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ABSTRACT

Rules over a knowledge graph (KG) capture interpretable patterns in data and can
be used for KG cleaning and completion. Inspired by the TensorLog differ-
entiable logic framework, which compiles rule inference into a sequence of dif-
ferentiable operations, recently a method called Neural LP has been proposed for
learning the parameters as well as the structure of rules. However, it is limited with
respect to the treatment of numerical features like age, weight or scientific mea-
surements. We address this limitation by extending Neural LP to learn rules with
numerical values, e.g., “People younger than 18 typically live with their parents”.
We demonstrate how dynamic programming and cumulative sum operations can
be exploited to ensure efficiency of such extension. Our novel approach allows us
to extract more expressive rules with aggregates, which are of higher quality and
yield more accurate predictions compared to rules learned by the state-of-the-art
methods, as shown by our experiments on synthetic and real-world datasets.

1 INTRODUCTION

Due to the availability of vast amounts of knowledge on the web, advances in information extraction
have led to large graph-structured knowledge bases, also known as knowledge graphs (KGs), which
are widely used in web search, question answering, and data analytics. Such KGs represent data
as a graph of entities (e.g., john, articlel) connected via relations (e.g., citedIn), or more formally
as a set of binary grounded atoms (e.g., citedIn(john, articlel)). A common task in such settings
is that of link prediction, determining whether a relation exists between two entities in the graph
even if the relation is not included explicitly in the graph. Although most work on this topic has
focused on statistical rule-extraction techniques (Meilicke et al.| (2019)); |Galarraga et al| (2015);
Ortona et al.|(2018a))), recent methods have shown the benefit of using deep learning approaches for
this link prediction task (see [Wang et al| (2017) for overview). And while most deep approaches
(for example, those based upon graph embedding methods) are inherently difficult to interpret, the
Neural LP method of [Yang et al.|(2017) is particularly appealing in that it allows for interpretable
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resulting rules for the link prediction task while still preserving the flexibility of a learning approach.
Unfortunately, Neural LP is also quite limited in the types of rules it is capable of representing, and
notably no rules that depend on numerical features can be efficiently learned within this framework.

In this paper, we propose an extension to Neural LP that allows for fast learning of numerical rules.
Specifically, although numerical rules would result in dense matrix operations in the generic Neural
LP framework, we show that using dynamic programming and cumulative sum operations, we can
efficiently express the operators for numerical comparators within the Neural LP framework. By
defining the relevant operators implicitly in this manner, we show that we can extend Neural LP
to efficiently learn rules that make use of numerical features, while retaining the interpretability of
the Neural LP framework. More generally, this is an instance of integrating so-called “aggregates”
(i.e. external oracle queries, in this case binary queries that reflect numerical comparison) within a
rule-learning framework. Learning such rules with aggregates is very much an open problem in the
KG community (Galarraga & Suchanek| (2014)), and our approach is the first work to learn rules
with these numerical aggregates.

We apply our approach to several knowledge graph datasets, and show that we are able to answer
queries more accurately than the previous Neural LP approach, as well as more accurately than a
state-of-the-art rule extraction method, the AnyBurl package proposed by Meilicke et al.| (2019).
Specifically, we show on two synthetic and two real-world datasets that our extension to Neural
LP is able to more accurately recover rules that depend on numerical information, and thus make
much more accurate link predictions in the knowledge graph. Further, the extracted rules are still
interpretable as in the original Neural LP framework, and unlike the pure graph embedding strategies
(Bordes et al.| (2013)).

2 RELATED WORK

Relational Data Mining.  The problem of learning rules from the data has been traditionally
addressed in the area of relational data mining |[Raedt (2017) and inductive logic programming
(ILP) Muggleton| (1995). Works most related to ours concern learning decision trees with aggre-
gates |Vens et al.| (2006) from relational data. However, these methods typically do not scale well,
and modern knowledge graphs are far beyond what they can handle.

In the context of KGs, the problem of rule learning has recently gained a lot of attention. In|Ortona
et al.| (2018b)) rules with negation, which also support numerical comparison as we do have been
considered. Contrary to our approach, however, Ortona et al.| (2018b)) is designed to find a small set
of rules that cover the majority of positive and as few negative examples as possible, which differs
from our goal of learning rules in an unsupervised fashion.

