
Under review as a conference paper at ICLR 2019

MAHINET: A NEURAL NETWORK FOR MANY-CLASS
FEW-SHOT LEARNING WITH CLASS HIERARCHY

Anonymous authors
Paper under double-blind review

ABSTRACT

We study many-class few-shot (MCFS) problem in both supervised learning and
meta-learning scenarios. Compared to the well-studied many-class many-shot
and few-class few-shot problems, MCFS problem commonly occurs in practical
applications but is rarely studied. MCFS brings new challenges because it
needs to distinguish between many classes, but only a few samples per class
are available for training. In this paper, we propose “memory-augmented
hierarchical-classification network (MahiNet)” for MCFS learning. It addresses
the “many-class” problem by exploring the class hierarchy, e.g., the coarse-class
label that covers a subset of fine classes, which helps to narrow down the can-
didates for the fine class and is cheaper to obtain. MahiNet uses a convolutional
neural network (CNN) to extract features, and integrates a memory-augmented
attention module with a multi-layer perceptron (MLP) to produce the probabilities
over coarse and fine classes. While the MLP extends the linear classifier, the
attention module extends a KNN classifier, both together targeting the “few-shot”
problem. We design different training strategies of MahiNet for supervised
learning and meta-learning. Moreover, we propose two novel benchmark datasets
“mcfsImageNet” (as a subset of ImageNet) and “mcfsOmniglot” (re-splitted Om-
niglot) specifically for MCFS problem. In experiments, we show that MahiNet
outperforms several state-of-the-art models on MCFS classification tasks in both
supervised learning and meta-learning scenarios.

1 INTRODUCTION

The representation power of deep neural networks (DNN) has dramatically improved in recent years,
as deeper, wider and more complicated DNN architectures (He et al., 2016; Huang et al., 2017) have
emerged to match the increasing computation power of new hardwares. Although this brings hope
for complex tasks that could be hardly solved by previous shallow models, more training data is
usually required. Hence, the scarcity of annotated data has become a new bottleneck for training
more powerful DNNs. For example, in image classification, the number of candidate classes can
easily range from hundreds to tens of thousands (i.e., many-class), but the training samples available
for each class can be less than 100 (i.e., few-shot). Additionally, in life-long learning, models are
always updated once new training data becomes available, and those models are expected to quickly
adapt to new classes with a few training samples. This “many-class few-shot” problem is very
common in various applications, such as image search, robot navigation and video surveillance.

Although enormous previous works have shown the remarkable power of DNN when “many-class
many-shot” training data is available, their performance degrades dramatically when each class only
has a few samples available for training. In practical applications, acquiring samples of rare species
is usually difficult and often expensive. In these few-shot scenarios, the model’s capacity cannot be
fully utilized, and it becomes much harder to generalize the model to unseen data. Recently, several
approaches have been proposed to address the few-shot learning problem. Most of them are based
on the idea of “meta-learning”, which trains a meta-learner that can generalize to different tasks. For
classification, each task targets a different set of classes. Meta-learning can be categorized into two
types: methods based on “learning to optimize”, and methods based on metric learning. The former
type adaptively modifies the optimizer (or some parts of it) applied to the training process. It includes
methods that incorporate an RNN meta-learner (Andrychowicz et al., 2016; Li & Malik, 2017;
Ravi & Larochelle, 2017), and model-agnostic meta-learning (MAML) methods aiming to learn a
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Figure 1: The MCFS problem with class hierarchy information. There are a few coarse classes (blue), but each
coarse class contains a large number of fine classes (red), and the total number of fine classes is large. Only a
few training samples are available for each fine class. The goal is to train a classifier to generate a prediction
over all fine classes. In meta-learning, each task is an MCFS problem sampled from a certain distribution. The
meta-learner’s goal is to help train a classifier for any sampled task with better adaptation to few-shot data.

generally compelling initialization (Finn et al., 2017). The latter type learns a similarity/distance
metric (Vinyals et al., 2016) or a support set of samples (Snell et al., 2017) that can be generally
used to build KNN classifiers for different tasks.

Table 1: Targeted problems of different methods.
many-class few-class

few-shot MahiNet (ours) MAML, Matching Net, etc.
many-shot ResNet, DenseNet, Inception, VGG, etc.

Instead of using meta-learning,
some other approaches, such as
Douze et al. (2018), address
the few-shot learning problem
through data augmentation by
generating artificial samples for each class. However, most existing few-shot learning approaches
only focus on “few-class” case (e.g., 5 or 10) per task, and performance usually collapses when the
number of classes grows to hundreds or thousands. This is because the samples per class no longer
provide enough information to distinguish them from other possible samples within a large number
of other classes. And, in real-world problems, tasks are usually complicated involving many classes.

Fortunately, in practice, class hierarchy is usually available or cheaper to obtain. As shown in Fig-
ure 1, coarse class labels might reveal the relationships among the targeted fine classes. Moreover,
the samples per coarse class are sufficient to train a reliable coarse classifier, whose predictions are
able to narrow down the candidates for fine classes. For example, a sheepdog with long hair could
be easily mis-classified as mop when training samples of sheepdog are insufficient. However, if we
could train a reliable dog classifier, it would be much simpler to predict an image as a sheepdog than
a mop given a correct prediction of the coarse class as “dog”. Hence, class hierarchy might provide
weakly supervised information to help solve the “many-class few-shot (MCFS)” problem.

1.1 OUR APPROACH

In this paper, we study how to explore the class hierarchy to solve MCFS problem in both traditional
supervised learning and in meta-learning. We develop a DNN architecture “memory-augmented
hierarchical-classification networks (MahiNet)” that can be applied to both learning scenarios.
MahiNet uses a CNN, i.e., ResNet by He et al. (2016), as a backbone network to extract features
from raw images. The CNN feeds features into coarse-class and fine-class classifiers, and the results
are combined to produce the final prediction according to fine classes as probabilities. In this way,
both the coarse-class and the fine-class classifiers mutually help each other within MahiNet: the for-
mer helps to narrow down the candidates for the latter, while the latter provides multiple attributes
per coarse class that can regularize the former. This design leverages the relationship between fine
classes, and mitigates the difficulty caused by “many class” problem. To the best of our knowledge,
we are the first to successfully employ the class hierarchy information to improve few-shot learning.
Previous works (Ren et al., 2018) cannot achieve improvement after using the same information.

To address the “few-shot” problem, we apply two types of classifiers in MahiNet, i.e., MLP and K-
nearest neighbor (KNN), which have advantages in many-shot and few-shot situations, respectively.
We always use MLP for coarse classification, and KNN for fine classification. With a sufficient
amount of data in supervised learning, MLP is combined with KNN for fine classification; and in
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meta-learning when less data is available, we also use KNN for coarse classification to assist MLP.
In Table 1, we provide a brief comparison of MahiNet with other popular models on the learning
scenarios they excel.

To make the KNN learnable and more adaptive to classes with few-shot data, we use an attention
module to learn the similarity/distance metric used in KNN, and a re-writable memory of limited
size to store and update KNN support set during training. In supervised learning, it is necessary to
maintain and update a relatively small memory (7.2% of the dataset) by selecting a few samples, be-
cause conducting a KNN search over all available training samples is too computationally expensive
in computation. In meta-learning, the attention module can be treated as a meta-learner that learns a
universal similarity metric for different tasks.

We extract a large subset of ImageNet (Deng et al., 2009) “mcfsImageNet” as a benchmark dataset
specifically designed for MCFS problem. It contains 139,346 images from 77 non-overlapping
coarse classes composed of 754 randomly sampled fine classes, each has only ∼ 180 images. Im-
balance between the different classes are preserved to reflect the imbalance in practical problems.
We further extract “mcfsOmniglot” from Omniglot (Lake et al., 2011) for the same purpose. We will
make them publicly available later. In experiments on these two datasets, MahiNet outperforms the
widely used ResNet (He et al., 2016) in supervised learning. In meta-learning scenario where each
task convers many classes, it shows more promising performance than popular few-shot methods
including prototypical networks (Snell et al., 2017) and relation networks (Yang et al., 2018).

