance with CIFAR-10 classifier, proving that the
concept of DeConf is generally useful. However, the failure of DeConf-I with CIFAR-100 classifier
may indicate the three variants have different robustness, which we will investigate in the next
section. One downside of using the DeConf strategy is that the accuracy of the classifier may slightly
reduce (Fig. 1b). This could be a natural consequence of having an alternative term, i.e. g(x), in the
model to fit the loss function. This may cause the lack of a high score for hi(x), instead assigning a
lower score for the data away from the high density region of in-distribution data.

In Figure 2, the results show that tuning the perturbation magnitude with only in-distribution data is
an effective strategy, allowing us to reduce the required supervision for learning. The supervision
here means the binary label for in/out-of-distribution.

Robustness Study: This study investigates when the OOD detection method will or will not work.
In Figure 3, it shows that the number of in-distribution training data can largely affect the perfor-
mance of the OOD detector. Mahalanobis has the lowest data requirement, but the DeConf method
generally reaches a higher performance in the high data regime. In Figure 3 we also examine scal-
ability by varying the number of classes in the in-distribution data. In this test, DeConf-E* and
DeConf-C* show the best scalability. Overall, DeConf-C* is more robust than the other two DeConf
variants. Lastly, Figure 4 shows that high performing methods such as DeConf-E*, DeConf-C*, and
Mahalanobis* are not sensitive to the type and depth of neural networks. Therefore, the number of
in-distribution samples and classes are the main factors that affect OOD detection performance.
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26.3

(a) OOD detection performance with/without DeConf strategy (no input preprocessing). Left: CIFAR-10 classi-
fier; Right: CIFAR-100 classifier.

26.3

(b) In-domain classification accuracy

Figure 1: An ablation study with three variants in our DeConf method (Section 3.1). Plain means
g(x) = 1 so that the confidence decomposing effect is turned off. Each bar in (a) is averaged
with the results on 8 OOD datasets listed in Table 1. The backbone network is Resnet-34. Note
that the plain setting with inner-product is equivalent to a vanilla Resnet for classification. Overall,
our DeConf boosts the OOD detection performance while losing a small fraction of classification
accuracy on in-distribution data.

Figure 2: The OOD detection performance of our input preprocessing (IPP) strategy, which selects
the perturbation magnitude with only in-distribution data. The setting plain means the IPP is turned
off. The in-distribution data is CIFAR-100. The backbone network is Resnet-34. Each value is
averaged with the results on 8 OOD datasets listed in Table 1. Each method has its own scoring
function S(x) (See Section 2.1 and 3), causing IPP to perform at varied levels of performance gain.

(K)

Figure 3: Robustness analysis of 6 OOD detection methods. The left figure has classifiers trained
on varied number of samples in CIFAR-10. The right figure has classifiers trained on varied number
of classes in CIFAR-100. Each point in the line is an average of the results on 8 OOD datasets. The
backbone network is Resnet-34. Please see Section 4.2 for a detailed discussion.
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Figure 4: Robustness analysis using different neural network backbones. The in-distribution data is
CIFAR-100. Each bar is averaged with the results on 8 OOD datasets.

Table 3: Performance of four OOD detection methods using DomainNet. The in-distribution is the
real-A subset. Each value is averaged over three runs. The type of distribution shift presents a trend
of difficulty to the OOD detection problem: Semantic shift > Non-semantic shift > Semantic +
Non-semantic shift.

