
Published as a conference paper at ICLR 2020

RANKING POLICY GRADIENT

Kaixiang Lin
Department of Computer Science and Engineering
Michigan State University
East Lansing, MI 48824-4403, USA
linkaixi@msu.edu

Jiayu Zhou
Department of Computer Science and Engineering
Michigan State University
East Lansing, MI 48824-4403, USA
jiayuz@msu.edu

ABSTRACT

Sample inefficiency is a long-lasting problem in reinforcement learning (RL). The
state-of-the-art estimates the optimal action values while it usually involves an
extensive search over the state-action space and unstable optimization. Towards the
sample-efficient RL, we propose ranking policy gradient (RPG), a policy gradient
method that learns the optimal rank of a set of discrete actions. To accelerate the
learning of policy gradient methods, we establish the equivalence between maximiz-
ing the lower bound of return and imitating a near-optimal policy without accessing
any oracles. These results lead to a general off-policy learning framework, which
preserves the optimality, reduces variance, and improves the sample-efficiency. We
conduct extensive experiments showing that when consolidating with the off-policy
learning framework, RPG substantially reduces the sample complexity, comparing
to the state-of-the-art.

1 INTRODUCTION
One of the major challenges in reinforcement learning (RL) is the high sample complexity (Kakade
et al., 2003), which is the number of samples must be collected to conduct successful learning. There
are different reasons leading to poor sample efficiency of RL (Yu, 2018). Because policy gradient
algorithms directly optimizing return estimated from rollouts (e.g., REINFORCE (Williams, 1992))
could suffer from high variance (Sutton & Barto, 2018), value function baselines were introduced by
actor-critic methods to reduce the variance and improve the sample-efficiency. However, since a value
function is associated with a certain policy, the samples collected by former policies cannot be readily
used without complicated manipulations (Degris et al., 2012) and extensive parameter tuning (Nachum
et al., 2017). Such an on-policy requirement increases the difficulty of sample-efficient learning.

On the other hand, off-policy methods, such as one-step Q-learning (Watkins & Dayan, 1992) and
variants of deep Q networks (DQN) (Mnih et al., 2015; Hessel et al., 2017; Dabney et al., 2018;
Van Hasselt et al., 2016; Schaul et al., 2015), enjoys the advantage of learning from any trajectory
sampled from the same environment (i.e., off-policy learning), are currently among the most sample-
efficient algorithms. These algorithms, however, often require extensive searching (Bertsekas &
Tsitsiklis, 1996, Chap. 5) over the large state-action space to estimate the optimal action value
function. Another deficiency is that, the combination of off-policy learning, bootstrapping, and
function approximation, making up what Sutton & Barto (2018) called the "deadly triad", can easily
lead to unstable or even divergent learning (Sutton & Barto, 2018, Chap. 11). These inherent issues
limit their sample-efficiency.

Towards addressing the aforementioned challenge, we approach the sample-efficient reinforcement
learning from a ranking perspective. Instead of estimating optimal action value function, we concen-
trate on learning optimal rank of actions. The rank of actions depends on the relative action values.
As long as the relative action values preserve the same rank of actions as the optimal action values
(Q-values), we choose the same optimal action. To learn optimal relative action values, we propose
the ranking policy gradient (RPG) that optimizes the actions’ rank with respect to the long-term
reward by learning the pairwise relationship among actions.

Ranking Policy Gradient (RPG) that directly optimizes relative action values to maximize the return
is a policy gradient method. The track of off-policy actor-critic methods (Degris et al., 2012; Gu
et al., 2016; Wang et al., 2016) have made substantial progress on improving the sample-efficiency
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of policy gradient. However, the fundamental difficulty of learning stability associated with the
bias-variance trade-off remains (Nachum et al., 2017). In this work, we first exploit the equivalence
between RL optimizing the lower bound of return and supervised learning that imitates a specific
optimal policy. Build upon this theoretical foundation, we propose a general off-policy learning
framework that equips the generalized policy iteration (Sutton & Barto, 2018, Chap. 4) with an
external step of supervised learning. The proposed off-policy learning not only enjoys the property of
optimality preserving (unbiasedness), but also largely reduces the variance of policy gradient because
of its independence of the horizon and reward scale. Besides, we empirically show that there is
a trade-off between optimality and sample-efficiency. Last but not least, we demonstrate that the
proposed approach, consolidating the RPG with off-policy learning, significantly outperforms the
state-of-the-art (Hessel et al., 2017; Bellemare et al., 2017; Dabney et al., 2018; Mnih et al., 2015).

2 RELATED WORKS

Sample Efficiency. The sample efficient reinforcement learning can be roughly divided into two
categories. The first category includes variants of Q-learning (Mnih et al., 2015; Schaul et al., 2015;
Van Hasselt et al., 2016; Hessel et al., 2017). The main advantage of Q-learning methods is the use of
off-policy learning, which is essential towards sample efficiency. The representative DQN (Mnih et al.,
2015) introduced deep neural network in Q-learning, which further inspried a track of successful
DQN variants such as Double DQN (Van Hasselt et al., 2016), Dueling networks (Wang et al., 2015),
prioritized experience replay (Schaul et al., 2015), and RAINBOW (Hessel et al., 2017). The second
category is the actor-critic approaches. Most of recent works (Degris et al., 2012; Wang et al., 2016;
Gruslys et al., 2018) in this category leverage importance sampling by re-weighting the samples to
correct the estimation bias and reduce variance. Its main advantage is in the wall-clock times due to
the distributed framework, firstly presented in (Mnih et al., 2016), instead of the sample-efficiency.
As of the time of writing, the variants of DQN (Hessel et al., 2017; Dabney et al., 2018; Bellemare
et al., 2017; Schaul et al., 2015; Van Hasselt et al., 2016) are among the algorithms of most sample
efficiency, which are adopted as our baselines for comparison.

RL as supervised learning. Numerous amount of works have developed the connections between RL
and supervised learning such as Expectation-Maximization algorithms (Dayan & Hinton, 1997; Peters
& Schaal, 2007; Kober & Peters, 2009; Abdolmaleki et al., 2018), Entropy-Regularized RL (Oh
et al., 2018; Haarnoja et al., 2018), and Interactive Imitation Learning (IIL) (Daumé et al., 2009;
Syed & Schapire, 2010; Ross & Bagnell, 2010; Ross et al., 2011; Sun et al., 2017; Hester et al.,
2018; Osa et al., 2018). EM-based approaches utilize the probabilistic framework to transfer RL
maximizing lower bound of return as a re-weighted regression problem while it requires on-policy
estimation on the expectation step. Entropy-Regularized RL optimizing entropy augmented objectives
can lead to off-policy learning without the usage of importance sampling while it converges to soft
optimality (Haarnoja et al., 2018).

Of the three tracks in prior works, the IIL is most closely related to our work. The IIL works firstly
pointed out the connection between imitation learning and reinforcement learning (Ross & Bagnell,
2010; Syed & Schapire, 2010; Ross et al., 2011) and explore the idea of facilitating reinforcement
learning by imitating experts. However, most of imitation learning algorithms assume the access
to the expert policy or demonstrations. Our off-policy learning framework can be interpreted as
an online imitation learning approach that constructs expert demonstrations during the exploration
without soliciting experts, and conducts supervised learning to maximize return at the same time.

In conclusion, our approach is different from the prior work in terms of at least one of the following
aspects: objectives, oracle assumptions, the optimality of learned policy, and on-policy requirement.
More concretely, the proposed method is able to learn both deterministic and stochastic optimal
policy in terms of long-term reward, without access to the oracle (such as expert policy or expert
demonstration) and it can be trained both empirically and theoretically in an off-policy fashion. Due
to the space limits, we defer the detailed discussion of the related work in the Appendix Section 10.1.

3 NOTATIONS AND PROBLEM SETTING

In this paper, we consider a finite horizon T , discrete time Markov Decision Process (MDP) with a
finite discrete state space S and for each state s ∈ S, the action space As is finite. The environment
dynamics is denoted as P = {p(s′|s, a),∀s, s′ ∈ S, a ∈ As}. We note that the dimension of
action space can vary given different states. We use m = maxs ‖As‖ to denote the maximal action
dimension among all possible states. Our goal is to maximize the expected sum of rewards, or return
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J(θ) = Eτ,πθ [
∑T
t=1 r(st, at)], where |r(s, a)| < ∞,∀s, a. In this case, the optimal deterministic

Markovian policy always exists (Puterman, 2014)[Proposition 4.4.3]. The upper bound of trajectory
reward (r(τ)) is denoted as Rmax = maxτ r(τ). A comprehensive list of notations are elaborated in
the Appendix Table 1.

4 RANKING POLICY GRADIENT

Value function estimation is widely used in advanced RL algorithms (Mnih et al., 2015; 2016;
Schulman et al., 2017; Gruslys et al., 2018; Hessel et al., 2017; Dabney et al., 2018) to facilitate
the learning process. In practice, the on-policy requirement of value function estimations in actor-
critic methods has largely increased the difficulty of sample-efficient learning (Degris et al., 2012;
Gruslys et al., 2018). With the advantage of off-policy learning, the DQN (Mnih et al., 2015)
variants are currently among the most sample-efficient algorithms (Hessel et al., 2017; Dabney et al.,
2018; Bellemare et al., 2017). For complicated tasks, the value function can align with the relative
relationship of action’s return, but the absolute values are hardly accurate (Mnih et al., 2015; Ilyas
et al., 2018).