2 MEMORY-AUGMENTED HIERARCHICAL-CLASSIFICATION NETWORK

2.1 PROBLEM FORMULATION

We study supervised learning and meta-learning given a training set of n samples D =
{(xi, yi, zi)}ni=1, where each sample xi ∈ X is associated with a fine-class label yi ∈ Y and a
coarse-class label zi ∈ Z , and is sampled from a data distribution D, i.e., (xi, yi, zi) ∼ D. Here,
Y denotes the set of all the fine classes, and Z denotes the set of all the coarse classes. To define a
class hierarchy for Y and Z , we further assume that each coarse class z ∈ Z covers a subset of fine
classes Yz , and that distinct coarse classes are associated with disjoint subsets of fine classes, i.e.,
for any z1, z2 ∈ Z , we have Yz1 ∩ Yz2 = ∅. Our goal is fine-class classification by using the class
hierarchy information. In particular, the supervised learning in this case can be formulated as:

min
Θ

E(x,y,z)∼D − log Pr(y|x; Θ), (1)

where Θ is the model parameters. In practice, we solve the corresponding empirical risk minimiza-
tion (ERM) during training, i.e.,

min
Θ

n∑
i=1

− log Pr(yi|xi; Θ). (2)

In contrast, meta-learning aims to maximize the expectation of the prediction likelihood of a task
drawn from a distribution of tasks. Specifically, we assume that the subset of fine classes T for each
task is sampled from a distribution T , and the problem is formulated as

min
Θ

ET∼T
[
E(x,y,z)∼DT

− log Pr(y|x; Θ)
]
, (3)

where DT refers to the distribution of samples with label yi ∈ T . The corresponding ERM is

min
Θ

∑
T

[∑
i∈DT

− log Pr(yi|xi; Θ)

]
, (4)

where T is a task (defined by a subset of fine classes) sampled from distribution T , and DT is a
training set sampled from DT .

To leverage the coarse class information of z, we write Pr(y|x; Θ) in Eq. (1) and Eq. (3) as

Pr(y|x; Θ) =
∑
z∈Z

Pr(y|z, x; Θf ) Pr(z|x; Θc), (5)

where Θf and Θc are the model parameters for fine classifier and coarse classifier, respectively1.
Accordingly, given a specific sample (xi, yi, zi) with its ground truth labels for coarse and fine

1For simplicity, we neglect model parameters θCNN for feature extraction here.
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Figure 2: Left: MahiNet. The final fine-class prediction combines predictions based on both fine classes and
coarse classes, each of which is produced by an MLP classifier or/and an attention-based KNN classifier. Top
right: KNN classifier with learnable similarity metric and updatable support set. Attention provides a similar-
ity metric aj,k between each input sample fi and a small support set per class stored in memory Mj,k. The
learning of KNN classifier aims to optimize 1) the similarity metric parameterized by the attention, detailed in
Sec. 2.3; and 2) a small support set of feature vectors per class stored in memory, detailed in Sec. 2.4. Bottom
right: The memory update mechanism. In meta-learning, the memory stores the features of all training samples
of a task. In supervised learning, the memory is updated during training as follows: for each sample xi within
an epoch, if the KNN classifier produces correct prediction, fi will be merged into the memory; otherwise, fi

will be written into a “cache”. At the end of each epoch, we apply clustering to the samples per class stored in
the cache, and use the resultant centroids to replace r slots of the memory with the smallest utility rate.

classes, we can write Pr(yi|xi; Θ) in Eq. (2) and Eq. (4) as follows.
Pr(yi|xi; Θ) = Pr(yi|zi, xi; Θf ) Pr(zi|xi; Θc). (6)

Suppose that a DNN model already produces a logit ay for each fine class y, and a logit bz for
each coarse class z, the two probabilities in the right hand side of Eq. (6) are computed by applying
softmax function to the logit values in the following way.

Pr(yi|zi, xi; Θf ) =
exp(ayi

)∑
y∈Yzi

exp(ay)
, Pr(zi|xi; Θc) =

exp(bzi)∑
z∈Z exp(az)

. (7)

Therefore, we integrate both the fine-class label and coarse-class label in an ERM, whose goal is to
maximize the likelihood of the ground truth fine-class label. Given a DNN that can produce two logit
vectors a and b for fine class and coarse class, we can train it for supervised learning or meta-learning
by solving the ERM problems in Eq. (2) or Eq. (4) (with Eq. (6) and Eq. (7) plugged in).

2.2 NETWORK ARCHITECTURE

To address MCFS problem in both supervised learning and meta-learning scenarios, we developed
a universal model, MahiNet, as in Figure 2. MahiNet uses a CNN to extract features from raw
inputs, and then applies two modules to produce coarse-class prediction and fine-class prediction,
respectively. Each module includes one or two classifiers: either an MLP or an attention-based
KNN classifier or both. Intuitively, MLP performs better when data is sufficient, while the KNN
classifier is more stable in few-shot scenario. Hence, we always apply MLP to coarse prediction and
apply KNN to fine prediction. In addition, we use KNN to assist MLP for coarse module in meta-
learning, and use MLP to assist KNN for fine module in supervised learning. In the attention-based
KNN classifier, an attention module is trained to compute the similarity between two samples, and
a re-writable memory is maintained with a highly representative support set for KNN prediction.

Our method for learning a KNN classifier combines the ideas from two popular meta-learning meth-
ods, i.e., matching networks (Vinyals et al., 2016) that aims to learn a similarity metric, and proto-
typical networks (Snell et al., 2017) that aims to find a representative center per class for NN search.
However, our method relies on an augmented memory rather than a bidirectional RNN for retrieving
of NN in matching networks. In contrast to prototypical networks, that only have one prototype per
class, we allow multiple prototypes as long as they can fit in the memory budget. Together these
two mechanisms prevent the confusion caused by subtle differences between classes in many-class
scenario. Notably, MahiNet can also be extended to “life-long learning” given this memory updat-
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Algorithm 1 Training of MahiNet for Supervised Learning
Input: Training set D = {(xi, yi, zi)}ni=1;

Randomly initialized θKNN
f , pre-trained θCNN , θMLP

c and θMLP
f ;

Hyper-parameters: memory update parameters r, γ, µ and η; learning rate and its scheduler;
1: while no converge do
2: for mini-batch {(xi, yi, zi)}i∈B in D do
3: Compute fine-class logits a and coarse-class logits b from the outputs of MLP/KNN classifiers;
4: Apply one step of mini-batch SGD for ERM in Eq. (2) (with Eq. (6) and Eq. (7) plugged in);
5: for sample in the mini-batch do
6: Update the memory M according to Eq. (11);
7: Update the utility rate U according to Eq. (13);
8: Expand the feature cache C according to Eq. (12);
9: end for

10: end for
11: for each fine class j in Y do
12: Fine the indexes of the r smallest values in Uj , denoted as {k1, k2, ..., kr};
13: Clustering of the feature vectors within cache Cj to r clusters with centroids {c1, c2, ..., cr};
14: Replace the r memory slots by centroids: Mj,ki = ci for i ∈ [r];
15: end for
16: end while

ing mechanism. We do not adopt the architecture used in Mishra et al. (2018) since it requires the
representations of all historical data to be stored.