OOD Type of shift AUROC TNR@TPR95

Semantic Non-semantic Baseline / ODIN* / Maha* / DeConf-C*

real-B X 75.1 / 69.9 / 53.6 / 69.8 15.3 / 15.4 / 5.09 / 14.0
sketch-A X 75.5 / 80.7 / 59.5 / 84.5 20.1 / 31.2 / 7.30 / 37.5
sketch-B X X 81.8 / 85.7 / 60.4 / 89.1 25.2 / 36.8 / 7.55 / 44.1

infograph-A X 79.6 / 82.7 / 81.5 / 89.0 23.5 / 27.8 / 21.6 / 45.4
infograph-B X X 82.1 / 85.3 / 80.9 / 90.9 24.8 / 31.7 / 21.9 / 49.6
quickdraw-A X 78.8 / 96.4 / 67.4 / 96.9 21.1 / 79.9 / 3.38 / 83.1
quickdraw-B X X 80.5 / 96.9 / 66.1 / 97.4 22.1 / 83.6 / 2.38 / 86.6

Uniform X X 54.7 / 75.6 / 99.8 / 99.3 1.65 / 5.37 / 100. / 100.
Gaussian X X 71.3 / 95.5 / 99.9 / 99.4 0.64 / 46.9 / 100. / 100.

4.3 SEMANTIC SHIFT VERSUS NON-SEMANTIC SHIFT

One interesting aspect of out-of-distribution data that has not been explored is the separation of
semantic and non-semantic shift. We therfore use a larger scale image dataset, DomainNet (Peng
et al., 2018), to repeat an evaluation similar to Table 1. DomainNet has high resolution images in
345 classes from 6 different domains. There are 4 domains in the dataset with class labels available.
They are real, sketch, infograph, and quickdraw, resulting in different types of distribution shifts.

To create subsets with semantic shift, we separate the classes to two splits. Split A has class indices
from 0 to 172 while split B has 173 to 344. Our experiment uses real-A for in-distribution and has the
other subsets for out-of-distribution. With the definition given in Section 2, real-B has a semantic
shift from real-A, while sketch-A has a non-semantic shift. Sketch-B therefore has both types of
distribution shift. Appendix Figure 5 illustrates the setup. The classifier learned on real-A uses a
Resnet-34 backbone. Its training setting is described in Section 4.1 except that the networks are
trained for 100 epochs and the images are center-cropped and resized to 224x224 in this experiment.

The results in Table 3 reveal two interesting trends. The first one is that the OOD datasets with both
types of distribution shifts are easier to detect, followed by non-semantic shift. The semantic shift
turns out to be the hardest one to be detected. The second observation is the failure of Mahalanobis*.
In most of the cases it is even worse than Baseline, except detecting random noise. In contrast,
ODIN* has performance gain in most of the cases, but has less gain with random noise. Our DeConf-
C* still performs the best, showing that its robustness and scalability is capable of handling a more
realistic problem setting, although there is still large room for improvement.

5 CONCLUSION

This paper shows methods and results that strongly suggest that learning OOD detection without
OOD data is a viable option. Our comprehensive analysis shows that our two strategies, the decom-
posed confidence and modified input preprocessing, are effective and even better in many cases than
the methods tuned for each OOD dataset. Our further analysis using a larger scale image dataset
shows that the data with only semantic shift is harder to detect, pointing out a challenge for future
works to address.
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APPENDICES

A ADDITIONAL FIGURES
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Figure 5: Semantic shift versus Non-semantic shift. We setup the two types of distribution shifts
using DomainNet (Peng et al., 2018)

B ADDITIONAL RESULTS

Table 4: OOD detection performance with DomainNet. In this table we use whole real set (345
classes) for the in-distribution data. The remaining five domains are OOD data. The backbone
networks is Resnet-34 trained from scratch. Each value is averaged with 3 runs. The values in
parentheses are standard deviation. The type of distribution shift in this experiment is categorized
as non-semantic shift.