The above observations motivate us to look at the decision phase of RL from a different prospect:
Given a state, the decision making is to perform a relative comparison over available actions and
then choose the best action, which can lead to relatively higher return than others. Therefore, an
alternative solution is to learn the optimal rank of the actions. In this section, we show how to optimize
the rank of actions to maximize the return, and thus avoid the necessity of accurate estimation for
optimal action value function. To learn the rank of actions, we focus on learning relative action value
(λ-values), defined as follows:

Definition 1 (Relative action value (λ-values)). For a state s, the relative action values of m actions
(λ(s, ak), k = 1, ...,m) is a list of scores that denotes the rank of actions. If λ(s, ai) > λ(s, aj), then
action ai is ranked higher than action aj .

The optimal relative action values should preserve the same optimal action as the optimal action
values:

arg max
a

λ(s, a) = arg max
a

Qπ∗(s, a)

where Qπ∗(s, ai) and λ(s, ai) represent the optimal action value and the relative action value of
action ai, respectively. We omit the model parameter θ in λθ(s, ai) for concise presentation.

Remark 1. The λ-values are different from the advantage function Aπ(s, a) = Qπ(s, a)− V π(s).
The advantage functions quantitatively show the difference of return taking different actions following
the current policy π. The λ-values only determine the relative order of actions and its magnitudes
are not the estimations of returns.

To learn the λ-values, we can construct a probabilistic model of λ-values such that the best action has
the highest probability to be selected than others. Inspired by learning to rank (Burges et al., 2005),
we consider the pairwise relationship among all actions, by modeling the probability (denoted as pij)
of an action ai to be ranked higher than any action aj as follows:

pij =
exp(λ(s, ai)− λ(s, aj))

1 + exp(λ(s, ai)− λ(s, aj))
, (1)

where pij = 0.5 means the relative action value of ai is same as that of the action aj , pij > 0.5
indicates that the action ai is ranked higher than aj . Given the independent Assumption 1, we can
represent the probability of selecting one action as the multiplication of a set of pairwise probabilities
in Eq (1). Formally, we define the pairwise ranking policy in Eq (2). Please refer to Section 10.10 in
the Appendix for the discussions on feasibility of Assumption 1.

Definition 2. The pairwise ranking policy is defined as:

π(a = ai|s) = Πm
j=1,j 6=i pij , (2)

where the pij is defined in Eq (1). The probability depends on the relative action values q =
[λ1, ..., λm]. The highest relative action value leads to the highest probability to be selected.
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Assumption 1. For a state s, the set of events E = {eij |∀i 6= j} are conditionally independent,
where eij denotes the event that action ai is ranked higher than action aj . The independence of the
events is conditioned on a MDP and a stationary policy.

Our ultimate goal is to maximize the long-term reward through optimizing the pairwise ranking
policy or equivalently optimizing pairwise relationship among the action pairs. Ideally, we would
like the pairwise ranking policy selects the best action with the highest probability and the highest
λ-value. To achieve this goal, we resort to the policy gradient method. Formally, we propose the
ranking policy gradient method (RPG), as shown in Theorem 1.

Theorem 1 (Ranking Policy Gradient Theorem). For any MDP, the gradient of the expected long-
term reward J(θ) =

∑
τ pθ(τ)r(τ) w.r.t. the parameter θ of a pairwise ranking policy (Def 2) can

be approximated by:

∇θJ(θ) ≈ Eτ∼πθ

[∑T

t=1
∇θ
(∑m

j=1,j 6=i
(λi − λj)/2

)
r(τ)

]
, (3)

and the deterministic pairwise ranking policy πθ is: a = arg maxi λi, i = 1, . . . ,m, where λi
denotes the relative action value of action ai (λθ(st, at), ai = at), st and at denotes the t-th state-
action pair in trajectory τ , λj ,∀j 6= i denote the relative action values of all other actions that were
not taken given state st in trajectory τ , i.e., λθ(st, aj), ∀aj 6= at.

The proof of Theorem 1 is available in Appendix Section 10.2. Theorem 1 states that optimizing the
discrepancy between the relative action values of the best action and all other actions, is optimizing
the pairwise relationships that maximize the return. One limitation of RPG is that it is not convenient
for the tasks where only optimal stochastic policies exist since the pairwise ranking policy takes
extra efforts to construct a probability distribution [see Section 10.3 in Appendix]. In order to learn
the stochastic policy, we introduce Listwise Policy Gradient (LPG) that optimizes the probability of
ranking a specific action on the top of a set of actions, with respect to the return. In the context of
RL, this top one probability is the probability of action ai to be chosen, which is equal to the sum of
probability all possible permutations that map action ai in the top. Inspired by listwise learning to
rank approach (Cao et al., 2007), the top one probability can be modeled by the softmax function.
Therefore, LPG is equivalent to the REINFORCE (Williams, 1992) algorithm with a softmax layer.
LPG provides another interpretation of REINFORCE algorithm from the perspective of learning the
optimal ranking and enables the learning of both deterministic policy and stochastic policy. Due to
the space limit, we defer the detailed description of LPG in Appendix Section 10.4.

To this end, seeking sample-efficiency motivates us to learn the relative relationship (RPG (Theorem 1)
and LPG (Theorem 4)) of actions, instead of seeking accurate estimation of optimal action values and
then choosing action greedily. However, both of the RPG and LPG belong to policy gradient methods,
which suffers from large variance and the on-policy learning requirement (Sutton & Barto, 2018).
Therefore, the direct implementation of RPG or LPG is still far from sample-efficient. In the next
section, we will describe a general off-policy learning framework empowered by supervised learning,
which provides an alternative way to accelerate learning, preserve optimality, and reduce variance.

5 OFF-POLICY LEARNING AS SUPERVISED LEARNING

In this section, we discuss the connections and discrepancies between RL and supervised learning,
and our results lead to a sample-efficient off-policy learning paradigm for RL. The main result in
this section is Theorem 2, which casts the problem of maximizing the lower bound of return into a
supervised learning problem, given one relatively mild Assumption 2 and practical Assumptions 1,3.
As we show by Lemma 4 in the Appendix that assumptions are valid in a range of RL tasks. The
central idea is to collect only the near-optimal trajectories when the learning agent interacts with the
environment, and imitate the near-optimal policy by maximizing the log likelihood of the state-action
pairs from near-optimal trajectories. With the road map in mind, we then begin to introduce our
approach as follows.

In a discrete action MDP with finite states and horizon, given the near-optimal policy π∗, the
stationary state distribution is given by: pπ∗(s) =

∑
τ p(s|τ)pπ∗(τ), where p(s|τ) is the probability

of a certain state given a specific trajectory τ and is not associated with any policies, and only
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pπ∗(τ) is related to the policy parameters. The stationary distribution of state-action pairs is thus:
pπ∗(s, a) = pπ∗(s)π∗(a|s). In this section, we consider the MDP that each initial state will lead
to at least one (near)-optimal trajectory. For a more general case, please refer to the discussion in
Appendix 10.5. In order to connect supervised learning (i.e., imitating a near-optimal policy) with
RL and enable sample-efficient off-policy learning, we first introduce the trajectory reward shaping
(TRS), defined as follows:

Definition 3 (Trajectory Reward Shaping, TRS). Given a fixed trajectory τ , its trajectory reward is
shaped as follows:

w(τ) =

{
1, if r(τ) ≥ c
0, o.w.

where c = Rmax − ε is a problem-dependent near-optimal trajectory reward threshold that indicates
the least reward of near-optimal trajectory, ε ≥ 0 and ε� Rmax. We denote the set of all possible
near-optimal trajectories as T = {τ |w(τ) = 1}, i.e., w(τ) = 1,∀τ ∈ T .

Remark 2. The threshold c indicates a trade-off between the sample-efficiency and the optimality.
The higher the threshold, the less frequently it will hit the near-optimal trajectories during exploration,
which means it has higher sample complexity, while the final performance is better (see Figure 3).

Remark 3. The trajectory reward can be reshaped to any positive functions that are not related to
policy parameter θ. For example, if we set w(τ) = r(τ), the conclusions in this section still hold (see
Eq (38) in Appendix, Section 10.6). For the sake of simplicity, we set w(τ) = 1.

Different from the reward shaping works (Ng et al., 1999), we directly shape the trajectory reward,
which will enable the smooth transform from RL to SL. After shaping the trajectory reward, we can
transfer the goal of RL from maximizing the return to maximize the long-term performance (Def 4).

Definition 4 (Long-term Performance). ∑
τ
pθ(τ)w(τ) (4)

The long-term performance is the expected shaped trajectory reward, as shown in Eq (4). By Def 3,
the expectation over all trajectories is the equal to that over the near-optimal trajectories in T , i.e.,∑
τ pθ(τ)w(τ) =

∑
τ∈T pθ(τ)w(τ).

The optimality is preserved after trajectory reward shaping (ε = 0, c = Rmax) since the opti-
mal policy π∗ maximizing long-term performance is also an optimal policy for original MDP,
i.e.,

∑
τ pπ∗(τ)r(τ) =

∑
τ∈T pπ∗(τ)r(τ) = Rmax, where π∗ = arg maxπθ

∑
τ pπθ (τ)w(τ) and

pπ∗(τ) = 0,∀τ /∈ T (see Lemma 2 in Appendix 10.6). Similarly, when ε > 0, the optimal policy
after trajectory reward shaping is a near-optimal policy for original MDP. Note that most policy
gradient methods use softmax function, in which we have ∃τ /∈ T , pπθ (τ) > 0 (see Lemma 3 in
Appendix 10.6). Therefore when softmax is used to model a policy, it will not converge to an exact
optimal policy. On the other hand, ideally, the discrepancy of the performance between them can be
arbitrarily small based on the universal approximation (Hornik et al., 1989) with general conditions
on the activation function and Theorem 1. in (Syed & Schapire, 2010).

Essentially, we use TRS to filter out near-optimal trajectories and then we maximize the probabilities
of near-optimal trajectories to maximize the long-term performance. This procedure can be approx-
imated by maximizing the log-likelihood of near-optimal state-action pairs, which is a supervised
learning problem. Before we state our main results, we first introduce the definition of uniformly
near-optimal policy (Def 5) and a prerequisite (Asm. 2) specifying the applicability of the results.