2.3 LEARNING A KNN SIMILARITY METRIC WITH AN ATTENTION MODULE

In MahiNet, we train an attention module to compute the similarity used in the KNN classifier.
The attention module learns a distance metric between the feature vector fi of a given sample xi

and any feature vector from the support set stored in the memory. Specifically, we use the dot
product attention similar to the one adopted in Vaswani et al. (2017) for supervised learning, and use
an Euclidean distance based attention for meta-learning, following the instruction from Snell et al.
(2017). Given a sample xi, we compute a feature vector fi ∈ Rd by applying a backbone CNN to xi.
In the memory, we maintain a support set of m feature vectors for each class, i.e., M ∈ RC×m×d,
where C is the number of classes. The KNN classifier produces the class probabilities of xi by first
calculating the attention scores between fi and each feature vector in the memory, as follows.

a(fi,Mj,k) =
g(fi)·h(Mj,k)

‖g(fi)‖‖h(Mj,k)‖
or − ‖g(fi)− h(Mj,k)‖2, ∀j ∈ [C], k ∈ [m], (8)

where g and h are learnable transformations for fi and the feature vectors in the memory. We select
the K nearest neighbors of fi among the m feature vectors for each class j, and compute the sum
of their similarity scores as the attention score of fi to class j, i.e.,

s(fi,Mj) = max
N⊆[m],|N |≤K

∑
k∈N

a(fi,Mj,k), ∀j ∈ [C]. (9)

We usually find K = 1 is sufficient in practice. The predicted class probability is derived by
applying a softmax function to the attention scores of fi over all C classes, i.e.,

Pr(yi = j) ,
exp (s(fi,Mj))∑C

j′=1 exp (s(fi,Mj′))
, ∀j ∈ [C]. (10)

2.4 MEMORY MECHANISM UPDATING SUPPORT SET OF KNN

Ideally, the memory M ∈ RC×m×d can store all available training samples as the support set of
the KNN classifier. In meta learning, in each episode, we sample a task with C classes and m
training samples per class, and store them in the memory. Due to the small amount of training data
for each task, we can store all data in the memory. In supervised learning, we only focus on one
task, which is possible to have a large training set that cannot be entirely stored in the memory.
Hence, we set up a budget hyper-parameter m for each class. m is the maximal number of feature
vectors to be stored for one class. Moreover, we develop a memory update mechanism to maintain
a small memory with diverse and representative feature vectors (t-SNE visualization can be found
in Figure 4 in Appendix E). Intuitively, it can choose to forget or merge feature vectors that are no
longer representative, and select new important feature vectors into memory.
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Algorithm 2 Training of MahiNet for Meta-Learning
Input: Training set D = {(xi, yi, zi)}ni=1 and fine class set Y;

Parameters: randomly initialized θCNN , θMLP
c , θMLP

f , and θKNN
f ;

Hyper-parameters: learning rate, scheduler; for each class, number of queries ns, support set size nS ;
1: while not converge do
2: Sample a task T ∼ T as a subset of fine classes T ⊆ Y .
3: for class j in T do
4: Randomly sample ns data points of class j from D to be the support set Sj of class j.
5: Randomly sample nq data points of class j from D\Sj to be the query set Qj of class j.
6: end for
7: for mini-batch from Q do
8: Compute fine-class logits a and coarse-class logits b from the outputs of MLP/KNN classifiers;
9: Apply one step of mini-batch SGD for ERM in Eq. (4) (with Eq. (6) and Eq. (7) plugged in);

10: end for
11: end while

We will show later in experiments that a small memory can result in sufficient improvement, while
the time cost of memory updating is negligible. During training, for the data that can be correctly
predicted by the KNN classifier, we merge its feature with corresponding slots in the memory by
computing their convex combination, i.e.,

Mj,k = { γ ×Mj,k + (1− γ)× fi, if ŷi = yi
Mj,k, otherwise , (11)

where yi is the ground truth label, and γ = 0.95 is a combination weight that works well in most
of our empirical studies; for input feature vector that cannot be correctly predicted, we write it to a
cache C = {C1, ...,CC} that stores the candidates written into the memory for the next epoch, i.e.,

Cj = { Cj , if ŷi = yi
Cj ∪ {fi}, otherwise , (12)

Concurrently, we record the utility rate of the feature vectors in the memory, i.e., how many times
each feature vector being selected into theK nearest neighbor during the epoch. The rates are stored
in a matrix U ∈ RC×m, and we update it as follows.

Uj,k = { Uj,k × µ, if ŷi = yi
Uj,k × η, otherwise , (13)

where µ ∈ (1, 2) and η ∈ (0, 1) are hyper-parameters.

At the end of each epoch, we cluster the feature vectors per class in the cache, and obtain r cluster
centroids as the candidates for the memory update in the next epoch. Then, for each class, we replace
r feature vectors in the memory that have the smallest utility rate with the r cluster centroids.

3 TRAINING STRATEGIES

As shown in the network structure in Figure 2, in supervised learning and meta learning, we use
different combinations of MLP and KNN to produce fine-class and coarse-class predictions. The
classifiers are combined by summing up their logits for each class, and a softmax function is used
to generate the class probabilities. Assume the MLP classifiers for the coarse classes and the fine
classes are φ(·; θMLP

c ) and φ(·; θMLP
f ), the KNN classifiers for the coarse classes and the fine

classes are φ(·; θKNN
c ) and φ(·; θKNN

f ). In supervised learning, the model parameters are θCNN ,
Θc = θMLP

c and Θf = {θMLP
f , θKNN

f }; in meta-learning setting, the model parameters are θCNN ,
Θc = {θMLP

c , θKNN
c } and Θf = θKNN

f .

According to Sec. 2.1, we train MahiNet for supervised learning by solving the ERM problems in
Eq. (2) and by solving Eq. (4) for meta-learning. As previously mentioned, the logits (for either
fine classes or coarse classes) used in those ERM problems are obtained by summing up the logits
produced by the corresponding combination of classifiers.

Training MahiNet for Supervised learning. In supervised learning, the memory update relies
heavily on the clustering of the merged feature vectors in the cache. To achieve relatively high-
quality feature vectors, We first pretrain the CNN+MLP model by using the standard backpropa-
gation to minimize the sum of cross entropy loss on both coarse-classes and fine-classes and then
fine-tune the whole model (including the fine-class KNN classifier) with memory updates. The
training procedure of the fine-tune stage is explained in Alg. 1.

6



Under review as a conference paper at ICLR 2019

Table 2: Comparison of the statistics for mcfsImageNet and previously used datasets. “#c” and “#f”
denote the number of coarse classes and fine classes, respectively. “-” means “not applicable”.

Meta Learning Supervised Learning
#image image

sizeTrain Val Test Train Test
#c #f #c #f #c #f #c #f #c #f

ImageNet-1k - - - - - - 1 1000 1 1000 1.43M 224
miniImageNet 1 64 1 16 1 20 - - - - 0.06M 84
Omniglot 33 1028 5 172 13 423 - - - - 0.03M 28
mcfsOmniglot 50 973 50 244 50 1624 - - - - 0.03M 28
mcfsImageNet 77 482 61 120 68 152 77 754 77 754 0.14M 112

Training MahiNet for Meta-learning. In meta learning, the memory is constant and stores features
extracted from the support set for KNN classifier. The detailed training procedure can be found in
Alg. 2. In summary, we sample each training task by randomly sampling a subset of fine classes, and
then randomly sample a support set S and a query set Q. We store the CNN feature vectors of S in
the memory, and train MahiNet to produce correct predictions for the samples in Q. When sampling
the training/test tasks, we allow new fine classes that were not covered in any training task to appear
as test tasks, but the ground set of the coarse classes is fixed for both training and test. Hence, every
coarse class appearing in any test task has been seen in previous training, but the corresponding fine
classes belonging to this coarse class in training and test tasks can vary.

4 EXPERIMENTS

We propose two benchmark datasets specifically for MCFS Problem: mcfsImageNet &
mcfsOmniglot, and compare them with several existing datasets in Table 2. Please see more de-
tails in Appendix A. Our following experimental study focuses on these two datasets.

4.1 SUPERVISED LEARNING EXPERIMENTS

Experiments on mcfsImageNet. We use ResNet18 for the backbone CNN. The transformations g
and h in the attention module are two fully connected layers followed by group normalization (Wu
& He, 2018) with a residual connection. See more detailed parameter choices in Appendix B.

Table 3: Different models’ performance of super-
vised learning (test accuracy) on mcfsImageNet.

Model Hierarchy Accuracy
Prototypical Net N 2.7%
ResNet18 N 48.6%

MahiNet w/o KNN Y 49.1%

MahiNet Y 49.9%

Table 3 compares MahiNet with the supervised
learning model (i.e., ResNet18) and meta learn-
ing model (i.e., prototypical networks). The re-
sults show that MahiNet outperforms the spe-
cialized models, such as ResNet18 in MCFS
scenario. Prototypical Net is a meta-learning
model designed to solve few-shot classification
problems. We train it in a supervised learning
manner (i.e., on a single task with many classes
and relatively much more samples per class),
and include it in the comparison to test its performance on MCFS problem. Prototypical net-
work fails to solve MCFS problem in the supervised learning scenario. To separately measure the
contribution of the class hierarchy and the attention-based KNN classifier, we conduct an ablation
study that removes the KNN classifier from MahiNet. The results show that MahiNet outperforms
ResNet18 even when only using the extra coarse-label information during training, and that using a
KNN classifier further improves the performance. For each epoch, the average clustering time is 30s
and is only 7.6% of the total epoch time (393s). Within an epoch, the memory update time (0.02s)
is only 9% of the total iteration time (0.22s).