OOD AUROC TNR@TPR95

Baseline / ODIN* / Mahalanobis* / DeConf-C*

painting 71.4(0.1) /62.4(0.2) /57.4(1.0) /66.7(0.2) 15.6(0.2) /5.55(0.2) /5.00(0.0) /7.40(0.5)
sketch 75.8(0.1) /81.8(0.3) /63.8(0.1) /85.5(0.3) 19.7(0.5) /30.6(0.8) /8.21(0.1) /37.2(1.5)
clipart 69.8(0.2) /82.6(0.1) /73.6(0.4) /85.0(0.0) 15.2(0.4) /35.3(0.5) /15.7(0.2) /41.7(0.6)

infograph 77.4(0.0) /82.1(0.3) /80.4(0.8) /88.5(0.2) 18.7(0.4) /25.7(1.1) /20.5(1.0) /43.5(2.0)
quickdraw 78.8(0.8) /97.6(0.1) /71.8(5.3) /97.4(0.2) 19.4(1.7) /88.4(0.8) /3.43(0.8) /87.5(1.7)
Uniform 74.3(28.) /88.6(13.) /99.8(0.0) /97.0(1.1) 38.5(41.) /66.4(46.) /100.(0.0) /91.1(6.9)
Gaussian 57.9(19.) /89.3(12.) /99.9(0.0) /98.1(0.1) 0.08(0.1) /66.6(47.) /100.(0.0) /99.9(0.1)
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Table 5: Performance of six OOD detection methods on 8 benchmark datasets. This is a full version
of Table 1 which uses DenseNet for the backbone networks. The value in parentheses is the standard
deviation.

ID OOD AUROC

Baseline / ODIN* / Maha* / DeConf-I* / DeConf-E* / DeConf-C*

C
IF

A
R

-1
00

Imagenet(c) 79.0(2.2) /90.5(1.1) /92.4(0.3) /84.4(2.3) /95.1(0.5) /97.6(0.2)
Imagenet(r) 76.4(3.2) /91.1(1.3) /96.4(0.2) /81.2(3.6) /97.4(0.3) /98.6(0.2)
LSUN(c) 78.6(1.1) /89.9(0.5) /81.2(0.6) /91.7(0.3) /90.1(0.3) /95.3(0.4)
LSUN(r) 78.2(2.4) /93.0(0.8) /96.6(0.2) /84.1(2.1) /97.8(0.2) /98.7(0.0)

iSUN 76.8(2.7) /91.6(1.1) /96.5(0.2) /82.1(2.9) /97.4(0.2) /98.4(0.0)
SVHN 78.1(3.5) /85.6(0.0) /89.9(0.2) /89.7(0.4) /94.0(0.6) /95.9(0.7)

Uniform 65.0(22.) /91.4(10.) /100.(0.0) /48.5(16.) /99.9(0.0) /99.9(0.0)
Gaussian 48.0(28.) /62.0(38.) /100.(0.0) /6.79(4.9) /99.9(0.0) /99.9(0.0)

C
IF

A
R

-1
0

Imagenet(c) 92.1(1.0) /88.2(4.2) /96.3(0.1) /98.2(0.0) /98.0(0.2) /98.7(0.1)
Imagenet(r) 91.5(1.4) /90.1(4.1) /98.2(0.0) /98.4(0.0) /98.2(0.2) /99.1(0.1)
LSUN(c) 93.0(0.5) /91.3(2.0) /92.2(0.4) /98.4(0.0) /98.6(0.2) /98.3(0.2)
LSUN(r) 93.9(0.4) /92.9(2.9) /98.2(0.0) /98.6(0.0) /98.8(0.0) /99.4(0.1)

iSUN 93.0(0.7) /92.2(3.4) /98.2(0.0) /98.6(0.0) /98.8(0.0) /99.4(0.0)
SVHN 88.1(4.8) /89.6(0.3) /98.0(0.3) /98.2(0.2) /98.4(0.6) /98.8(0.1)

Uniform 95.4(0.7) /98.9(0.7) /99.9(0.0) /99.2(0.5) /99.9(0.0) /99.9(0.0)
Gaussian 94.0(2.9) /98.6(1.7) /100.(0.0) /99.1(0.3) /99.9(0.0) /99.9(0.0)