Definition 5 (Uniformly Near-Optimal Policy, UNOP). The Uniformly Near-Optimal Policy π∗ is
the policy whose probability distribution over near-optimal trajectories (T ) is a uniform distribution.
i.e. pπ∗(τ) = 1

|T | ,∀τ ∈ T , where |T | is the number of near-optimal trajectories. When we set
c = Rmax, it is an optimal policy in terms of both maximizing return and long-term performance. In
the case of c = Rmax, the corresponding uniform policy is an optimal policy, we denote this type of
optimal policy as uniformly optimal policy (UOP).

Assumption 2 (Existence of Uniformly Near-Optimal Policy). We assume the existence of Uniformly
Near-Optimal Policy (Def 5).
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Based on Lemma 4 in Appendix Section 10.9, Assumption 2 is satisfied for certain MDPs that have
deterministic dynamics. Other than Assumption 2, all other assumptions in this work (Assump-
tions 1,3) can almost always be satisfied in practice, based on empirical observation. With these
relatively mild assumptions, we present the following long-term performance theorem, which shows
the close connection between supervised learning and RL.

Theorem 2 (Long-term Performance Theorem). Maximizing the lower bound of expected long-term
performance (Eq (4)) is maximizing the log-likelihood of state-action pairs sampled from an uniformly
(near)-optimal policy π∗, which is a supervised learning problem:

arg max
θ

∑
s,a
pπ∗(s, a) log πθ(a|s) (5)

The optimal policy of maximizing the lower bound is also the optimal policy of maximizing the
long-term performance and the return.

Remark 4. It is worth noting that Theorem 2 does not require a uniformly near-optimal policy π∗ to
be deterministic. The only requirement is the existence of a uniformly near-optimal policy.

Remark 5. Maximizing the lower bound of long-term performance is to maximize the lower bound
of long-term reward since we can set w(τ) = r(τ) and

∑
τ pθ(τ)r(τ) ≥

∑
T pθ(τ)w(τ). An

optimal policy of maximizing this lower bound is also an optimal policy of maximizing the long-term
performance when c = Rmax, thus maximizing the return.

The proof of Theorem 2 can be found in Appendix, Section 10.6. Theorem 2 indicates that we break
the dependency between current policy πθ and the environment dynamics, which means off-policy
learning is able to be conducted by the above supervised learning approach. Furthermore, we point
out that there is a potential discrepancy between imitating UNOP by maximizing log likelihood (even
when the optimal policy’s samples are given) and the reinforcement learning since we are maximizing
a lower bound of expected long-term performance (or equivalently the return over the near-optimal
trajectories only) instead of return over all trajectories. In practice, the state-action pairs from an
optimal policy is hard to construct while the uniform characteristic of UNOP can alleviate this issue
(see Sec 6). Towards sample-efficient RL, we apply Theorem 2 to RPG, which reduces the ranking
policy gradient to a classification problem by Corollary 1.

Corollary 1 (Ranking performance policy gradient). Optimizing the lower bound of expected long-
term performance (defined in Eq (4)) using pairwise ranking policy (Eq (2)) can be approximately
optimized by the following loss:

min
θ

∑
s,ai

pπ∗(s, ai)
(∑m

j=1,j 6=i
max(0,margin + λ(s, aj)− λ(s, ai))

)
, (6)

where margin is a small positive value. We set margin equal to one in our experiments.

The proof of Corollary 1 can be found in Appendix, section 10.7. Similarly, we can reduce LPG
to a classification problem (see Appendix 10.7.1). One advantage of casting RL to SL is variance
reduction. With the proposed off-policy supervised learning, we can reduce the upper bound of the
policy gradient variance, as shown in the Corollary 2. Before introducing the variance reduction
results, we first make the following standard assumption similar to (Degris et al., 2012, A1).
Furthermore, the assumption is guaranteed for bounded continuously differentiable policy such as
softmax function.

Assumption 3. We assume the maximum norm of policy gradient is finite, i.e.

∃ C <∞, s.t. ‖∇θ log πθ(a|s)‖∞ ≤ C, ∀ s ∈ S, a ∈ As

Corollary 2 (Policy gradient variance reduction). The upper bound of the variance of each dimension
of policy gradient is O(T 2C2M2). The upper bound of gradient variance of maximizing the lower
bound of long-term performance Eq (5) is O(C2), where C is the maximum norm of log gradient
based on Assumption 3, M is the maximum absolute value of trajectory reward (i.e., M ≥ |r(τ)|,∀τ ),
and T is the horizon. The upper bound of gradient variance by supervised learning compared to that
of the regular policy gradient is reduced by an order of O(T 2M2), given M > 1, T > 1, which is a
very common situation in practice, and a stationary policy.
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Figure 1: The off-policy learning as supervised learning framework for general policy gradient
methods.
The proof of Corollary 2 can be found in Appendix 10.8. This corollary shows that the variance of
regular policy gradient is upper-bounded by the square of time horizon and the maximum trajectory
reward. It is aligned with our intuition and empirical observation: the longer the horizon the harder
the learning. Also, the common reward shaping tricks such as truncating the reward to [−1, 1] (Castro
et al., 2018) can help the learning since it reduces variance by decreasing the range of trajectory reward.
With supervised learning, we concentrate the difficulty of long-time horizon into the exploration
phase, which is an inevitable issue for all RL algorithms, and we drop the dependence on T and M
for policy variance. Thus, it is more stable and efficient to train the policy using supervised learning.
One potential limitation of this method is that the trajectory reward threshold c is task-specific, which
is crucial to the final performance and sample-efficiency. In many applications such as Dialogue
system (Li et al., 2017), recommender system (Melville & Sindhwani, 2011), etc., we design the
reward function to guide the learning process, in which c is naturally known. For the cases that
we have no prior knowledge on the reward function of MDP, we treat c as a tuning parameter to
balance the optimality and efficiency, as we empirically verified in Figure 3. The major theoretical
uncertainty on general tasks is the existence of a uniformly near-optimal policy, which is negligible
to the empirical performance. The rigorous theoretical analysis of this problem is beyond the scope
of this work.

6 AN ALGORITHMIC FRAMEWORK FOR OFF-POLICY LEARNING
Based on the discussions in Section 5, we exploit the advantage of reducing RL into supervised
learning via a proposed two-stages off-policy learning framework. As we illustrated in Figure 1, the
proposed framework contains the following two stages:

Generalized Policy Iteration for Exploration. The goal of the exploration stage is to collect
different near-optimal trajectories as frequently as possible. Under the off-policy framework, the
exploration agent and the learning agent can be separated. Therefore, any existing RL algorithm
can be used during the exploration. The principle of this framework is using the most advanced
RL agents as an exploration strategy in order to collect more near-optimal trajectories and leave the
policy learning to the supervision stage.

Supervision. In this stage, we imitate the uniformly near-optimal policy, UNOP (Def 5). Although
we have no access to the UNOP, we can approximate the state-action distribution from UNOP
by collecting the near-optimal trajectories only. The near-optimal samples are constructed online
and we are not given any expert demonstration or expert policy beforehand. This step provides a
sample-efficient approach to conduct exploitation, which enjoys the superiority of stability (Figure 2),
variance reduction (Corollary 2), and optimality preserving (Theorem 2).

The two-stage algorithmic framework can be directly incorporated in RPG and LPG to improve
sample efficiency. The implementation of RPG is given in Algorithm 1, and LPG follows the same
procedure except for the difference in the loss function. The main requirement of Alg. 1 is on the
exploration efficiency and the MDP structure. During the exploration stage, a sufficient amount of the
different near-optimal trajectories need to be collected for constructing a representative supervised
learning training dataset. Theoretically, this requirement always holds [see Appendix Section 10.9,
Lemma 5], while the number of episodes explored could be prohibitively large, which makes this
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algorithm sample-inefficient. This could be a practical concern of the proposed algorithm. However,
according to our extensive empirical observations, we notice that long before the value function based
state-of-the-art converges to near-optimal performance, enough amount of near-optimal trajectories
are already explored.

Therefore, we point out that instead of estimating optimal action value functions and then choosing
action greedily, using value function to facilitate the exploration and imitating UNOP is a more
sample-efficient approach. As illustrated in Figure 1, value based methods with off-policy learning,
bootstrapping, and function approximation could lead to a divergent optimization (Sutton & Barto,
2018, Chap. 11). In contrast to resolving the instability, we circumvent this issue via constructing a
stationary target using the samples from (near)-optimal trajectories, and perform imitation learning.
This two-stage approach can avoid the extensive exploration of the suboptimal state-action space
and reduce the substantial number of samples needed for estimating optimal action values. In the
MDP where we have a high probability of hitting the near-optimal trajectories (such as PONG), the
supervision stage can further facilitate the exploration. It should be emphasized that our work focuses
on improving the sample-efficiency through more effective exploitation, rather than developing novel
exploration method. Please refer to the Appendix Section 10.11 for more discussion on exploration
efficiency.

7 EXPERIMENTAL RESULTS

Figure 2: The training curves of the proposed RPG and state-of-the-art. All results are averaged over
random seeds from 1 to 5. The x-axis represents the number of steps interacting with the environment
(we update the model every four steps) and the y-axis represents the averaged training episodic return.
The error bars are plotted with a confidence interval of 95%.