Neural-based Rule Learning. Several works |Yang et al.| (2017); Manhaeve et al. (2018);
Rocktischel & Riedel| (2017); |[Evans & Grefenstette| (2018)); [Zhang et al.[(2019); |[Ho et al.| (2018));
‘Weber et al.|(2019) utilize embedding models and neural architectures for rule learning. The closest
to ours is the work [Yang et al.| (2017), which reduces the rule learning problem to algebraic oper-
ations on neural-embedding-based representations of a given KG. However, |Yang et al| (2017) is
restricted to non-numerical rules in contrast to our work.

Embedding Models with Numericals. The problem of KG incompleteness has been tackled by
methods that predict missing relational edges between existing entities. Several approaches rely on
statistics and include tensor factorization (e.g., INickel et al.| (2011)). Other models are based on
neural embeddings (e.g., Bordes et al.|(2013)). For overview see Wang et al.|(2017)).

The most relevant for us is the work |Garcia-Duran & Niepert| (2018), which presents a novel ap-
proach to combining relational, latent (learned) and numerical features, i.e. features taking large or
infinite number of real values for the KG completion task. While |Garcia-Duran & Niepert| (2018))
operates on KGs with numerical values, it’s results like in the case of most knowledge graph em-
bedding models are not interpretable.
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Figure 1: An exemplar KG about publications, their authors and relations among them. Relations
are presented in italics, entities in bold black and numerical values in circes, true facts as solid black
lines and the missing ones as dashed lines in red.

3 PRELIMINARIES

Knowledge Graphs. We assume countable sets C of constants (a.k.a. entities), N” C R of numerical
values and R of binary relations (a.k.a. predicates). A KG G is defined by a finite set of ground atoms
(a.k.a. facts), of the form p(x, y), where p € R,z € Candy € CUN (e.g., citedIn(john, articlel)).
The set R,, C R stores all numerical predicates p, such that p(x,y) € G, where z € Cand y € N.
The set of numerical facts, i.e. facts over numerical predicates, is denoted by G,, C G. We use
lower-case letters for constants and upper-case letters for variables.

As KGs are incomplete, one can assume that missing facts, i.e. facts that are not in G, are either
unknown or false. Typically the open world assumption (OWA) is employed, which means that
missing facts are considered to be unknown rather than false. Alternatively, the local closed world
assumption (LCWA) can be considered to generate negative facts by assuming that the KG is locally
complete as data is usually added to KGs in batches. More precisely, it means that for any x € C we
can conclude that p(z, y) is false if z € C U N exists such that p(z, z) € G and p(z,y) ¢ G.

Numerical Rules. A rule is an expression of the form
p(X,Y)—qa(X,Z1)AN...ANqn(Z,,Y), (1)

where p, q1,...,q, € R, left-hand side of the rule is referred to as the rule head, and right-hand
side as the rule body, and every conjunct in the rule head or body is referred to as an atom. The
rule influences(X, Y) < colleagueOf (X, Z) A supervisorOf (Z, Y') intuitively states that typi-
cally students are influenced by colleagues of their supervisors. Aside from conventional rules, we
can also have numerical rules, i.e. rules that contain numerical comparison among variables (e.g.,
number of citations of two people), or a variable and a numerical constant.

To simplify presentation, numerical values in A/ linked to an entity from C are sometimes treated as
its “features”, and numerical relations in R, as functions that depend on those features. In this case,
for p(X,Y’) we also use a shortcut notation X.p = Y. For instance, john.hasCitation = 124
stands for hasCitation(john,124), and for compactness, rp, (X, Y’) stands for X.p o Y.q, where
o € {<,>}. The second subscript in p, is omitted if it is clear from the context that p = g.
Example 1. For example, consider a KG in Figure[I|and the following rule

influences(X,Y) < colleagueOf (X, Z) A supervisorOf (Z,Y) A7 citation(Xs Z) -

This rule states that students are influenced by colleagues of their supervisors with a higher number
of citationd']

We can also define a classification relation mapping the feature to the probability of a logistic clas-
sification, a(wTX features + b), where w and b are parameters and o is the sigmoid function. As
we demonstrate later such rules can be integrated and learnt naturally in the Neural LP framework.