4.2 META-LEARNING EXPERIMENTS

Experiments on mcfsImageNet. We use the same backbone CNN, g, and h as in supervised learn-
ing. In each task, we sample the same number of classes for training and test, and follow the training
procedure in Snell et al. (2017). More detailed parameters can be found in Appendix B.
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Table 4: Comparison w.r.t. the accuracy (%) of different approaches in meta-learning scenario on
mcfsImageNet. Test accuracy is reported as the averaged over 600 test episodes along with the cor-
responding 95% confidence intervals are reported. In the first row, “n-k” represents n-way (class)
k-shot. Mem-1, Mem-2, and Mem-3 indicate 3 different kinds of memory. In 50-way experiments,
Relation Net stops to improve after the first few iterations and fails to achieve comparable perfor-
mance (more details in Appendix D).

Model Hierarchy 5-10 20-5 20-10 50-5 50-10

ResNet18
(He et al., 2016) N 60.7 58.6 67.2 48.9 56.8

Prototypical Net
(Snell et al., 2017) N 78.48±0.66 67.78±0.37 70.11±0.38 57.74±0.24 62.12±0.24

Relation Net
(Yang et al., 2018) N 74.12±0.78 52.66±0.43 55.45±0.46 N/A N/A

MahiNet (Mem-1)
w/o Attention & Hierarchy N 79.04±0.67 68.46±0.38 71.13±0.38 58.09±0.24 62.18±0.22

MahiNet (Mem-2)
w/o Attention & Hierarchy N 77.41±0.71 66.89±0.40 71.72±0.37 55.25±0.23 59.38±0.23

MahiNet (Mem-2)
w/o Hierarchy N 76.85±0.67 66.43±0.41 70.01±0.38 55.13±0.23 59.22±0.23

MahiNet (Mem-3)
w/o Hierarchy N 78.27±0.68 67.03±0.41 71.20±0.37 57.98±0.24 62.40±0.23

MahiNet (Mem-1) Y 80.64±0.64 68.99±0.40 72.78±0.37 58.56±0.25 62.70±0.24

MahiNet (Mem-3) Y 80.74±0.66 70.11±0.41 73.50±0.36 58.80±0.24 62.80±0.24

Table 5: Comparison on mcfsOmniglot. Symbols and settings are the same as Table 4.

Model Hierarchy 5-5 20-5 50-5 100-5

Prototypical Net (Snell et al., 2017) N 99.10±0.15 98.84±0.11 97.94±0.08 96.67±0.09

Mahinet (Mem-1) w/o Hierarchy N 99.17±0.16 98.82±0.11 97.96±0.09 96.62±0.09
Mahinet (Mem-3) w/o Hierarchy N 99.31±0.18 98.89±0.11 97.93±0.09 96.58±0.09

MahiNet(Mem-3) Y 99.40±0.15 99.00±0.16 98.10±0.17 96.70±0.17

Table 4 shows that MahiNet outperforms the supervised learning baseline (ResNet18) and the meta-
learning baseline (Prototypical Net). For ResNet18, we follow the fine-tune baseline in Finn et al.
(2017). To evaluate the contributions of each component in MahiNet, we show results of several
variants in Table 4. “Attention” indicates parametric functions for g and h, otherwise using identity
mapping. “Hierarchy” indicates the assist of class hierarchy. For a specific task, “Mem-1” stores
the average feature of all training samples for each class; “Mem-2” stores all features of the training
samples; “Mem-3” is the union of “Mem-1” and “Mem-2”. Table 4 implies: (1) Class hierarchy
information can incur steady performance across all tasks; (2) Combining “Mem-1” and “Mem-2”
outperforms using either of them independently; (3) Attention should be learned with class hierarchy
in MCFS problem. Because the data is usually insufficient to train a reliable similarity metric to
distinguish all fine classes, but distinguishing the fine classes in each coarse class is much easier.

Experiments on mcfsOmniglot. We conduct experiments on the secondary benchmark
mcfsImageNet. We use the same training setting as for mcfsImageNet. Following Santoro et al.
(2016), mcfsOmniglot is augmented with rotations by multiples of 90 degrees. We do not use
ResNet18 on mcfsOmniglot, since mcfsOmniglot is a 28×28 small dataset, which would be easy for
ResNet18 to overfit. Therefore, we use four consecutive convolutional layers as the backbone CNN
and compare MahiNet with prototypical networks as in Table 5. We do ablation study on MahiNet
with/without hierarchy and MahiNet with different kinds of memory. “Mem-3”, i.e., the union of
“Mem-1” and “Mem-2”, outperforms “Mem-1”, and “Attention” mechanism can improve the per-
formance. Additionally, MahiNet outperforms other compared methods, which indicates the class
hierarchy assists to make more accurate predictions. In summary, experiments on the small-scale
and large-scale datasets show that class hierarchy brings a stable improvement.
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A TWO NEW BENCHMARKS FOR MCFS PROBLEM: mcfsIMAGENET &
mcfsOMNIGLOT

ImageNet (Deng et al., 2009) may be the most widely used large-scale benchmark dataset for image
classification. However, although it provides hierarchical information about class labels, it cannot be
directly used to test the performance of MCFS learning methods. Because a fine class may belong to
multiple coarse classes, and in MCFS problem, each sample has only one unique coarse-class label.
In addition, ImageNet does not satisfy the criteria of “few-shot” per class. miniImageNet (Vinyals
et al., 2016) has been widely used as a benchmark dataset in meta-learning community to test the
performance on few-shot learning task. miniImageNet is a subset of data extracted from ImageNet;
however, its data are sourced from only 80 fine classes, which is not “many-class” nor does this
carry a class hierarchy.

Hence, to develop a benchmark dataset specifically for the purpose of testing the performance of
MCFS learning methods, we extracted a subset of images from ImageNet and created a dataset
called “mcfsImageNet”. Table 2 compares the statistics of mcfsImageNet with several benchmark
datasets, and more details of the class hierarchies in mcfsImageNet are given in the Appendix F.
Comparing to the original ImageNet, we avoided selecting the samples that belong to more than
one coarse classes into mcfsImageNet to meet the class hierarchy requirements of MCFS problem,
i.e., each fine class only belongs to one coarse class. Compared to miniImageNet, mcfsImageNet is
about 5× larger, and covers 754 fine classes - many more than the 80 fine classes in miniImageNet.
Moreover, on average, each fine class only has ∼ 185 images for training and test, which is typical
MCFS scenarios. Additionally, the number of coarse classes in mcfsImageNet is 77, which is many
less than 754 of the fine classes. This is consistent with the data properties found in many practical
applications, where the coarse-class labels can only provide weak supervision, but each coarse class
has sufficient training samples. Further, we avoided selecting coarse classes which were too broad
or contained too many very different fine classes. For example, the “Misc” class in ImageNet has
20400 sub-classes, and includes both animal (3998 sub-classes) and plant (4486 sub-classes).

Omniglot (Lake et al., 2011) is a small hand-written character dataset with two levels. However, new
coarse classes appear in the test set, which is inconsistent with our MCFS settings (all the coarse
classes are exposed in training, but new fine classes can appear during test). As a result, we re-split
Omniglot to fulfill the MCFS problem requirement and the class hierarchy information are listed in
Appendix G.

B EXPERIMENTAL SETUP

Setup for the supervised learning. We use ResNet18 (He et al., 2016) for the backbone CNN. The
transformation functions g and h in the attention module are two fully connected layers followed
by group normalization (Wu & He, 2018) with a residual connection. We set the memory size
to m = 12 and the number of clusters to r = 3, which can achieve a better trade-off between
memory cost and performance. Batch normalization (Ioffe & Szegedy, 2015) is applied after each
convolution and before activation. During pre-training, we apply the cross entropy loss on the
probability predictions in Eq. (7). During fine-tuning, we fix the θCNN , θMLP

c , and θMLP
f to ensure

the fine-tuning process is stable. We use SGD with a mini-batch size of 128 and a cosine learning
rate scheduler with an initial learning rate 0.1. µ = 1.05, η = 0.95, a weight decay of 0.0001, and
a momentum of 0.9 are used. We train the model for 100 epochs during pre-training and 90 epochs
for the fine-tuning.