To evaluate the sample-efficiency of Ranking Policy Gradient (RPG), we focus on Atari 2600 games
in OpenAI gym Bellemare et al. (2013); Brockman et al. (2016), without randomly repeating the
previous action. We compare our method with the state-of-the-art baselines including DQN Mnih
et al. (2015), C51 Bellemare et al. (2017), IQN Dabney et al. (2018), RAINBOW Hessel et al. (2017),
and self-imitation learning (SIL) Oh et al. (2018). For reproducibility, we use the implementation
provided in Dopamine framework1 Castro et al. (2018) for all baselines and proposed methods, except

1https://github.com/google/dopamine
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for SIL using the official implementation 2. Following the standard evaluation protocol Oh et al.
(2018); Hessel et al. (2017); Dabney et al. (2018); Bellemare et al. (2017), we report the training
performance of all baselines as the increase of interactions with the environment, or proportionally the
number of training iterations. We run the algorithms with five random seeds and report the average
rewards with 95% confidence intervals. The implementation details of the proposed RPG and its
variants are given as follows3:

EPG: EPG is the stochastic listwise policy gradient (see Appendix Eq (18)) incorporated with the
proposed off-policy learning. More concretely, we apply trajectory reward shaping (TRS, Def 3) to
all trajectories encountered during exploration and train vanilla policy gradient using the off-policy
samples. This is equivalent to minimizing the cross-entropy loss (see Appendix Eq (69)) over the
near-optimal trajectories.

LPG: LPG is the deterministic listwise policy gradient with the proposed off-policy learning. The only
difference between EPG and LPG is that LPG chooses action deterministically (see Appendix Eq (17))
during evaluation.

RPG: RPG explores the environment using a separate EPG agent in PONG and IQN in other games.
Then RPG conducts supervised learning by minimizing the hinge loss Eq (6). It is worth noting
that the exploration agent (EPG or IQN) can be replaced by any existing exploration method. In
our RPG implementation, we collect all trajectories with the trajectory reward no less than the
threshold c without eliminating the duplicated trajectories and we empirically found it is a reasonable
simplification. More details of hyperparameters are provided in the Appendix Section 10.12.

Sample-efficiency: As the results shown in Figure 2, our approach, RPG, significantly outperform
the state-of-the-art baselines in terms of sample-efficiency at all tasks. Furthermore, RPG not
only achieved the most sample-efficient results, but also reached the highest final performance at
ROBOTANK, DOUBLEDUNK, PITFALL, and PONG, comparing to any model-free state-of-the-art. In
reinforcement learning, the stability of algorithm should be emphasized as an important issue. As we
can see from the results, the performance of baselines varies from task to task. There is no single
baseline consistently outperforms others. In contrast, due to the reduction from RL to supervised
learning, RPG is consistently stable and effective across different environments. In addition to the
stability and efficiency, RPG enjoys simplicity at the same time. In the environment PONG, it is
surprising that RPG without any complicated exploration method largely surpassed the sophisticated
value-function based approaches.

7.1 ABLATION STUDY

The effectiveness of pairwise ranking policy and off-policy learning as supervised learning. To
get a better understanding of the underlying reasons that RPG is more sample-efficient than DQN
variants, we performed ablation studies in the PONG environment by varying the combination of
policy functions with the proposed off-policy learning. The results of EPG, LPG, and RPG are shown
in the bottom right, Figure 2. Recall that EPG and LPG use listwise policy gradient (vanilla policy
gradient using softmax as policy function) to conduct exploration, the off-policy learning minimizes
the cross-entropy loss Eq (69). In contrast, RPG shares the same exploration method as EPG and
LPG while uses pairwise ranking policy Eq (2) in off-policy learning that minimizes hinge loss Eq (6).
We can see that RPG is more sample-efficient than EPG/LPG. We also compared the most advanced
on-policy method Proximal Policy Optimization (PPO) Schulman et al. (2017) with EPG, LPG, and
RPG. The proposed off-policy learning largely surpassed the best on-policy method. Therefore, we
conclude that off-policy as supervised learning contributes to the sample-efficiency substantially,
while pairwise ranking policy can further accelerate the learning. In addition, we compare RPG to
off-policy policy gradient approaches: ACER Wang et al. (2016) and self-imitation learning Oh et al.
(2018). As the results shown, the proposed off-policy learning framework is more sample-efficient
than the state-of-the-art off-policy policy gradient approaches.

The optimality-efficiency trade-off. As reported in Figure 3, we empirically demonstrated the
trade-off between the sample-efficiency and optimality, which is controlled by the trajectory reward
threshold (as defined in Def 3). The higher value of trajectory reward threshold suggests we

2https://github.com/junhyukoh/self-imitation-learning
3Code is available at https://github.com/illidanlab/rpg.
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Figure 3: The trade-off between sample efficiency and optimality on DOUBLEDUNK,BREAKOUT,
BANKHEIST. As the trajectory reward threshold (c) increase, more samples are needed for the
learning to converge, while it leads to better final performance. We denote the value of c by the
numbers at the end of legends.

have higher requirement on defining near-optimal trajectory. This will increase the difficulty of
collecting near-optimal samples during exploration, while it ensures a better final performance. These
experimental results also justified that RPG is also effective in the absence of prior knowledge on
trajectory reward threshold, with a mild cost on introducing an additional tuning parameter.

8 CONCLUSIONS
In this work, we introduced ranking policy gradient (RPG) methods that, for the first time, resolve RL
problem from a ranking perspective. Furthermore, towards the sample-efficient RL, we propose an
off-policy learning framework that allows RL agents to be trained in a supervised learning paradigm.
The off-policy learning framework uses generalized policy iteration for exploration and exploit the
stableness of supervised learning for policy learning, which accomplishes the unbiasedness, variance
reduction, off-policy learning, and sample efficiency at the same time. Last but not least, empirical
results show that RPG achieves superior performance as compared to the state-of-the-art.
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10 APPENDIX

In Table 1 we provide a brief summary of important notations used in the paper:

Notations Definition

λij The discrepancy of the relative action value of action i and action j. λij = λi − λj ,
where λi = λ(s, ai). Notice that the value here is not the estimation of return, it
represents which action will have relatively higher return if followed.

Qπ(s, a) The action value function or equivalently the estimation of return taking action a at
state s, following policy π.

pij pij = P (λi > λj) denotes the probability that i-th action is to be ranked higher than
j-th action. Notice that pij is controlled by θ through λi, λj

τ A trajectory τ = {s(τ, t), a(τ, t)}Tt=1 collected from the environment. It is worth
noting that this trajectory is not associated with any policy. It only represents a series
of state-action pairs. We also use the abbreviation st = s(τ, t), at = a(τ, t).

r(τ) The trajectory reward r(τ) =
∑T
t=1 r(st, at) is the sum of reward along one trajectory.

Rmax Rmax is the maximum trajectory reward, i.e., Rmax = maxτ r(τ). Since we focus on
MDPs with finite horizon and immediate reward, therefore the trajectory reward is
bounded.

M M is the upper bound of the absolute value trajectory reward, i.e., |r(τ)| ≤M,∀τ .∑
τ The summation over all possible trajectories τ .

pθ(τ) The probability of a specific trajectory is collected from the environment given policy
πθ. pθ(τ) = p(s0)ΠT

t=1πθ(at|st)p(st+1|st, at)
T The set of all possible near-optimal trajectories. |T | denotes the number of

near-optimal trajectories in T .
n The number of training samples or equivalently state action pairs sampled from

uniformly optimal policy.
m The number of discrete actions.

Table 1: Notations

10.1 A DISCUSSION OF PRIOR WORKS ON REDUCING RL TO SL.

There are two main distinctions between supervised learning and reinforcement learning. In supervised learning,
the data distribution D is static and training samples are assumed to be sampled i.i.d. from D. On the contrary,
the data distribution is dynamic in RL. It is determined by both environment dynamics and the learning policy.
The policy keeps evolving during the learning process, which results in the dynamic data distribution in RL.
Secondly, the training samples we collected are not independently distributed due to the change of learning policy.
These intrinsic difficulties of RL make the learning algorithm unstable and sample-inefficient. However, if we
review the state-of-the-art in RL community, every algorithm eventually acquires the policy, either explicitly
or implicitly, which is a mapping from the state to an action or a probability distribution over the action space.
Ultimately, there exists a supervised learning equivalent to the RL problem, if the optimal policies exist. The
paradox is that it is almost impossible to construct this supervised learning equivalent on the fly, without knowing
any optimal policy. Although what is the proper supervision still lingered in the RL community, pioneers have
developed a set of insightful approaches to reduce RL into its SL counterpart over the past several decades.
Roughly, we can classify the prior work into the following categories:

• Expectation-Maximization (EM) Dayan & Hinton (1997); Peters & Schaal (2007); Kober & Peters
(2009); Abdolmaleki et al. (2018), etc.

• Entropy-Regularized RL (ERL) O’Donoghue et al. (2016); Oh et al. (2018); Haarnoja et al. (2018), etc.

• Interactive Imitation Learning (IIL) Daumé et al. (2009); Syed & Schapire (2010); Ross & Bagnell
(2010); Ross et al. (2011); Sun et al. (2017), etc.

The early work in the EM track transfers objective by Jensen’s inequality and the maximizing the lower bound of
the original objective, which resembles Expectation-Maximization procedure and provides policy improvement
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Algorithm 1 Off-Policy Learning for Ranking Policy Gradient (RPG)
Require: The near-optimal trajectory reward threshold c, the number of maximal training episodes Nmax.

Maximum number of time steps in each episode T , and batch size b.
1: while episode < Nmax do
2: repeat
3: Retrieve state st and sample action at by the specified exploration agent (can be random, ε-greedy, or

any RL algorithms).
4: Collect the experience et = (st, at, rt, st+1) and store to the replay buffer.
5: t = t+ 1
6: if t % update step == 0 then
7: Sample a batch of experience {ej}bj=1 from the near-optimal replay buffer.
8: Update πθ based on the hinge loss Eq (6) for RPG.
9: Update exploration agent using samples from regular replay buffer (In simple MDPs such as PONG

where we access to near-optimal trajectory frequently, we can use near-optimal replay buffer to
update exploration agent).