Rule Learning. Given a KG G the goal of rule learning is to extract rules from G, such that their
application to G results in an approximation of the ideal KG, which stores all correct facts.

e, influences(X,Y) < colleagueOf (X, Z) A supervisorOf (Z,Y) A hasCitation(X, V1) A hasCitation(Z, Va) A
Vi > Vs,
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The Neural LP method (Yang et al.| (2017))is among rule learning proposals, which learns a dis-
tribution over rules of the form in Eq. without comparison operators in an end-to-end fashion
by making use of gradient-based optimization. This approach relies on the TensorLog frame-
work (Cohen et al.| (2017)), which connects rule application with sparse matrix multiplications. In
TensorLog all entities are mapped to integers, and each entity ¢ is associated with a one-hot en-
coded vector v; € {0, 1}/l such that only its i-th entry is 1.

For example, every KG entity ¢ € C in Fig. is encoded as a 0/1 vector of length 5, since |C| = 5.
For every relation p € R \ R,, and every pair of entities 2,y € C a matrix M, € {0, 1}I€I*[C]
is defined such that its (y, ) entry, denoted by (Mp)y,, is 1 iff p(z,y) € G. For example, by
considering the KG in Fig. |1} for the relation p = citedIn we have

john pete bob articlel article2

0 0 0 0 0 john

0 0 0 0 0 pete
M,=10 0 0 0 0 bob

1 1 0 0 0 articlel

1 0 0 0 0 article2

The idea of TensorLog is to imitate application of rules for any entity X = =z by perform-
ing matrix multiplications M, ... Mg, M, v, = s, where v, is the indicator of entity x. Non-
zero entries in the vector s point to the entities y for which p(x,y) is derived by applying
the above rule on G. For example, the inference for the following rule influences(X,Y) «
colleagueOf (X, Z), supervisorOf (Z,Y) can be translated to

MsupervisorOf McolleagueOf Uy =S .

By setting v, = [1,0,0,0,0]" as indicator of john and applying the matrix multiplications, we
obtain s = [0,0,1,0,0] ", the indicator of bob. As M,,,..., M, are sparse, the matrix-vector
multiplication can be done efficiently, and the inference process is parallelizable on GPUs.

In Neural LP (Yang et al.|(2017)) above operators are used to learn for every head the formula

fla) = Zai H M, 2

i JEB:

where 7 indexes over all possible rules, «; is the confidence associated with the rule ; and 3; is an
ordered list of all relations appearing in these rules. The rules are read off from the solution of the
following optimization problem

i log < S o (Sl I qu)ym)> |

N 73 I

4 LEARNING RULES WITH NUMERICAL FEATURES AND NEGATIONS

As the main contribution of the paper we extend the Neural LP framework to allow us to use com-
parison operators with numerical values in the rule bodies, and also to handle negations of atoms.
These extensions are non-trivial as the Neural LP framework does not directly support facts over
numerical values: naively treating numerical constants as entities in C is intractable due to the ex-
plosion of the number of non-zero elements in the respective matrices. Similarly, naive treatment of
negated atoms would introduce dense matrices that would not be practical to operate on. Intuitively,
the main idea of our approach is to represent the necessary matrix operations implicitly, either using
dynamic programming, cumulative sums and permutations (for numerical comparison features) or
low rank factorizations (for negated atoms). Exploiting this structure lets us formulate the associated
TensorLog operators efficiently, and effectively integrate them into the Neural LP framework for
rule extraction.
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4.1 COMPARISON OPERATORS

Pair-wise Comparison. We start by implicitly representing the operators associated with numerical
comparators. Let p,q € (RU {NaN})'c‘ be the vector of two specific features, where NaN means
missing values. The comparison operator M < is defined as

pra

1 if p; < ¢, and p;, g; are not NaN,
0 otherwise.