Setup for the meta learning. We use the same backbone CNN, g, and h as in supervised learning.
In each task, we sample the same number of classes for training and test, and follow the training
procedure in Snell et al. (2017). We set an initial learning rate to 10−3 and reduce it by a factor 2×
every 10k iterations. Our model is trained by Adam (Kingma & Ba, 2015) with a mini-batch size
of 128, a weight decay of 0.0001, and a momentum of 0.9. We train the model for 25k iterations in
total. For class hierarchy, the objective function is the sum of the softmax with cross entropy losses
on the coarse class and on the fine class, respectively.
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C RELATED WORKS

Few-shot learning has a long history. Before deep learning, generative models (Fei-Fei et al., 2006)
are trained to provide a global prior knowledge for solving the one-shot learning problem. However,
with the advent of deep learning techniques, some recent approaches (Wong & Yuille, 2015; Lake
et al., 2013) use generative models to encode specific prior knowledge, such as strokes and patches.
More recently, Douze et al. (2018) and Wang et al. (2018) have applied hallucinations to training
images and to generate more training samples, which converts a few-shot problem to a many-shot
problem.

Meta-learning has been used in attempts to solve the few-shot learning problems. Meta learning
was first proposed in the last century (Naik & Mammone, 1992; Schmidhuber, 1987), and ) but has
recently seen some significant improvements. For example, Lake et al. (2015) proposed a dataset
of characters for meta-learningn while Koch et al. (2015) extended this idea into a Siamese network.
A more challenging dataset (Ravi & Larochelle, 2017; Vinyals et al., 2016) was introduced later.
Researchers have also studied RNN and attention based method to overcome the few-shot problem.
More recently, Snell et al. (2017) is proposed based on a metric learning equipped KNN. In contrast,
Finn et al. (2017) based their approach on the second order optimization. Mishra et al. (2018) uses
temporal convolution to address the few-shot image recognition. However, unlike above methods,
our model leverages the class hierarchy information, and can be easily applied to both the supervised
learning and meta-learning scenarios.

D COMPARISON TO VARIANTS OF RELATION NET

Relation network with class hierarchy. We train relation network with class hierarchy in the simi-
lar manner as in MahiNet. The results are shown in Table 6. It demonstrates that the class hierarchy
also improves the accuracy of relation network by more than 1%, which verifies the advantage of
using class hierarchy in other models besides MahiNet.

Table 6: The improvement of class hierarchy on relation network.
Model Hierarchy 5 way 5 shot 5 way 10 shot

Relation Net
(Yang et al., 2018) N 63.02±0.87 74.12±0.78

Relation Net Y 66.82±0.86 75.31±0.90

MahiNet (Mem-3) Y 74.98±0.75 80.74±0.66

Relation network in high way setting. For relation network in high way settings, we found that
the network is easy to be stuck into a suboptimal solution. After first few iterations, the training
loss stays in a high level and the training accuracy stays in a low level. We demonstrate the training
loss and training accuracy for the first 100 iterations under different learning rate as Figure 3. The
training loss and accuracy keep the same value after 100 iterations.

E ANALYSIS OF AUGMENTED MEMORY

Visualization. In order to show how representative and diverse the feature vectors selected into
memory slots are, we visualize feature vectors in the memory and the rest image feature vectors in
t-SNE in Figure 4. In particular, we randomly sample 50 fine classes marked by different colors.
Within every class, we show both the selected feature vectors in memory and feature vectors of
other images from the same class. It shows that the small number of highly selected feature vectors
in memory are diverse and sufficiently representative of the whole class.

Memory Cost. In experiments of supervised learning, the memory size required by MahiNet is only
754 × 12/125321 = 7.2% (12 samples per class for all the 754 fine classes, while the training set
includes 125, 321 images in total) of the memory needed to store the whole training set. We also
tried to increase the memory size to about 10%, but the resultant improvement on performance is
negligible. In each task of meta learning, since every class only has few-shot samples, the memory
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Figure 3: The training loss and accuracy for 50 way 5 shot relation net during the first 100 iterations
under different learning rate. Whatever the learning rate is, it quickly converges to a suboptimal
point: The training loss: ≈0.02 and the training accuracy: ≈2%.

required to store all the data is very small. For example, in the 20-way 1-shot setting, the memory
only needs to store 20 feature vectors.
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Figure 4: The t-SNE visualization for memory. We randomly sample 50 classes shown as different
colors. The image feature and the memory feature share the same color while the image feature has
higher transparency.
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F mcfsIMAGENET CLASS SPLITS

The hierarchy of coarse and fine classes is shown below. Every key (marked in bold) in the dictio-
nary is a coarse class, the value is a list of the fine classes of this coarse classes.