10: end if
11: until terminal st or t− tstart >= T
12: if return

∑T
t=1 rt ≥ c then

13: Take the near-optimal trajectory et, t = 1, ..., T in the latest episode from the regular replay buffer
into near-optimal replay buffer.

14: end if
15: if t % evaluation step == 0 then
16: Evaluate the RPG agent by greedily choosing the action. If the best performance is reached, then stop

training.
17: end if
18: end while

guarantee. While pioneering at the time, these works typically focus on the simplified RL setting, such as
in Dayan & Hinton (1997) the reward function is not associated with the state or in Peters & Schaal (2008) the
goal is to maximize the expected immediate reward and the state distribution is assumed to be fixed. Later on
in Kober & Peters (2009), the authors extended the EM framework from immediate reward into episodic return.
Recent advance Abdolmaleki et al. (2018) utilizes the EM-framework on a relative entropy objective, which adds
a parameter prior as regularization. As mentioned in the paper, the evaluation step using Retrace Munos et al.
(2016) can be unstable even with linear function approximation Touati et al. (2017). In general, the estimation
step in EM-based algorithms involves on-policy evaluation, which is one difficulty shared for any policy gradient
methods. One of the main motivation that we want to transfer the RL into a supervised learning task is the
off-policy learning enable sample efficiency.

To achieve off-policy learning, PGQ O’Donoghue et al. (2016) connected the entropy-regularized policy gradient
with Q-learning under the constraint of small regularization. In the similar framework, Soft Actor-Critic
Haarnoja et al. (2018) was proposed to enable sample-efficient and faster convergence under the framework
of entropy-regularized RL. It is able to converge to the optimal policy that optimizes the long-term reward
along with policy entropy. It is an efficient way to model the suboptimal behavior and empirically it is able to
learn a reasonable policy. Although recently the discrepancy between the entropy-regularized objective and
original long-term reward has been discussed in O’Donoghue (2018); Eysenbach & Levine (2019), they focus
on learning stochastic policy while the proposed framework is feasible for both learning deterministic optimal
policy (Corollary 1) and stochastic optimal policy (Corollary 6). In Oh et al. (2018), this work shares similarity
to our work in terms of the method we collecting the samples. They collect good samples based on the past
experience and then conduct the imitation learning w.r.t those good samples. However, we differentiate at how
do we look at the problem theoretically. This self-imitation learning procedure was eventually connected to
lower-bound-soft-Q-learning, which belongs to entropy-regularized reinforcement learning. We comment that
there is a trade-off between sample-efficiency and modeling suboptimal behaviors. The more strict requirement
we have on the samples collected we have less chance to hit the samples while we are more close to imitating
the optimal behavior.

From the track of interactive imitation learning, initial representative works such as Ross & Bagnell (2010); Ross
et al. (2011) firstly pointed out the main discrepancy between imitation learning and reinforcement learning is
the i.i.d. assumption does not hold and provides SMILE Ross & Bagnell (2010) and DAGGER Ross et al. (2011)
to overcome the distribution mismatch. The theorem 2.1 in Ross & Bagnell (2010) firstly analyzed if the learned
policy fails to imitate the expert with a certain probability, what is the performance degradation comparing to the
expert. While the theorem seems to resemble the long-term performance theorem 2, it considers the learning
policy is trained through the state distribution induced by the expert, instead of state-action distribution as we
did in Theorem 2. Their theorem thus may be more applicable to the situation where an interactive procedure is
needed, such as querying the expert during the training process. On the contrary, we focus on directly applying
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Methods Objective Cont. Action Optimality Off-Policy No Oracle
EM X X X 7 X
ERL 7 X X† X X
IIL X X X X 7
RPG X 7 X X X

Table 2: A comparison with prior work on reducing RL to SL. The objective column denotes whether
the goal is to maximize long-term reward. The Cont. Action column denotes whether the method
is applicable for both continuous action space and discrete action space. The Optimality denotes
whether the algorithms can model the optimal policy. The X† denotes the optimality achieved by
ERL is w.r.t. the entropy regularize objective instead of return. The Off-Policy column denotes if the
algorithm enable off-policy learning. The No Oracle column denotes if the algorithms need to access
to certain type of oracle (expert policy or expert demonstrations).

supervised learning approach without having access to the expert to label the data. The optimal state-action
pairs are collected during exploration and conducting supervised learning on the replay buffer will provide a
performance guarantee in terms of long-term expected reward. Concurrently, a resemble of theorem 2.1 in Ross
& Bagnell (2010) is Theorem 1 in Syed & Schapire (2010), the authors reduce the apprenticeship learning to
classification, under the assumption that the apprentice policy is deterministic and the misclassification rate
at all time steps is bounded, which we do not make. Within the IIL track, later on the AGGREVATE Ross &
Bagnell (2014) was proposed to incorporate the information of action costs to facilitate imitation learning, and a
differentiable version called AGGREVATED Sun et al. (2017) was recently developed and achieved impressive
empirical results. Recently, hinge loss was combined with regular Q-learning loss as a pre-training step for
learning from demonstration Hester et al. (2018) or as a surrogate loss for imitating optimal trajectories Osa et al.
(2018). In this work, we show that hinge loss constructs a new type of policy gradient method and can learn
optimal policy directly.

In conclusion, our method approaches the problem of reducing RL to SL from a unique perspective that is
different from all prior work. With our reformulation from RL to SL, the proposed off-policy framework
preserves optimality and reduces variance simultaneously. Furthermore, it also leads to stable optimization
since we are imitating a stationary target (UNOP), and it is agnoistic to the knowledge of Oracle, such as expert
policy or demonstrations. A multi-aspect comparison between the proposed method and relevant prior studies is
summarized in Table 2.

10.2 RANKING POLICY GRADIENT THEOREM

The proof of Theorem 1 can be found as follows:

Proof. The following proof is based on direct policy differentiation Peters & Schaal (2008); Williams (1992).
For concise presentation, the subscript t for action value λi, λj , and pij is omitted.

∇θJ(θ) = ∇θ
∑
τ

pθ(τ)r(τ)

=
∑
τ

pθ(τ)∇θ log pθ(τ)r(τ)

=
∑
τ

pθ(τ)∇θ log
(
p(s0)ΠT

t=1πθ(at|st)p(st+1|st, at)
)
r(τ)

=
∑
τ

pθ(τ)

T∑
t=1

∇θ log πθ(at|st)r(τ)

=Eτ∼πθ [

T∑
t=1

∇θ log πθ(at|st)r(τ)]

=Eτ∼πθ [

T∑
t=1

∇θ log(Πm
j=1,j 6=ipij)r(τ)]

=Eτ∼πθ [

T∑
t=1

∇θ
m∑

j=1,j 6=i

log(
eλij

1 + eλij
)r(τ)]
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=Eτ∼πθ [

T∑
t=1

∇θ
m∑

j=1,j 6=i

log(
1

1 + eλji
)r(τ)] (7)

≈Eτ∼πθ [

T∑
t=1

∇θ

 m∑
j=1,j 6=i

(λi − λj)/2

 r(τ)] (8)

where the trajectory is a series of state-action pairs from t = 1, ..., T , i.e.τ = s1, a1, s2, a2, ..., sT . From Eq (7)
to Eq (8), we use the first-order Taylor expansion of log(1 + ex)|x=0 = log 2 + 1

2
x+O(x2) to further simplify

the ranking policy gradient.

10.3 DISCUSSION ON THE PROBABILITY DISTRIBUTION OF RPG

Corollary 3. The pairwise ranking policy as shown in Eq (2) constructs a probability distribution over the set
of actions when the action space m is equal to 2, given any relative action values λi, i = 1, 2. For the cases
with m > 2, this conclusion does not hold in general.

It is easy to verify that π(ai|s) > 0,
∑2
i=1 π(ai|s) = 1 holds and the same conclusion cannot be applied to

m > 2 by constructing counterexamples. However, we can introduce a dummy action a′ to form a probability
distribution for RPG. During policy learning, the algorithm will increase the probability of best actions and
the probability of dummy action will decrease. Ideally, if RPG converges to an optimal deterministic policy,
the probability of taking best action is equal to one and π(a′|s) = 0. Similarly, we can introduce a dummy
trajectory τ ′ with trajectory reward r(τ ′) = 0 and pθ(τ ′) = 1−

∑
τ pθ(τ). The trajectory probability forms a

probability distribution since
∑
τ pθ(τ) + pθ(τ

′) = 1 and pθ(τ) ≥ 0 ∀τ and pθ(τ ′) ≥ 0. The proof of a valid
trajectory probability is similar to the following proof on π(a|s) is a valid probability distribution with a dummy
action. The practical influence of this is negligible since our goal is to increase the probability of (near)-optimal
trajectories. To present in a clear way, we avoid mentioning dummy trajectory τ ′ in Proof 10.2 while it can be
seamlessly included.

Condition 1 (The range of λ-value). We restrict the range of λ-values in RPG so that it satisfies λm ≥
ln(m

1
m−1 − 1), where λm = mini,j λji, m is the action dimension.

This condition can be easily satisfied since in RPG we only focus on the relative relationship of λ-values and
we can constrain its range so that λm satisfies the condition 1. Furthermore, since we can see that m

1
m−1 > 1

is decreasing w.r.t to action dimension m. The larger the action dimension, the less constraint we have on the
λ-values.

Corollary 4. Given Condition 1, we introduce a dummy action a′ and set π(a = a′|s) = 1−
∑
i π(a = ai|s),

which will construct a valid probability distribution (π(a|s)) over the action space A ∪ a′.