(MT§q>ij - {
Intuitively, this matrix includes the binary indicator of the comparison, over all pairs of entities in
the knowledge graph that contain p and ¢. Unlike conventional sparse relations, the matrix M <

pra

is usually dense (i.e. it has O(n?) non-zero elements), thus a naive materialization would exceed
the typical GPU memory limit. However, in reality there is no need to explicitly materialize the
TensorLog relation matrix. Note that in the Neural LP inference chain we described above, all
that is needed is to efficiently compute the matrix-vector product between a relation matrix and some
vector representing the current probabilities in the inference chain.

Consider the special case that both p and ¢ are sorted in an ascending order as p and ¢ with operator

(< 2| and call the corresponding comparison matrix Mrg . Since G; < i1 and p; < Pjtq, we have
Pa

the following property (P1)

(M<)7;7j =0 = (M<)Z‘+17j =0

Tpa Tbq

(M,)ij=1 = (M, )ijr1=1

i.e., the resulting matrix Mr < is always effectively lower triangular in form (or more precisely, the
pq

transition from 1 to 0 is always monotonic in the matrix, even if the non-zero pattern is not precisely
lower triangular in the usual sense).

Now define v; = arg max; such that (Mri )ij =1, i.e., ; is the index of the last element equal to
prq

one. The main observation is that we can compute the required matrix-vector product using just this
~ vector, i.e. for any vector v,

(M <v); = Z v; = cumsum(v),, .

Tpq
7 <5<|C]

The respective values of ~y for Mrﬁ v can be precomputed on a CPU with linear complexity by
pq

dynamic programming since its value is monotonically increasing because of the property (P1).
Also, the cumsum operator can be calculated in O(|C|) time, with an efficient GPU parallelization
that in practice is even faster for large vectors.

For the general case when p and g are not sorted, we can first permute the input v to the sorted order,
perform the matrix-vector multiplication, then permute the result back to the original order. Since
permutation (a.k.a., index slicing) is a simple linear time operation, this does not affect the complex-
ity of the overall approach. Specifically, let P, and P, be the permutation matrices corresponding
to the argsort of p and g, respectively. Then the matrix-vector multiplication corresponding to the
comparison operator can be written as

M <v= (P} P)M(P,) P,)v =P, (MP,) = P] cumsun(P,v), ,

M

which can be computed in O(|C|) in parallel given /3, which are precomputed once in O(|C|log |C|).
Thus, the comparison operator needed for inference can be computed efficiently on a GPU.

Efficient Use of Numerical Comparisons via Multi-atom Symbol Matching.  Although the
above numerical comparison operator provides an efficient means for implementing such compar-
isons within the Neural LP framework, it has significant drawbacks as well. Specifically, because
the comparison operator is dense, when using it to match potential entities in the graph, it has the

This way, the comparison involving NaN always yields false and they will be stacked at the end.
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potential to create a huge number of candidate matches. For example, the operator (X.p < Y.p) will
link the entity with smallest p to all other entities with attribute p and will decrease the probability
of finding the correct target. To make the comparison operator more useful, it is natural to use it
jointly with some other sparse operator. For example,

colleagueOf (X, Y) N (X.p < Y.q)

would search only over neighbors of X in the graph that also obey the respective numerical re-
lation. Let the two parallel relations from above correspond to operators M oiicagueof and M <
prq

respectively. The above conjunction can be implemented in TensorLog via
(McolleagueOfU) ©) (Mrpﬁq U) = diag(McolleagueOfv) (MTEq U)7

where the symbol © denotes the element-wise multiplication. Unfortunately, the above relation is
not learnable in the standard Neural LP framework, since the latter only supports a single chain
of matrix-vector operations M, ... M,, M, v,, which does not allow for easy computation of this
Hadamard product, as it includes two “copies” of the vector v. However, we note that it is trivial
to simply cache intermediate values of v in the multiplication chain, and this way conveniently
compute such Hadamard products; in the knowledge graph setting, this exactly corresponds to the
ability to integrate symbol matching at multiple points in the inference chain.