ID OOD TNR@TPR95

Baseline / ODIN* / Maha* / DeConf-I* / DeConf-E* / DeConf-C*

C
IF

A
R

-1
00

Imagenet(c) 25.3(2.8) /56.0(3.1) /63.5(2.1) /31.0(3.4) /74.6(2.8) /87.8(1.7)
Imagenet(r) 22.3(3.1) /59.4(3.7) /82.0(1.6) /21.4(4.0) /87.6(1.7) /93.3(1.2)
LSUN(c) 23.0(2.2) /53.0(1.0) /31.6(1.3) /59.6(1.9) /51.0(1.0) /75.0(1.9)
LSUN(r) 23.7(2.5) /64.0(3.0) /82.6(1.8) /21.1(3.3) /89.8(1.5) /93.8(0.3)

iSUN 21.5(2.8) /58.4(4.1) /81.2(1.4) /17.6(3.3) /87.3(1.2) /92.5(0.2)
SVHN 18.9(4.9) /35.3(2.9) /43.3(2.7) /52.0(0.6) /67.1(3.4) /77.0(5.0)

Uniform 2.95(4.1) /66.1(46.) /100.(0.0) /0.0(0.0) /100.(0.0) /100.(0.0)
Gaussian 0.06(0.0) /33.3(47.) /100.(0.0) /0.0(0.0) /100.(0.0) /100.(0.0)

C
IF

A
R

-1
0

Imagenet(c) 50.0(2.8) /47.8(15.) /81.2(0.8) /92.0(0.2) /90.1(1.5) /93.4(1.2)
Imagenet(r) 47.4(4.4) /51.9(16.) /90.9(0.5) /93.6(0.2) /91.7(1.6) /95.8(0.9)
LSUN(c) 51.8(3.1) /63.5(7.8) /64.2(0.6) /92.5(0.4) /93.3(1.5) /91.5(1.2)
LSUN(r) 56.3(3.6) /59.2(18.) /91.7(0.3) /94.9(0.2) /95.7(0.1) /97.6(0.5)

iSUN 52.3(3.6) /57.2(18.) /90.6(0.7) /94.6(0.3) /95.4(0.2) /97.5(0.3)
SVHN 40.5(6.9) /48.7(3.2) /90.6(1.7) /91.4(1.1) /92.1(3.4) /94.0(0.6)

Uniform 59.9(12.) /98.1(2.6) /100.(0.0) /99.9(0.0) /100.(0.0) /100.(0.0)
Gaussian 48.8(26.) /92.1(11.) /100.(0.0) /99.9(0.0) /100.(0.0) /100.(0.0)
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Table 6: Performance of six OOD detection methods on 8 benchmark datasets. The backbone
networks for this table is Resnet-34. The value in parentheses is the standard deviation.

ID OOD AUROC

Baseline / ODIN* / Maha* / DeConf-I* / DeConf-E* / DeConf-C*

C
IF

A
R

-1
00

Imagenet(c) 78.9(0.1) /84.8(0.6) /93.4(0.3) /88.2(0.6) /95.2(0.6) /95.3(0.6)
Imagenet(r) 75.1(0.8) /85.7(0.2) /96.3(0.1) /84.6(1.0) /97.0(0.4) /95.9(0.7)
LSUN(c) 78.8(0.6) /80.3(1.3) /79.8(0.3) /93.8(0.3) /92.6(0.2) /93.8(0.3)
LSUN(r) 76.2(1.4) /86.6(0.8) /96.3(0.2) /85.9(1.8) /97.0(0.7) /96.1(0.5)

iSUN 75.2(1.4) /85.9(0.8) /95.8(0.2) /84.7(1.4) /96.6(0.6) /95.7(0.5)
SVHN 75.1(2.5) /80.2(2.0) /80.9(1.1) /89.2(2.6) /93.8(0.8) /93.2(1.1)

Uniform 69.0(13.) /96.7(2.5) /100.(0.0) /79.3(8.3) /99.9(0.0) /99.9(0.0)
Gaussian 51.5(1.8) /93.7(1.7) /99.9(0.0) /60.8(23.) /99.9(0.0) /99.9(0.0)