Proof. Since we have π(a = ai|s) > 0 ∀i = 1, ...,m and
∑
i π(a = ai|s) + π(a = a′|s) = 1. To

prove this is a valid probability distribution, we only need to show that π(a = a′|s) ≥ 0, ∀m ≥ 2, i.e.∑
i π(a = ai|s) ≤ 1, ∀m ≥ 2. Let λm = mini,j λji,∑

i

π(a = ai|s) (9)

=
∑
i

Πm
j=1,j 6=i pij (10)

=
∑
i

Πm
j=1,j 6=i

1

1 + eλji
(11)

≤
∑
i

Πm
j=1,j 6=i

1

1 + eλm
(12)

=m

(
1

1 + eλm

)m−1

use Condition 1 (13)

≤1 (14)

10.4 LISTWISE POLICY GRADIENT

In order to learn the stochastic policy that optimizes the ranking of actions with respect to the return, we now
introduce the Listwise Policy Gradient (LPG) method. In RL, we want to optimize the probability of each action
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(ai) to be ranked higher among all actions, which is the sum of the probabilities of all permutations such that
the action ai in the top position of the list. This probability is computationally prohibitive since we need to
consider the probability of m! permutations. Luckily, based on Cao et al. (2007) [Theorem 6], we can model
the such probability of action ai to be ranked highest given a set of relative action values by a simple softmax
formulation, as described in Theorem 3.
Theorem 3 (Theorem 6 Cao et al. (2007)). Given the relative action values q = [λ1, ..., λm], the probability of
action i to be taken (i.e. to be ranked on the top of the list) is:

π(at = ai|st) =
φ(λi)∑m
j=1 φ(λj)

(15)

where φ(∗) is any increasing, strictly positive function. A common choice of φ is the exponential function.

Closely built upon the foundations from learning to rank Cao et al. (2007), we present the listwise policy gradient
method, as introduced in Theorem 4.
Theorem 4 (Listwise Policy Gradient Theorem). For any MDP, the gradient of the long-term reward J(θ) =∑

τ pθ(τ)r(τ) w.r.t. the parameter θ of listwise ranking policy takes the following form:

∇θJ(θ) = Eτ∼πθ

[
T∑
t=1

∇θ

(
log

eλi∑m
j=1 e

λj

)
r(τ)

]
, (16)

where the listwise ranking policy πθ parameterized by θ is given by Eq (17) for tasks with deterministic optimal
policies:

a = arg max
i

λi, i = 1, . . . ,m (17)

or Eq (18) for stochastic optimal policies:
a ∼ π(∗|s), i = 1, . . . ,m (18)

where the policy takes the form as in Eq (19)

π(a = ai|st) =
eλi∑m
j=1 e

λj
(19)

is the probability that action i being ranked highest, given the current state and all the relative action values
λ1 . . . λm.

The proof of Theorem 4 exactly follows the direct policy differentiation Peters & Schaal (2008); Williams (1992)
by replacing the policy to the form of the softmax function. The action probability π(ai|s), ∀i = 1, ...,m forms
a probability distribution over the set of discrete actions [Cao et al. (2007) Lemma 7]. Theorem 4 states that the
vanilla policy gradient Williams (1992) parameterized by a softmax layer is optimizing the probability of each
action to be ranked highest, with respect to the long-term reward.

10.5 DISCUSSIONS ON THE OPTIMALITY PRESERVING

Condition 2 (Initial States). The (near)-optimal trajectories will cover all initial states of MDP. i.e.
{s(τ, 1)| ∀τ ∈ T } = {s(τ, 1)| ∀τ}, where T = {τ |w(τ) = 1} = {τ |r(τ) ≥ c}.

The Condition 2 describes what type of MDPs is directly applicable to the trajectory reward shaping (TRS,
Def 3). The MDPs satisfying this condition cover a wide range of tasks such as Dialogue System Li et al. (2017),
Go Silver et al. (2017), video games Bellemare et al. (2013) and all MDPs with only one initial state. If we want
to preserve the optimality by TRS, the optimal trajectories of MDP needs to cover all initial states or equivalently,
all initial states will lead to at least one optimal trajectory. Similarly, the near-optimality is preserved for all
MDPs that its near-optimal trajectories cover all initial states.

Theoretically, it is possible to transfer more general MDPs to satisfy Condition 2 and preserve the optimality with
potential-based reward shaping Ng et al. (1999). More concretely, consider the deterministic binary tree MDP
(M1) with the set of initial states S1 = {s1, s′1} as defined in Figure 4. There are eight possible trajectories
inM1. Let r(τ1) = 10 = Rmax, r(τ8) = 3, r(τi) = 2, ∀i = 2, ...7. Therefore, this MDP does not satisfy
Condition 2. We can compensate the trajectory reward of best trajectory starting from s′0 to the Rmax by shaping
the reward with the potential-based function φ(s′7) = 7 and φ(s) = 0, ∀s 6= s′7. This reward shaping requires
more prior knowledge, which may not be feasible in practice. A more realistic method is to design a dynamic
trajectory reward shaping approach. In the beginning, we set c(s) = mins∈S1 r(τ |s(τ, 1) = s), ∀s ∈ S1. Take
M1 as an example, c(s) = 3, ∀s ∈ S1. During the exploration stage, we track the current best trajectory of
each initial state and update c(s) with its trajectory reward.

Nevertheless, if the Condition 2 is not satisfied, we need more sophisticated prior knowledge other than a
predefined trajectory reward threshold c to construct the replay buffer (training dataset of UNOP). The practical
implementation of trajectory reward shaping and rigorously theoretical study for general MDPs are beyond the
scope of this work.
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Figure 4: The binary tree structure MDP with two initial states (S1 = {s1, s′1}), similar as discussed
in Sun et al. (2017). Each path from the root to the leaf node denotes one possible trajectory in the
MDP.

10.6 PROOF OF LONG-TERM PERFORMANCE THEOREM 2

In this subsection, we reduce maximizing RL objective into a supervised learning problem with Theorem 2.
Before that, we first prove Lemma 1 to link the log probability of a trajectory τ to its state action distribution.
Then using this lemma, we can connect the trajectory probability of UNOP with its state-action distribution,
from which we prove the Theorem 2.

Lemma 1. Given a specific trajectory τ , the averaged state-action pair log-likelihood over horizon T is equal
to the weighted sum over the entire state-action space, i.e.:

1

T

T∑
t=1

log πθ(at|st) =
∑
s,a

p(s, a|τ) log πθ(a|s) (20)

where the sum in the right hand side is the summation over all possible state-action pairs. It is worth noting that
p(s, a|τ) is not related to any policy parameters. It is the probability of a specific state-action pair (s, a) in a
specific trajectory τ .

Proof. Given a trajectory τ = {(s(τ, 1), a(τ, 1)), ..., (s(τ, T ), a(τ, T ))} = {(s1, a1), ..., (sT , aT )}, denote
the unique state action pairs in this trajectory as U(τ) = {(si, ai)}ni=1, where n is the number of unique
state-action pairs in τ and n ≤ T . The number of occurrences of a state-action pair (si, ai) in the trajectory τ is
denoted as |(si, ai)|.

1

T

T∑
t=1

log πθ(at|st) (21)

=

n∑
i=1

|(si, ai)|
T

log πθ(ai|si) (22)

=

n∑
i=1

p(si, ai|τ) log πθ(ai|si) (23)

=
∑

(s,a)∈U(τ)

p(s, a|τ) log πθ(a|s) (24)

=
∑

(s,a)∈U(τ)

p(s, a|τ) log πθ(a|s) +
∑

(s,a)/∈U(τ)

p(s, a|τ) log πθ(a|s) (25)

=
∑
(s,a)

p(s, a|τ) log πθ(a|s) (26)

where from Eq (24) to Eq (25) we use
∑

(s,a)∈U(τ) p(s, a|τ) =
∑n
i=1 p(si, ai|τ) =

∑n
i=1

|(si,ai)|
T

= 1,
∴ p(s, a|τ) = 0, ∀(s, a) /∈ U(τ).

This thus completes the proof.

Now we are ready to prove the Theorem 2:
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Proof. The following proof holds for arbitrary subset of trajectories T which is determined by the threshold c in
Def 5. The π∗ is associated with c and this subset of trajectories.

arg max
θ

∑
τ

pθ(τ)w(τ) (27)

∵ w(τ) = 0, if τ /∈ T (28)

= arg max
θ

1

|T |
∑
τ∈T

pθ(τ)w(τ) (29)

use Lemma 3 ∵ pθ(τ) > 0 and w(τ) > 0,∴
∑
τ∈T

pθ(τ)w(τ) > 0 (30)

= arg max
θ

log(
1

|T |
∑
τ∈T

pθ(τ)w(τ)) (31)

∵ log(

n∑
i=1

xi/n) ≥
n∑
i=1

log(xi)/n,∀i, xi > 0,we have: (32)

log(
1

|T |
∑
τ∈T

pθ(τ)w(τ)) ≥
∑
τ∈T

1

|T | log pθ(τ)w(τ) (33)

The lower bound holds when pθ(τ)w(τ) = 1
|T | ,∀τ ∈ T . To this end, we maximize the lower bound of the

expected long-term performance.

arg max
θ

∑
τ∈T

1

|T | log pθ(τ)w(τ) (34)

= arg max
θ

∑
τ∈T

log(p(s1)ΠT
t=1(πθ(at|st)p(st+1|st, at))w(τ)) (35)

= arg max
θ

∑
τ∈T

log
(
p(s1)(ΠT

t=1πθ(at|st))(ΠT
t=1p(st+1|st, at)w(τ)

)
(36)

= arg max
θ

∑
τ∈T

(
log p(s1) +

T∑
t=1

log p(st+1|st, at) +

T∑
t=1

log πθ(at|st) + logw(τ)

)
(37)

This is the reason that w(τ) can be set as arbitrary positive constant (38)

= arg max
θ

1

|T |
∑
τ∈T

T∑
t=1

log πθ(at|st) (39)

= arg max
θ

1

|T |T
∑
τ∈T

T∑
t=1

log πθ(at|st) (40)

= arg max
θ

1

|T |
∑
τ∈T

1

T

T∑
t=1

log πθ(at|st) Use Assumption 2 the existence of UNOP. (41)

= arg max
θ

∑
τ∈T

pπ∗(τ)
1

T

(
T∑
t=1

log πθ(at|st)

)
(42)

where π∗ is a UNOP (Def 5). (43)
∴ pπ∗(τ) = 0∀τ /∈ T (44)

Eq (44) can be established based on
∑
τ∈T

pπ∗(τ) =
∑
τ∈T

1/|T | = 1 (45)

= arg max
θ

∑
τ

pπ∗(τ)
1

T

(
T∑
t=1

log πθ(at|st)

)
Use lemma 1

= arg max
θ

∑
τ

pπ∗(τ)
∑
s,a

p(s, a|τ) log πθ(a|s) (46)

The 2nd sum is over all possible state-action pairs. (s, a) represents a specific state-action pair.