n02470325: [n02482650, n02481500, n02483362, n02481103, n02482060, n02481235, n02482474,
n02481366, n02482286, n02483708] n01769347: [n01782516, n01775370, n01772664, n01773797,
n01773549, n01774384, n01777304, n01773157, n01778217, n01770081] n12855042: [n12856479,
n12855710, n12855886, n12855494, n12855365, n12856287, n12856680, n12856091] n13109733:
[n11705171, n12717224, n12734215, n12491017, n11710136, n11707827, n12634734, n12711984,
n12709103, n12753245] n07806221: [n07807834, n07808904, n07806774, n07808268, n07808587,
n07806879, n07807472, n07808022, n07807594, n07808479] n01428580: [n02583890, n01447331,
n01449374, n02520147, n01439808, n02538562, n01442972, n02543565, n02527057, n01447658]
n01789386: [n01793249, n01790812, n01790304, n01795735, n01815036, n01806297, n01793085,
n01796729, n01794344, n01797020] n12582231: [n12590499, n12597466, n12587487, n12598027,
n12595699, n12596148, n12583855, n12587803, n12597134, n12596345] n01816887: [n01819734,
n01819313, n01818299, n01817263, n01819465, n01817346, n01822300, n01821869, n01818832,
n01818515] n12724942: [n12728322, n12731029, n12727518, n12729521, n12726159, n12729729,
n12728864, n12730544, n12725940, n12728508] n07802417: [n07804543, n07802863, n07889193,
n07804900, n07804771, n07804657, n07802963, n07803310] n07882497: [n07628181, n07861247,
n07861158, n07594066, n07628068, n07678586, n07594155, n07679034, n07839478, n07678953]
n01940736: [n01945143, n01953594, n01944118, n01955084, n01947396, n01959029, n01965529,
n01960177, n01963317, n01958346] n07911677: [n07914586, n07915800, n07916437, n07931452,
n07918309, n07914995, n07917392, n07918193, n07917133, n07916183] n12864545: [n12865037,
n12866002, n12866162, n12866459, n12865824, n12865708, n12865562, n12866635] n07886572:
[n07887192, n07890226, n07889990, n07887304, n07887967, n07888816, n07890540, n07890068,
n07887461, n07888229] n01524359: [n01561732, n01556182, n01537895, n01561452, n01593553,
n01583828, n01539925, n01543632, n01535690, n01538630] n12268246: [n12278865, n12271933,
n12278650, n12277150, n12276872, n12270278, n12276477, n12273344, n12271187, n12270741]
n01674216: [n01682435, n01682714, n01680983, n01689811, n01687978, n01690466, n01678043,
n01680655, n01693175, n01689081] n02084071: [n02088466, n02101006, n02113624, n02091467,
n02111277, n02087394, n02102177, n02105412, n02094258, n02106662] n02274024: [n02305085,
n02297819, n02304432, n02277742, n02302244, n02303284, n02281015, n02279972, n02276078,
n02282257] n02441326: [n02443484, n02445171, n02442572, n02446206, n02445004, n02443346,
n02450295, n02448060, n02447762, n02449183] n02484322: [n02488415, n02493793, n02494079,
n02493509, n02492660, n02492948, n02487547, n02485536, n02485688, n02490811] n07901587:
[n07906111, n07902799, n07905296, n07904865, n07907037, n07904293, n07905386, n07902443,
n07903101, n07902336] n02801938: [n02925009, n04024862, n03050864, n03390673, n03883385,
n03129848, n02893608, n04204238, n03378342] n12387633: [n12389501, n12388858, n12390099,
n12389727, n12390314, n12388989, n12389130, n12388143] n04576211: [n04474035, n03235979,
n03435991, n02871314, n03193260, n02740300, n03256166, n03173929, n04026813, n04285965]
n01661592: [n01666585, n01664990, n01668665, n01671125, n01669372, n01670802, n01666228,
n01669654, n01668892, n01665541] n01627424: [n01636352, n01646555, n01633406, n01632458,
n01654637, n01646802, n01641739, n01641930, n01629819, n01631354] n02131653: [n02133704,
n02133400, n02132788, n02132466, n02134084, n01322983, n02132580, n02134418] n06271778:
[n06272612, n06276501, n06278475, n06273555, n06274760, n06273294, n06273986, n06273414,
n06275471, n06277135] n13100677: [n12162425, n12828220, n11731659, n11788727, n12513172,
n12828379, n11789589, n12383737, n11769803, n12485981] n01726692: [n01744401, n01738065,
n01749939, n01732614, n01737728, n01753180, n01743936, n01733466, n01750167, n01757343]
n02394477: [n02419634, n02414290, n02396014, n02412080, n02405440, n02396427, n02415829,
n02395931, n02418465, n02427470] n01604330: [n01608814, n01611800, n01624115, n01606809,
n01623615, n01606177, n01610100, n01609391, n01609956, n01604968] n02373336: [n02377291,
n02391373, n02389026, n02379329, n02378969, n02379081, n02386853, n02379908, n02382204,
n02389943] n02898711: [n04311004, n02775897, n03865557, n04479939, n03415486, n03981760,
n04108822, n03233744, n03122073, n02986160] n01976146: [n01986214, n01983674, n01988203,
n01981276, n01984695, n01980166, n01978455, n01978287, n01982068, n01979874] n02062430:
[n02065726, n02071028, n02072798, n02070624, n02065263, n02069412, n02068541, n02071636,
n02063662, n02069974] n02075927: [n02080713, n02081798, n02078738, n02077384, n02077787,
n02080146, n02080415, n02079851, n02076402, n02078574] n13112664: [n12632335, n11948864,
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n12249542, n12861541, n12905135, n12675876, n12921868, n11865874, n12806015, n12482668]
n07829412: [n07837002, n07837755, n07837545, n07840520, n07838073, n07831267, n07832416,
n07840219, n07835921, n07826091] n07892813: [n07897438, n07898247, n07897975, n07897600,
n07899533, n07899769, n07894799, n07894703, n07894451, n07896765] n09366017: [n09398076,
n09454744, n09233446, n09435739, n09452291, n09410224, n09245515, n09415671, n09295946,
n09344324] n01480516: [n01495493, n01484562, n01492569, n01484285, n01500476, n01485479,
n01481498, n01489709, n01496331, n01491006] n02974697: [n02962843, n03031012, n03498441,
n03468821, n04570815, n03210372, n04035836, n03986949, n03438863, n04064747] n07927197:
[n07928696, n07928998, n07929172, n07927836, n07928163, n07928578, n07928488, n07927716,
n07928790, n07928887] n11545524: [n13230843, n13181244, n13193143, n13214485, n13231078,
n13229543, n12961879, n13190747, n13183056, n12953712] n03206908: [n03062336, n04130257,
n04050933, n04242704, n04263257, n03775546, n02927764, n04499062, n03920288, n02997910]
n07596684: [n07609632, n07601686, n07600177, n07643891, n07604956, n07643200, n07608098,
n07609215, n07597263, n07608533] n07560652: [n07561590, n07565083, n07562017, n07938007,
n07562379, n07565161, n07560903, n07563366, n07564796, n07563207] n07583197: [n07588817,
n07588574, n07584423, n07585557, n07588193, n07588111, n07585107, n07586894, n07586318,
n07587618] n13108841: [n11646344, n11626585, n11656123, n11626826, n11615607, n11644462,
n11615387, n11655974, n11622368, n11662371] n02164464: [n02177196, n02174001, n02173373,
n02178411, n02167944, n02175916, n02183096, n02169974, n02180875, n02181724] n13085113:
[n11874081, n11898775, n12003167, n12394118, n11949015, n11965218, n11954161, n11920133,
n11919761, n12033139] n02139199: [n02146879, n02146371, n02146700, n02140049, n02147173,
n02147947, n02147328, n02147591] n07907943: [n07910048, n07910152, n07908812, n07908411,
n07910379, n07910970, n07911249, n07908567, n07908647, n07910538] n02188699: [n02197185,
n02195526, n02203152, n02201626, n02198859, n02191979, n02196119, n02202124, n02204907,
n02192513] n07843775: [n07848936, n07847917, n07848093, n07847827, n07848196, n07849733,
n07616046, n07847453, n07849912, n07847585] n02121808: [n02122430, n02123478, n02123045,
n02122510, n02123159, n02122298, n02123242, n02122878, n02123394, n02123917] n11868814:
[n11876803, n11876204, n11870747, n11875523, n11879722, n11882074, n11882426, n11877646,
n11877193, n11876432] n02552171: [n02656301, n02580679, n02555863, n02565324, n01451426,
n02663211, n02578928, n02654112, n02572484, n02607470] n12997654: [n13013965, n13075684,
n13053608, n13014265, n13013764, n13018088, n13020964, n13011595, n13032618, n13003522]
n03764276: [n04006067, n04308273, n03466600, n04457474, n04308397, n03549199, n03811295,
n04487894, n04363082, n03466493] n09366317: [n09362945, n09214916, n09230202, n09472597,
n09411295, n09421951, n09193705, n09396465, n09269341, n09218641] n07679356: [n07682808,
n07685218, n07685399, n07682477, n07683039, n07680761, n07690431, n07684938, n07681691,
n07681450] n07929519: [n07919572, n07920872, n07920349, n07919441, n07920222, n07731284,
n07919894, n07920663, n07920540, n07921239] n02323449: [n02324514, n02324431, n02327842,
n02324587, n02324850, n02327656, n02328150, n02325722, n02326862] n13100156: [n12766869,
n11724109, n11734698, n12455950, n11723227, n11773987, n11767877, n12935609, n12767648,
n12941220] n12334293: [n12336727, n12338454, n12336224, n12337617, n12316572, n12340581,
n12338655, n12340755, n12338146, n12336973] n01909422: [n01914830, n01917882, n01917611,
n01917289, n01915700, n01913166, n01916388, n01909906, n01916481] n01838038: [n01839949,
n01842235, n01841679, n01840775, n01841441, n01839086, n01840412, n01843065, n01839330,
n01840120] n02206270: [n02213663, n02209111, n02213788, n02211627, n02218371, n02221715,
n02210427, n02216211, n02221414, n02214499] n07712382: [n07696625, n07696728, n07696839,
n07697313, n07698672, n07865105, n07696977, n07697699, n07698401, n07697408] n07811416:
[n07935043, n07820960, n07933154, n07816398, n07821758, n07812046, n07818825, n07826340,
n07816164, n07820297] n12685431: [n12686077, n12686274, n12686496, n12686676, n12687957,
n12686877, n12687044, n12687462, n12687698] n12101870: [n12139921, n12140903, n12140511,
n12134486, n12123741, n12126084, n12121610, n12117326, n12130549, n12133462]

G mcfsOMNIGLOT CLASS SPLITS

The hierarchy of coarse and fine classes is shown below. Every key (marked in bold) in the dictio-
nary is a coarse class, the value is a list of the fine classes of this coarse classes.