Classification Operators. We may also consider more general rules, where the comparison is per-
formed not necessarily among two numerical attributes of a certain entity but rather functions over
such attributes. Note that such comparison for all entities can readily be expressed by TensorLog
operators, that is, the corresponding matrix for a given numerical value Z is a diagonal matrix. We
model the numerical value Z by making use of a logistic model. Namely, for each entity we collect
the feature vector ¢, which consists of all the numerical values from N that are in relation with the
given entity. The i" element of the diagonal in M is defined as sigmoid(w " ¢ +b), where the weight
vector w and the bias vector b are assumed to be learned. These parameters can easily be learnt in
the Neural LP framework via backpropagation.

Negated Operators. The negation of a relation p € R obtained by naively flipping all zeros to
ones and vice versa in the corresponding (sparse) matrix M), results in a dense matrix, which is
not supported directly in TensorLog. To compute the negated operator M,, € {0, 1}/€/*ICl we
employ the local closed-world assumption. For a given M), only the elements, that are in such rows
that contain at least one non-zero element, should be flipped. The matrix-vector multiplication for
the negated operator M), can be written as

Mpv = 1p1Tv - Myv, 3)

where 1, € {0, 1}/€l is the indicator vector for p such that (1,); = 0iff p; = NaN. Here, 1 is the
vector with all of its elements equal to 1. Note that for any TensorLog operator M, the products
M,v and lp(lTv) can be computed efficiently, therefore the negated operator M, can be computed
efficiently as well.

The trick in Eq. (3]) generalizes to the comparison operators Mr§q7 namely,

v _ T
Mr;qu = 1p1q v — Mrgqv .

E.g., ]\7[765 v = lpquv - Mr;qv. This way we can learn rules with negated atoms in the body.

Once the rules have been learned by our approach, we rely on the same procedure as in|Yang et al.
(2017) to decode them back to the form of Eq. E}

Connection to Rules with Aggregates over Knowledge Graphs. Note that, importantly, the rules
that we extract using the described procedure fall into the language of logic rules with external com-
putations in the spirit of [Eiter et al.| (2012), and are connected to the concept known as aggregates
in the knowledge representation community. Indeed, much of the formulation we have presented
here can be viewed as an instance of learning rules with aggregates from knowledge graphs. This
is an active area of current research, and our work here is significant in connection to this area in
that we present one of the first methods for learning rules using (a limited form of) such aggregates.
However, the discussion requires substantial additional notation in order to be concrete, and so we
defer this discussion to Appendix [A]
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Dataset IC] IRl | IRx] | 1Gn] |G] |G|
FB15K-237Num | 12493 | 237 116 | 27899 | 82992 | 10359
DBP15K 12867 | 278 | 251 | 48105 | 79345 | 9789

Numericall 1000 2 1 1000 5785 98
Numerical2 1000 3 2 2000 5800 100

Table 1: Dataset statistics, where G; stands for the KG corresponding to the testset.

5 EXPERIMENTAL RESULTS

In this section we report the results of our experimental evaluation, which focuses on the effective-
ness of our method against the state-of-art rule learning systems with respect to the predictive quality
of the learned rules. Specifically, we conduct experiments on a canonical knowledge graph comple-
tion task as described in|Yang et al.|(2017). In this task, the query and tail are given to the algorithm,
and the goal is to retrieve the related head. For example, if supervisorOf (turing, church) is not
present in the knowledge graph, then when presented with the relation supervisorOf and the entity
church, the goal is to exploit the existing triples in the KG to retrieve turing. In order to represent
the query as a continuous input to the neural controller, for each query we learn the embedding of the
lookup table. As in|Yang et al.[(2017), the embedding has dimension 118 and is randomly initialized
to unit norm vectors. The only difference between the parameters of the Neural-LP and our system
is that we set the learning rate to 1072, while in Yang et al.| (2017) it is set to 10~3, but both systems
are run to convergence, and this learning rate does not affect the final performance materially except
for making it converge faster. In all cases, we extracted rules with a maximum length of 5.