= arg max
θ

∑
τ

∑
s,a

pπ∗(τ)p(s, a|τ) log πθ(a|s) (47)

= arg max
θ

∑
s,a

∑
τ

pπ∗(τ)p(s, a|τ) log πθ(a|s) (48)
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= arg max
θ

∑
s,a

pπ∗(s, a) log πθ(a|s) (49)

In this proof we use st = s(τ, t) and at = a(τ, t) as abbreviations, which denote the t-th state and action in the
trajectory τ , respectively. |T | denotes the number of trajectories in T . We also use the definition of w(τ) to
only focus on near-optimal trajectories. We set w(τ) = 1 for simplicity but it will not affect the conclusion if set
to other constants.

Optimality: Furthermore, the optimal solution for the objective function Eq (49) is a uniformly (near)-optimal
policy π∗.

arg max
θ

∑
s,a

pπ∗(s, a) log πθ(a|s) (50)

= arg max
θ

∑
s

pπ∗(s)
∑
a

π∗(a|s) log πθ(a|s) (51)

= arg max
θ

∑
s

pπ∗(s)
∑
a

π∗(a|s) log πθ(a|s)−
∑
s

pπ∗(s)
∑
a

log π∗(a|s) (52)

= arg max
θ

∑
s

pπ∗(s)
∑
a

π∗(a|s) log
πθ(a|s)
π∗(a|s)

(53)

= arg max
θ

∑
s

pπ∗(s)
∑
a

−KL(π∗(a|s)||πθ(a|s)) = π∗ (54)

Therefore, the optimal solution of Eq (49) is also the (near)-optimal solution for the original RL problem since∑
τ pπ∗(τ)r(τ) =

∑
τ∈T

1
|T |r(τ) ≥ c = Rmax − ε. The optimal solution is obtained when we set c = Rmax.

Lemma 2. Given any optimal policy π of MDP satisfying Condition 2, ∀τ /∈ T , we have pπ(τ) = 0 , where T
denotes the set of all possible optimal trajectories in this lemma. If ∃τ /∈ T , such that pπ(τ) > 0, then π is not
optimal policy.

Proof. We prove this by contradiction. We assume π is an optimal policy. If ∃τ ′ /∈ T , such that 1) pπ(τ ′) 6= 0,
or equivalently: pπ(τ ′) > 0 since pπ(τ ′) ∈ [1, 0]. and 2) τ ′ /∈ T . We can find a better policy π′ by satisfying
the following three conditions:

pπ′(τ
′) = 0 and

pπ′(τ1) = pπ(τ1) + pπ(τ ′), τ1 ∈ T and

pπ′(τ) = pπ(τ), ∀τ /∈ {τ ′, τ1}

Since pπ′(τ) ≥ 0, ∀τ and
∑
τ pπ′(τ) = 1, therefore pπ′ constructs a valid probability distribution. Then the

expected long-term performance of π′ is greater than that of π:∑
τ

pπ′(τ)w(τ)−
∑
τ

pπ(τ)w(τ)

=
∑

τ /∈{τ ′,τ1}

pπ′(τ)w(τ) + pπ′(τ1) ∗ w(τ1) + pπ′(τ
′) ∗ w(τ ′)

− (
∑

τ /∈{τ ′,τ1}

pπ(τ)w(τ) + pπ(τ1) ∗ w(τ1) + pπ(τ ′) ∗ w(τ ′))

=pπ′(τ1) ∗ w(τ1) + pπ′(τ
′) ∗ w(τ ′)− (pπ(τ1) ∗ w(τ1) + pπ(τ ′) ∗ w(τ ′))

∵ τ ′ /∈ T ,∴ w(τ ′) = 0 and τ1 ∈ T ,∴ w(τ) = 1

=pπ′(τ1)− pπ(τ1)

=pπ(τ1) + pπ(τ ′)− pπ(τ1) = pπ(τ ′) > 0

Essentially, we can find a policy π′ that has higher probability on the optimal trajectory τ1 and zero probability
on τ ′. This indicates that it is a better policy than π. Therefore, π is not an optimal policy and it contradicts our
assumption, which proves that such τ ′ does not exist. Therefore, ∀τ /∈ T , we have pπ(τ) = 0.

Lemma 3 (Policy Performance). ∀τ , pθ(τ) > 0, if the policy takes the form as in Eq (15) or Eq (2). This means
for all possible trajectories allowed by the environment, the policy takes the form of either ranking policy or
softmax will generate this trajectory with probability pθ(τ) > 0. It is worth noting that because of this property,
πθ is not an optimal policy according to Lemma 2, though it can be arbitrarily close to the optimal policy.
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Proof.

∵ p(τ) = p(s1)ΠT
t=1(πθ(at|st)p(st+1|st, at)) (55)

and πθ(at|st) > 0, p(s1) > 0, p(st+1|st, at) > 0. (56)
if p(st+1|st, at) = 0 or p(s1) = 0,

then the probability of sampling τ from any policy is zero. This trajectory does not exist.
∴ pθ(τ) > 0. (57)

This thus completes the proof.

10.7 PROOF OF PERFORMANCE POLICY GRADIENT COROLLARIES

Corollary 5 (Ranking performance policy gradient). Optimizing the lower bound of expected long-term per-
formance (defined in Eq (4)) using pairwise ranking policy (Eq (2)) can be approximately optimized by the
following loss:

min
θ

∑
s,ai

pπ∗(s, ai)
(∑m

j=1,j 6=i
max(0,margin + λ(s, aj)− λ(s, ai))

)
, (58)

where margin is a small positive value. We set margin equal to one in our experiments.

Proof. In RPG, the policy πθ(a|s) is defined as in Eq (2). We then replace the action probability distribution in
Eq (5) with the RPG policy.

∵ π(a = ai|s) = Πm
j=1,j 6=ipij (59)

Because RPG is fitting a deterministic optimal policy,
we denote the optimal action given sate s as ai, then we have

max
θ

∑
s,ai

pπ∗(s, ai) log π(ai|s) (60)

= max
θ

∑
s,ai

pπ∗(s, ai) log(Πm
j 6=i,j=1pij) (61)

= max
θ

∑
s,ai

pπ∗(s, ai) log Πm
j 6=i,j=1

1

1 + eλji
(62)

= min
θ

∑
s,ai

pπ∗(s, ai)

m∑
j 6=i,j=1

log(1 + eλji) first order Taylor expansion (63)

≈min
θ

∑
s,ai

pπ∗(s, ai)

m∑
j 6=i,j=1

λji s.t. |λij | = c < 1, ∀i, j, s (64)

= min
θ

∑
s,ai

pπ∗(s, ai)

m∑
j 6=i,j=1

(λj − λi) s.t. |λi − λj | = c < 1,∀i, j, s (65)

⇒min
θ

∑
s,ai

pπ∗(s, ai)L(si, ai) (66)

where the pairwise loss L(s, ai) is defined as:

L(s, ai) =

|A|∑
j=1,j 6=i

max(0,margin + λ(s, aj)− λ(s, ai)), (67)

where the margin in Eq (66) is a small positive constant. (68)

From Eq (65) to Eq (66), we consider learning a deterministic optimal policy ai = π∗(s), where we use index
i to denote the optimal action at each state. The optimal λ-values minimizing Eq (65) (denoted by λ1) need
to satisfy λ1

i = λ1
j + c, ∀j 6= i. The optiaml λ-values minimizing Eq (66) (denoted by λ2) need to satisfy

λ2
i = maxj 6=i λ

2
j + margin, ∀j 6= i. In both cases, the optimal policies from solving Eq (65) and Eq (66) are

the same: π(s) = arg maxk λ
1
k = arg maxk λ

2
k = ai. Therefore, we use Eq (66) as a surrogate optimization

problem of Eq (65).
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10.7.1 LISTWISE PERFORMANCE POLICY GRADIENT

Corollary 6 (Listwise performance policy gradient). Optimizing the lower bound of expected long-term perfor-
mance by the listwise ranking policy (Eq (19)) is equivalent to:

max
θ

∑
s

pπ∗(s)

m∑
i=1

π∗(ai|s) log
eλi∑m
j=1 e

λj
(69)

The proof of Corollary 6 is a direct application of theorem 2 by replacing policy with the softmax function.

10.8 POLICY GRADIENT VARIANCE REDUCTION

Corollary 7 (Variance reduction). Given a stationary policy, , the upper bound of the variance of each dimension
of policy gradient is O(T 2C2M2). The upper bound of gradient variance of maximizing the lower bound of
long-term performance Eq (5) is O(C2), where C is the maximum norm of log gradient based on Assumption 3.
The upper bound of gradient variance by supervised learning compared to that of the regular policy gradient is
reduced by an order of O(T 2M2), given M > 1, T > 1, which is a very common situation in practice.