Training Hierarchy Classes:
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Mkhedruli (Georgian): [character10, character38, character25, character29, character21, character04, charac-
ter13, character37, character34, character31, character17, character16, character03, character30, character02,
character06, character24, character11, character39, character19, character07, character14, character32, char-
acter36] Alphabet of the Magi: [character18, character05, character17, character03, character08, charac-
ter01, character15, character07, character09, character10, character19, character11, character20] Angelic:
[character12, character16, character20, character06, character13, character19, character04, character03, char-
acter07, character09, character05] Early Aramaic: [character09, character02, character07, character11,
character04, character19, character16, character05, character21, character18, character06, character12, charac-
ter03, character13, character10] Old Church Slavonic (Cyrillic): [character21, character36, character38,
character07, character15, character11, character29, character14, character43, character17, character34, charac-
ter25, character41, character35, character23, character22, character20, character44, character19, character09,
character10, character33, character45, character26, character32] Gujarati: [character05, character44, charac-
ter06, character35, character40, character45, character07, character29, character12, character09, character24,
character38, character46, character15, character32, character21, character18, character25, character04, charac-
ter02, character23, character03, character31, character14, character34, character20, character37, character43,
character30, character36, character26, character08, character28] Japanese (katakana): [character31, charac-
ter44, character10, character21, character33, character14, character36, character06, character11, character28,
character27, character04, character26, character43, character03, character08, character12, character24, charac-
ter16, character15, character35, character05, character01, character41, character25, character29, character38,
character39, character22, character02] Syriac (Serto): [character14, character23, character03, character04,
character18, character06, character02, character22, character15, character09] Tengwar: [character21, charac-
ter19, character15, character13, character03, character11, character16, character10, character18, character05,
character14] Korean: [character03, character14, character35, character32, character04, character19, char-
acter15, character33, character01, character28, character09, character40, character16, character07, charac-
ter39, character34, character37, character11, character36, character24, character10, character05] Malay-
alam: [character37, character34, character42, character01, character10, character40, character28, character06,
character17, character35, character14, character19, character38, character13, character08, character46, charac-
ter47, character21, character23, character18, character36, character24, character43, character33, character03]
Japanese (hiragana): [character44, character05, character13, character19, character31, character40, charac-
ter24, character50, character07, character11, character06, character01, character32, character10, character46,
character04, character47, character45, character27, character42, character36, character09, character34, charac-
ter49, character12, character28, character37, character26, character23, character52, character38, character17,
character25, character30] Atemayar Qelisayer: [character06, character08, character09, character16, charac-
ter05, character14, character11, character01, character10, character13, character02, character20, character26]
Tibetan: [character31, character30, character21, character18, character20, character34, character29, charac-
ter10, character23, character16, character42, character17, character15, character03, character33, character01,
character25, character13, character09, character05, character40, character26, character38, character06, charac-
ter28] Sylheti: [character03, character28, character17, character13, character23, character27, character08,
character22, character05, character14, character12, character16, character04, character18, character20, char-
acter24] Malay (Jawi - Arabic): [character27, character11, character12, character13, character23, charac-
ter36, character26, character33, character31, character39, character32, character40, character21, character09,
character14, character17, character28, character38, character06] Latin: [character07, character08, charac-
ter02, character24, character22, character06, character14, character09, character21, character10, character25,
character04, character13, character19, character03, character26, character05, character18, character16, charac-
ter15] Syriac (Estrangelo): [character20, character19, character04, character10, character09, character07,
character21, character08, character22, character16, character15, character14, character03, character05, char-
acter01, character11, character17] ULOG: [character04, character02, character15, character05, character08,
character12, character03, character16, character24, character13, character26, character23, character25, char-
acter19] Blackfoot (Canadian Aboriginal Syllabics): [character13, character03, character12, character11,
character05, character07, character01, character10] Futurama: [character22, character20, character08, char-
acter11, character05, character06, character16, character02, character13, character03, character14, character15,
character17, character12] Gurmukhi: [character34, character21, character08, character38, character04, char-
acter37, character09, character03, character26, character35, character20, character19, character41, character13,
character16, character28, character10, character39, character32, character29, character33, character24, char-
acter12, character45, character22, character05] Ojibwe (Canadian Aboriginal Syllabics): [character08,
character04, character01, character12, character13, character11, character03, character10, character05, char-
acter02] Greek: [character13, character14, character06, character22, character01, character19, character08,
character02, character09, character07, character04, character18, character12, character03] Armenian: [char-
acter11, character13, character35, character36, character21, character26, character01, character30, character27,
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character32, character40, character05, character25, character16, character22, character19, character39, charac-
ter15, character14, character33, character09] Kannada: [character01, character32, character20, charac-
ter28, character40, character11, character10, character17, character25, character33, character02, character19,
character27, character39, character37, character38, character36, character41, character29, character23, charac-
ter16, character14, character04, character18, character21, character12, character24, character09] Manipuri:
[character04, character20, character24, character32, character02, character09, character33, character30, char-
acter14, character29, character16, character05, character34, character03, character13, character12, character31,
character10, character18, character15, character22, character23] Oriya: [character09, character31, charac-
ter45, character27, character05, character07, character11, character23, character15, character20, character29,
character44, character32, character06, character19, character46, character36, character03, character25, charac-
ter01, character26, character04, character38, character22, character35] Asomtavruli (Georgian): [charac-
ter10, character12, character17, character11, character03, character24, character25, character35, character32,
character22, character21, character29, character14, character23, character34, character20, character33, char-
acter26, character16, character28, character04, character05, character08, character06] Keble: [character17,
character03, character15, character18, character13, character19, character10, character07, character21, charac-
ter26, character08, character12, character09, character11, character14, character16, character05, character22]
Arcadian: [character09, character10, character03, character16, character26, character04, character08, char-
acter18, character23, character02, character14, character22, character05, character01] Cyrillic: [charac-
ter33, character26, character01, character11, character08, character24, character22, character10, character04,
character27, character07, character09, character06, character18, character20, character19, character21, charac-
ter12, character25, character29, character32] Hebrew: [character16, character02, character10, character19,
character13, character01, character11, character14, character22, character12, character07, character15, char-
acter21, character05] Avesta: [character23, character21, character17, character18, character03, character25,
character19, character24, character22, character06, character09, character16, character05, character26, char-
acter15] Glagolitic: [character14, character01, character23, character42, character39, character06, charac-
ter33, character03, character19, character10, character11, character37, character21, character04, character31,
character41, character30, character07, character17, character35, character26, character28, character25, char-
acter29] Ge ez: [character18, character11, character07, character22, character21, character04, character06,
character13, character15, character25, character20, character12, character08, character05] Bengali: [charac-
ter44, character06, character17, character45, character12, character09, character04, character32, character22,
character46, character37, character14, character07, character26, character20, character41, character11, charac-
ter33, character02, character40, character39, character10, character35, character28, character01, character19,
character05, character27, character13] Atlantean: [character17, character26, character11, character15, char-
acter08, character19, character09, character12, character04, character18, character21, character03, character02,
character06, character23] Sanskrit: [character20, character40, character24, character01, character37, charac-
ter39, character28, character42, character13, character09, character02, character25, character23, character33,
character19, character07, character35, character36, character17, character11, character38, character15, charac-
ter16, character31, character03, character10, character26, character21, character29] Braille: [character12,
character14, character18, character15, character23, character05, character01, character10, character24, charac-
ter02, character22, character11, character20, character21] Burmese (Myanmar): [character15, character23,
character33, character26, character10, character08, character30, character25, character21, character07, charac-
ter31, character19, character34, character05, character29, character27, character06, character20, character03,
character09, character18, character24, character22, character12] Tagalog: [character05, character14, charac-
ter04, character03, character12, character15, character10, character09, character01, character17, character11]
Mongolian: [character25, character16, character11, character30, character14, character20, character18, char-
acter07, character17, character13, character19, character12, character29, character27, character08, character01,
character28, character22, character26] Inuktitut (Canadian Aboriginal Syllabics): [character13, charac-
ter05, character06, character15, character11, character16, character10, character14] N Ko: [character23,
character12, character16, character11, character32, character20, character19, character02, character10, charac-
ter31, character13, character28, character18, character14, character24, character26, character21, character30,
character15, character01] Balinese: [character19, character06, character17, character13, character11, charac-
ter01, character24, character02, character04, character20, character23, character12, character14, character18,
character09] Aurek-Besh: [character23, character20, character05, character17, character14, character06,
character15, character09, character22, character13, character07, character03, character19, character16, charac-
ter24, character08, character10, character02, character12, character21, character18, character11, character25]
Anglo-Saxon Futhorc: [character11, character14, character09, character01, character10, character16, charac-
ter05, character27, character18, character02, character08, character21, character13, character29, character17,
character20] Tifinagh: [character42, character38, character35, character36, character31, character08, charac-
ter52, character26, character41, character50, character09, character45, character24, character11, character39,
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character19, character34, character05, character21, character16, character23, character37, character04, charac-
ter28, character03, character32, character10, character43, character40, character48, character17, character44,
character49, character06, character20] Grantha: [character39, character13, character12, character33, charac-
ter35, character15, character16, character27, character20, character19, character30, character26, character42,
character22, character23, character03, character02, character07, character38, character40, character25, charac-
ter18, character08, character37, character32, character24]