5.1 EXPERIMENTAL SETUP

Datasets. To evaluate and compare our approach for learning numerical rules, we considered the
following datasets containing knowledge graphs:

e FBI5K-237-num is a variant of Freebase knowledge graph with numerical values, where
the reverse relations have been removed (Garcia-Duran & Niepert| (2018))).

e DBPedial 5K is a fragment of the DBPedia knowledge graph Lehmann et al.| (2015) re-
stricted to numerical facts |Garcia-Duran & Niepert| (2018)).

e Numericall is a synthetic dataset with 1000 entities, each containing a single numerical
value (generated uniformly from 1 to 1000). Each entity has 50 randomly-chosen neigh-
bors, and the goal is to find neighbors with the closest value to the current entity given the
constraint that the neighbor’s value must be higher.

e Numerical? is a variant of the Numericall dataset, where each entity has two numerical
values, “balance” and “debt”; under the same generation process as above, the goal is to
find a neighbor of each node with the largest delta between balance and debt.

The statistics of the knowledge graphs used in our experiments is presented in Table[I] where apart
from the number of KG entities (|C|), facts (|G|) and the size of the test set (G;), we also report the
number of numerical relations (|R,|) and numerical facts (|G, |). We use 80% of the KG as the
training set, and 10% for test set and the same for validation. The KG is split randomly with the
constraint that only non-numerical facts appear in the test set, since we do not learn rules capable of
predicting missing facts over numerical entities.

Baselines. We compared our proposed approach, which we refer to as Neural-Num-LP against the
following two baselines:

° AnyBURlﬂ (Meilicke et al.| (2019)) is an anytime bottom-up method for learning Horn
rules, i.e. rules with only positive atoms and no comparison operators. To tune the system

we use the default parameters as described on the system webpage and set the timeout to
5000 seconds.

° Neural—LPE](Yang et al.[(2017)) is a differential rule learning system described in Section

3http://web.informatik.uni-mannheim.de/AnyBURL/
*https://github.com/fanyangxyz/Neural-LP
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Dataset .Numericall NpmericalZ FB 15K-237-num DBP 15K-num
Hit@10 | MRR | Hit@10 | MRR | Hit@10 | MRR Hit@10 | MRR
AnyBurl 0.031 0.009 | 0.685 0.509 | 0.426 0.244 0.522 0.371
Neural-LP 0.240 - 0.295 - 0.362* 0.240* | 0.436 -
Neural-Num-LP | 1.000 0.941 | 1.000 0.837 | 0.415 0.259 0.682 0.451

Table 2: Comparing our approach against current state-of-the-art rule learning methods. * annotated
entries obtained from|Yang et al.|(2017).

rio prefer(X,Y) < neighbour (X, Y) A 17 .omer(X> Y) A F(Y)

r%: prefer(X,Y) + neighbour(X, Y) A f(Y) A hasBalance(Y, Z;) A borrowed(Y, Zz)

r®  symptomHasRiskFactors(X,Y) < f(X) A symptomOfDisease(X, Z)A
diseaseHasRiskFactors(Z,Y)

r*:  defends(X,Y) + ministerOfDefense(X, Z) A f(Z) A militaryBranchOfCountry(Z, Y)

Table 3: Example rules generated by Neural-LP-N on the DBPedial 5K knowledge graph. See text
for a discussion of these rules.

Following the common practice Meilicke et al.|(2019); |Yang et al.|(2017) we compute the standard
evaluation metrics used for the link prediction task [Bordes et al.| (2013): Hit@ 0, the number of
correct head terms predicted out of the top 10 predictions; and mean reciprocal rank (MRR), the
mean of one over the rank of the correct answer in the list of predictions. We have implemented our
approach for learning numerical rules from knowledge graphs in python using the PyTorch library,
and conducted all experiments on a machine GTX 1080 TO GPU with 11 GB RAM.

5.2 RESULTS

In Table 2] we report the quality of predictions obtained by our method and the baselines. Since the
Neural-LP framework |Yang et al.| (2017)) cannot handle the Freebase with numerical information,
we present the results for FBI5K-237 without numerical facts instead, which are taken from [Yang
et al.| (2017). The MRR values are missing for Neural-LP in several places, as the implementation
provided by the authors does not have the respective function implemented.