Proof. The regular policy gradient of policy πθ is given as Williams (1992):

∑
τ

pθ(τ)[

T∑
t=1

∇θ log(πθ(a(τ, t)|s(τ, t)))r(τ)] (70)

The regular policy gradient variance of the i-th dimension is denoted as follows:

V ar

(
T∑
t=1

∇θ log(πθ(a(τ, t)|s(τ, t))i)r(τ)

)
(71)

We denote xi(τ) =
∑T
t=1∇θ log(πθ(a(τ, t)|s(τ, t))i)r(τ) for convenience. Therefore, xi is a random variable.

Then apply var(x) = Epθ(τ)[x
2]−Epθ(τ)[x]2, we have:

V ar

(
T∑
t=1

∇θ log(πθ(a(τ, t)|s(τ, t))i)r(τ)

)
(72)

=V ar (xi(τ)) (73)

=
∑
τ

pθ(τ)xi(τ)2 − [
∑
τ

pθ(τ)xi(τ)]2 (74)

≤
∑
τ

pθ(τ)xi(τ)2 (75)

=
∑
τ

pθ(τ)[

T∑
t=1

∇θ log(πθ(a(τ, t)|s(τ, t))i)r(τ)]2 (use M ≥ |r(τ)|,∀τ) (76)

≤
∑
τ

pθ(τ)[
T∑
t=1

∇θ log(πθ(a(τ, t)|s(τ, t))i)]2M2 (77)

=M2
∑
τ

pθ(τ)[
T∑
t=1

T∑
k=1

∇θ log(πθ(a(τ, t)|s(τ, t))i)∇θ log(πθ(a(τ, k)|s(τ, k)i)] (Assumption 3) (78)

≤M2
∑
τ

pθ(τ)[

T∑
t=1

T∑
k=1

C2] (79)

=M2
∑
τ

pθ(τ)T 2C2 (80)

=T 2C2M2 (81)

The policy gradient of long-term performance (Def 4)∑
s,a

pπ∗(s, a)∇θ log πθ(a|s) (82)
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The policy gradient variance of the i-th dimension is denoted as

var(∇θ log πθ(a|s)i) (83)

Then the upper bound is given by

var(∇θ log πθ(a|s)i) (84)

=
∑
s,a

pπ∗(s, a)[∇θ log πθ(a|s)i]2 − [
∑
s,a

pπ∗(s, a)∇θ log πθ(a|s)i]2 (85)

≤
∑
s,a

pπ∗(s, a)[∇θ log πθ(a|s)i]2 use Assumption 3 (86)

≤
∑
s,a

pπ∗(s, a)C2 (87)

= C2 (88)

This thus completes the proof.

10.9 DISCUSSIONS OF ASSUMPTION 2

In this section, we show that UNOP exists in a range of MDPs. Notice that the lemma 4 shows the sufficient
conditions of satisfying Asumption 2 rather than necessary conditions.

Lemma 4. For MDPs defined in Section 3 satisfying the following conditions:

• Each initial state leads to one optimal trajectory. This also indicates |S1| = |T |, where T denotes the
set of optimal trajectories in this lemma, S1 denotes the set of initial states.

• Deterministic transitions, i.e., p(s′|s, a) ∈ {0, 1}.

• Uniform initial state distribution, i.e., p(s1) = 1
|T | ,∀s1 ∈ S1.

Then we have: ∃π∗, where s.t. pπ∗(τ) = 1
|T | , ∀τ ∈ T . It means that a deterministic uniformly optimal policy

always exists for this MDP.

Proof. We can prove this by construction. The following analysis applies for any τ ∈ T .

pπ∗(τ) =
1

|T | (89)

⇐⇒ log pπ∗(τ) = − log |T | (90)

⇐⇒ log p(s1) +

T∑
t=1

log p(st+1|st, at) +
T∑
t=1

log π∗(at|st) = − log |T | (91)

⇐⇒
T∑
t=1

log π∗(at|st) = − log p(s1)−
T∑
t=1

log p(st+1|st, at)− log |T | (92)

where we use at, st as abbreviations of a(τ, t), s(τ, t).

We denote D(τ) = − log p(s1)−
T∑
t=1

log p(st+1|st, at) > 0

⇐⇒
T∑
t=1

log π∗(at|st) = D(τ)− log |T | (93)

∴ we can obtain a uniformly optimal policy by solving the nonlinear programming:
T∑
t=1

log π∗(a(τ, t)|s(τ, t)) = D(τ)− log |T | ∀τ ∈ T (94)

log π∗(a(τ, t)|s(τ, t)) = 0, ∀τ ∈ T , t = 1, ..., T (95)
m∑
i=1

π∗(ai|s(τ, t)) = 1, ∀τ ∈ T , t = 1, ..., T (96)
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(a) (b)

Figure 5: The directed graph that describes the conditional independence of pairwise relationship
of actions, where Q1 denotes the return of taking action a1 at state s, following policy π in M,
i.e., QπM(s, a1). I1,2 is a random variable that denotes the pairwise relationship of Q1 and Q2, i.e.,
I1,2 = 1, i.i.f. Q1 ≥ Q2, o.w. I1,2 = 0.

Use the condition p(s1) = 1
|T | , then we have:

∵
T∑
t=1

log π∗(a(τ, t)|s(τ, t)) =

T∑
t=1

log 1 = 0 (LHS of Eq (94)) (97)

∵ − log p(s1)−
T∑
t=1

log p(st+1|st, at)− log |T | = log |T | − 0− log |T | = 0 (RHS of Eq (94)) (98)

∴ D(τ)− log |T | =
T∑
t=1

log π∗(a(τ, t)|s(τ, t)), ∀τ ∈ T . (99)

Also the deterministic optimal policy satisfies the conditions in Eq (95 96). Therefore, the deterministic optimal
policy is a uniformly optimal policy. This lemma describes one type of MDP in which UOP exists. From the
above reasoning, we can see that as long as the system of non-linear equations Eq (94 95 96) has a solution, the
uniformly (near)-optimal policy exists.

Lemma 5 (Hit optimal trajectory). The probability that a specific optimal trajectory was not encountered given
an arbitrary softmax policy πθ is exponentially decreasing with respect to the number of training episodes. No
matter a MDP has deterministic or probabilistic dynamics.

Proof. Given a specific optimal trajectory τ = {s(τ, t), a(τ, t)}Tt=1, and an arbitrary stationary policy πθ , the
probability that has never encountered at the n-th episode is [1− pθ(τ)]n = ξn, based on lemma 3, we have
pθ(τ) > 0, therefore we have ξ ∈ [0, 1).

10.10 DISCUSSIONS OF ASSUMPTION 1

Intuitively, given a state and a stationary policy π, the relative relationships among actions can be independent,
considering a fixed MDPM. The relative relationship among actions is the relative relationship of actions’
return. Starting from the same state, following a stationary policy, the actions’ return is determined by MDP
properties such as environment dynamics, reward function, etc.

More concretely, we consider a MDP with three actions (a1, a2, a3) for each state. The action value QπM
satisfies the Bellman equation in Eq (100). Notice that in this subsection, we use QπM to denote the action value
that estimates the absolute value of return inM.

QπM(s, ai) = r(s, ai) + max
a

Es′∼p(∗|s,a)Q
π
M(s′, a), ∀i = 1, 2, 3. (100)

As we can see from Eq (100), QπM(s, ai), i = 1, 2, 3 is only related to s, π, and environment dynamics P. It
means if π,M and s are given, the action values of three actions are determined. Therefore, we can use a
directed graph Bishop (2006) to model the relationship of action values, as shown in Figure 5 (a). Similarly, if
we only consider the ranking of actions, this ranking is consistent with the relationship of actions’ return, which
is also determined by s, π, and P. Therefore, the pairwise relationship among actions can be described as the
directed graph in Figure 5 (b), which establishes the conditional independence of actions’ pairwise relationship.
Based on the above reasoning, we conclude that Assumption 1 is realistic.
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10.11 EXPLORATION EFFICIENCY

The proposed off-policy learning framework indicates the sample complexity is related to exploration efficiency
and supervised learning efficiency. Given a specific MDP, the exploration efficiency of an exploration strategy
can be quantified by how frequently we can encounter different (near)-optimal trajectories in the first k episodes.
The supervised learning efficiency under the probably approximately correct framework Valiant (1984) is how
many samples we need to collect so that we can achieve good generalization performance with high probability.
Jointly consider the efficiency in two stages, we can theoretically analyze the sample complexity of the proposed
off-policy learning framework, which will be provided in the long version of this work.

Improving exploration efficiency is not the focus of this work. In general, exploration efficiency is highly related
to the properties of MDP, such as transition probabilities, horizon, action dimension, etc. The exploration strategy
should be designed according to certain domain knowledge of the MDP to improve the efficiency. Therefore, we
did not specify our exploration strategy but adopt the state-of-the-art to conduct exploration.

Based on the above discussion, we can see that how frequently we can encounter different (near)-optimal
trajectories is a bottleneck of sample efficiency for RPG. In the MDPs with small the transition probabilities of
reaching the near-optimal trajectories, we rarely collect any near-optimal trajectories during the early stage of
exploration. The benefit of applying the proposed off-policy framework would be limited.

10.12 HYPERPARAMETERS

We present the training details of ranking policy gradient in Table 3. The network architecture is the same as the
convolution neural network used in DQN Mnih et al. (2015). We update the RPG network every four timesteps
with a minibatch of size 32. The replay ratio is equal to eight for all baselines and RPG (except for ACER we
use the default setting in openai baselines Dhariwal et al. (2017) for better performance).

Table 3: Hyperparameters of RPG network
Hyperparameters Value
Architecture Conv(32-8×8-4)

-Conv(64-4×4-2)
-Conv(64-3×3-2)
-FC(512)

Learning rate 0.0000625
Batch size 32
Replay buffer size 1000000
Update period 4
Margin in Eq (6) 1
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