Validation Hierarchy Classes:

Alphabet of the Magi: [character16] Angelic: [character01, character10, character11] Early Aramaic:
[character17, character14] Oriya: [character14, character40, character10, character21, character33, char-
acter39, character12, character41, character16] Gujarati: [character13, character47, character33, charac-
ter10, character22] Japanese (katakana): [character17, character46, character45, character30, character40,
character07, character18] Syriac (Serto): [character13, character12, character17, character21, character08,
character20, character19] Tengwar: [character09, character06, character22] Korean: [character25, char-
acter29, character26, character38, character06] Malayalam: [character12, character09, character30, char-
acter11, character31, character44, character39, character32, character04] Arcadian: [character13, charac-
ter19, character07, character06] Atemayar Qelisayer: [character18, character24, character25, character22]
Tibetan: [character32, character11, character12, character41, character35] Sylheti: [character25, charac-
ter01, character26, character06] Old Church Slavonic (Cyrillic): [character16, character28, character01,
character12, character40, character42, character39] ULOG: [character07, character22, character06, charac-
ter17, character14, character20, character18, character10] Syriac (Estrangelo): [character12, character06]
Tagalog: [character08] Blackfoot (Canadian Aboriginal Syllabics): [character09, character08] Futu-
rama: [character25, character10, character04, character26, character24, character19, character01] Gur-
mukhi: [character18, character17, character43, character25, character07, character42, character06, charac-
ter02] Ojibwe (Canadian Aboriginal Syllabics): [character06, character09] Mkhedruli (Georgian):
[character40, character33, character22, character26, character05, character27, character15, character12, char-
acter28] Armenian: [character37, character18, character08, character17] Kannada: [character15, charac-
ter13, character08, character26, character05, character35, character07, character34, character30] Manipuri:
[character06, character36, character11, character27, character38, character26] Anglo-Saxon Futhorc: [char-
acter25, character24, character06] Asomtavruli (Georgian): [character02, character09, character15, char-
acter07, character39, character18, character30] Keble: [character24, character20, character04, character23,
character01] Japanese (hiragana): [character22, character02, character33, character41, character14, char-
acter16, character51] Braille: [character13, character26, character04, character25, character17] Hebrew:
[character20, character03, character18, character06, character09] Avesta: [character10, character01, charac-
ter08, character11, character13, character20, character07] Glagolitic: [character44, character38, character08,
character18, character36, character12, character13, character09] Latin: [character23] Ge ez: [charac-
ter01, character23, character09, character19] Bengali: [character29, character23, character21, character38]
Atlantean: [character13, character20] Greek: [character05, character21, character24, character10] Cyril-
lic: [character02, character16] Burmese (Myanmar): [character14, character13, character32] Grantha:
[character17, character14, character31, character21, character01, character11] Mongolian: [character23,
character24, character15, character03] Inuktitut (Canadian Aboriginal Syllabics): [character02, charac-
ter08, character12, character09] N Ko: [character33, character03, character09, character06, character25]
Balinese: [character15, character07, character03, character05] Aurek-Besh: [character26] Tifinagh: [char-
acter30, character15, character54, character33, character02, character18, character07, character13] Sanskrit:
[character14, character18, character22, character27, character08] Malay (Jawi - Arabic): [character08,
character05, character02, character16, character19, character18, character29]

Testing Hierarchy Classes:

Mkhedruli (Georgian): [character01, character18, character20, character41, character08, character09, char-
acter23, character35] Alphabet of the Magi: [character14, character04, character13, character06, charac-
ter02, character12] Angelic: [character02, character08, character14, character17, character15, character18]
Early Aramaic: [character01, character08, character15, character22, character20] Oriya: [character30,
character18, character43, character28, character17, character13, character24, character42, character02, charac-
ter37, character08, character34] Gujarati: [character17, character39, character19, character11, character01,
character16, character41, character27, character48, character42] Japanese (katakana): [character20, charac-
ter32, character42, character09, character13, character37, character19, character34, character23, character47]
Syriac (Serto): [character05, character07, character10, character11, character01, character16] Ge ez: [char-
acter10, character16, character17, character14, character03, character24, character26, character02] Korean:
[character31, character12, character22, character21, character18, character02, character23, character27, char-
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acter30, character17, character20, character08, character13] Malayalam: [character07, character22, charac-
ter15, character05, character25, character16, character02, character45, character41, character29, character26,
character27, character20] Atlantean: [character16, character14, character25, character05, character01, char-
acter07, character10, character22, character24] Atemayar Qelisayer: [character19, character21, character12,
character04, character07, character17, character15, character23, character03] Arcadian: [character24, char-
acter20, character25, character12, character21, character17, character15, character11] Tibetan: [character04,
character36, character19, character37, character07, character39, character22, character02, character24, charac-
ter08, character27, character14] Old Church Slavonic (Cyrillic): [character02, character13, character08,
character06, character30, character27, character03, character05, character24, character31, character37, char-
acter18, character04] Malay (Jawi - Arabic): [character04, character03, character15, character37, charac-
ter20, character34, character24, character35, character25, character30, character07, character10, character01,
character22] Cyrillic: [character13, character15, character05, character14, character23, character31, charac-
ter28, character17, character03, character30] Syriac (Estrangelo): [character23, character18, character13,
character02] Tagalog: [character07, character06, character13, character02, character16] Bengali: [charac-
ter25, character18, character36, character16, character30, character15, character03, character42, character43,
character31, character34, character08, character24] ULOG: [character09, character01, character11, char-
acter21] Gurmukhi: [character30, character14, character11, character44, character31, character27, char-
acter23, character36, character15, character40, character01] Ojibwe (Canadian Aboriginal Syllabics):
[character07, character14] Sanskrit: [character34, character06, character30, character41, character12, char-
acter04, character05, character32] Armenian: [character24, character34, character41, character07, charac-
ter31, character12, character28, character29, character20, character38, character23, character02, character03,
character10, character06, character04] Kannada: [character06, character22, character03, character31] Ma-
nipuri: [character35, character37, character17, character39, character25, character28, character19, charac-
ter01, character07, character40, character21, character08] Anglo-Saxon Futhorc: [character22, charac-
ter19, character28, character03, character23, character07, character15, character26, character12, character04]
Asomtavruli (Georgian): [character36, character27, character37, character31, character01, character40, char-
acter19, character38, character13] Keble: [character25, character06, character02] Japanese (hiragana):
[character03, character35, character15, character08, character43, character20, character18, character21, char-
acter29, character39, character48] Latin: [character12, character01, character11, character20, character17]
Hebrew: [character08, character17, character04] Avesta: [character14, character12, character02, charac-
ter04] Glagolitic: [character40, character24, character45, character20, character32, character43, charac-
ter05, character02, character15, character27, character22, character34, character16] Tengwar: [charac-
ter25, character01, character08, character20, character24, character23, character04, character17, character02,
character07, character12] Greek: [character20, character15, character17, character16, character23, charac-
ter11] Sylheti: [character02, character10, character07, character19, character15, character21, character11,
character09] Braille: [character09, character16, character07, character08, character19, character06, char-
acter03] Burmese (Myanmar): [character01, character16, character11, character28, character17, charac-
ter04, character02] Futurama: [character21, character23, character09, character18, character07] Mon-
golian: [character02, character09, character06, character05, character21, character04, character10] Inukti-
tut (Canadian Aboriginal Syllabics): [character01, character03, character04, character07] N Ko: [char-
acter27, character07, character04, character22, character17, character08, character05, character29] Black-
foot (Canadian Aboriginal Syllabics): [character06, character02, character04, character14] Balinese:
[character08, character10, character22, character16, character21] Aurek-Besh: [character04, character01]
Tifinagh: [character12, character53, character51, character46, character55, character25, character22, charac-
ter14, character47, character01, character27, character29] Grantha: [character10, character34, character29,
character04, character05, character06, character43, character36, character28, character09, character41]
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