C
IF

A
R

-1
0

Imagenet(c) 90.0(0.9) /81.2(2.4) /94.2(0.1) /98.2(0.2) /98.2(0.1) /96.0(0.2)
Imagenet(r) 87.3(1.3) /81.1(2.9) /96.5(0.1) /98.1(0.3) /98.1(0.3) /96.1(0.5)
LSUN(c) 92.0(1.7) /77.9(4.6) /87.7(0.2) /98.8(0.1) /98.5(0.0) /97.2(0.1)
LSUN(r) 91.6(1.2) /88.5(2.0) /97.2(0.1) /98.9(0.2) /99.0(0.1) /98.0(0.1)

iSUN 90.1(1.4) /86.1(2.5) /96.5(0.2) /98.8(0.2) /98.9(0.1) /97.6(0.1)
SVHN 87.7(2.4) /63.9(4.3) /87.8(1.6) /96.8(0.4) /96.1(1.4) /97.8(0.3)

Uniform 85.9(10.) /93.3(4.5) /99.9(0.0) /99.6(0.1) /99.9(0.0) /99.9(0.0)
Gaussian 89.9(10.) /97.1(2.0) /99.9(0.0) /99.7(0.0) /99.9(0.0) /99.9(0.0)

ID OOD TNR@TPR95

Baseline / ODIN* / Maha* / DeConf-I* / DeConf-E* / DeConf-C*

C
IF

A
R

-1
00

Imagenet(c) 24.1(0.6) /44.0(2.2) /68.2(1.4) /42.6(2.7) /73.4(3.7) /72.6(3.7)
Imagenet(r) 19.4(0.1) /45.5(1.4) /82.6(0.8) /30.4(3.0) /84.3(2.7) /76.5(3.8)
LSUN(c) 21.9(0.4) /34.8(2.4) /27.7(1.4) /66.1(2.2) /59.7(0.7) /65.7(2.3)
LSUN(r) 19.8(1.6) /48.2(3.0) /81.8(1.4) /29.4(5.2) /84.6(4.0) /76.8(3.3)

iSUN 17.7(0.5) /45.3(2.8) /80.4(0.8) /27.1(4.3) /83.0(3.1) /75.3(3.3)
SVHN 16.6(1.5) /27.5(5.0) /25.7(2.6) /43.7(10.) /60.8(5.3) /55.1(7.1)

Uniform 5.63(7.0) /76.4(27.) /100.(0.0) /4.11(5.8) /100.(0.0) /100.(0.0)
Gaussian 0.0(0.0) /46.6(20.) /100.(0.0) /0.06(0.0) /100.(0.0) /100.(0.0)

C
IF

A
R

-1
0

Imagenet(c) 54.6(2.6) /53.7(3.1) /74.6(0.6) /90.8(1.5) /91.1(0.9) /81.1(1.7)
Imagenet(r) 48.3(3.2) /53.1(4.3) /85.1(0.6) /90.5(1.8) /90.8(1.8) /81.4(2.4)
LSUN(c) 59.9(4.7) /50.9(6.1) /53.6(1.0) /93.9(0.5) /92.4(0.5) /87.3(1.0)
LSUN(r) 57.5(4.4) /68.1(4.2) /87.4(0.8) /95.8(1.0) /96.0(0.7) /90.9(0.9)

iSUN 53.7(3.8) /62.8(5.0) /84.6(0.9) /95.1(1.0) /95.3(0.5) /88.8(1.1)
SVHN 44.5(8.1) /29.7(6.2) /46.2(4.8) /84.5(2.5) /78.8(7.6) /89.5(2.1)

Uniform 27.9(20.) /74.5(20.) /100.(0.0) /100.(0.0) /100.(0.0) /100.(0.0)
Gaussian 52.7(40.) /87.1(9.3) /100.(0.0) /100.(0.0) /100.(0.0) /100.(0.0)
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