As expected, on the synthetic datasets Numericall and Numerical2, our method significantly out-
performs the baselines. This is natural, since these datasets are constructed so that reasoning about
numerical attributes is required for almost any prediction task presented to the algorithms. And
notably, the proposed approach is able to achieve 100% Hit@ 10 rates, as it is able to correctly iden-
tify these relevant numerical properties. This contrasts to the baseline Neural-LP approach, which is
unable to incorporate such information, and thus predicts the heads of each relation more or less ran-
domly. The datasets are also particularly challenging for AnyBURL, because AnyBURL treats each
numerical value as an independent entity, and thus cannot perform efficient comparative reasoning.

Most compellingly, however, similar observations can be made about the real-world datasets as
well. Indeed, since all entities in the KG including numerical ones are treated equally by the avail-
able systems, intuitively both AnyBurl and Neural-LP try to find frequent patterns in KGs, and use
these to predict the missing facts. The numerical rules mined by our system are much more ex-
pressive and substantially improve the performance of the approach in some cases. Specifically,
our method outperforms the Neural-LP approach in terms of all metrics on both the FBI5K-237-
num and DBPedial 5K datasets. The AnyBURL dataset is still competitive with our approach on
the FBI5K-237-num dataset (better in terms of Hit@10 but worse in terms of MRR), but our ap-
proach substantially outperforms it on the DBPedial 5K, where our reasoning involving numerical
comparison is able to substantially improve upon the existing methods.

Examples of extracted rules. In Figure[3|we present examples of the rules learned by our system.
In particular, the rules r1, and 72 have been extracted from the datesets Numericall and Numer-
ical2 respectively, the rule r3 from FBI5K-237-num and the rest of the rules from DBPedial 5K.
For example, 7! is the rule with a comparison operator, which states that a person X prefers neigh-
bours with the maximal order that is less than X’s. The rule 72 reflects that symptoms with certain
properties (described by the function f) typically provoke risk factors inherited from diseases which
have these symptoms. Here, the function f is the sigmoid over a linear combination of numerical
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properties of X. Finally, * states that prime ministers of countries with certain numerical properties
(described by the function f), are supported by military branches of the given country. Here, the
function f is again the sigmoid over a linear combination of numerical properties of Y.

6 CONCLUSION

In this paper we have addressed the problem of learning numerical rules from large knowledge
graphs. Especially we have considered rules, where in the rule bodies numerical comparison oper-
ators and aggregates (i.e. external oracle queries) that enable us to aggregate numerical properties
of entities are allowed. The Neural-LP method is a recent appealing learning approach based on
TensorLog; however it does not support numerical rules, as they would result in dense matrix
operations. We have introduced an extension to the Neural-LP framework that allows for learning
such rules from KGs by efficiently expressing comparison and classification operators, negation as
well as multi-atom symbol matching. We have shown that our proposed extension outperforms pre-
vious techniques that do not support numerical information with respect to the quality of predictions
that they produce. The future research might focus on a further extension of our current approach
by allowing for more general rule forms with complex external computations as well as rules with
existential variables in the head.
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A INTERPRETATION AS RULES WITH EXTERNAL COMPUTATIONS

We have presented our approach for learning rules that support numerical comparison among en-
tities and classification of entities based on aggregation of their numerical features, and have also
highlighted the algorithmic and numerical approaches to handling such rules.

In this Appendix we draw a connection between the rules of our focus and formalisms known in the
knowledge representation community.

In the general case the rule features that we consider are inlined with logic rules that allow for
external computations, i.e. “oracle programs” that might appear in the body of the rules as part of
a generic black-box computation (in the spirit of answer set programs with external functions [Eiter
et al.|(2012)). In the case of simplest numerical comparisons, for example, the corresponding oracle
may check whether some numerical feature of one entity is larger than some numerical feature of
another one. In a more complex setting an oracle may aggregate numerical features of an entity by
computing their linear combination, and compare the result with a certain value.

Since the rules that we are targeting account both for relational and numerical information, they can
be characterized as restricted explainable structures simultaneously supporting symbolic and sub-
symbolic representations and inference. Learning such structures is a long-standing and important
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goal of artificial intelligence, which has recently gained special attention (see e.g.,[Manhaeve et al.
(2018); 'Weber et al.|(2019); Rocktiaschel & Riedel (2017); Evans & Grefenstette| (2018)).

The challenge of learning such rules with aggregates is also a central one in much work on
KGs |Galarraga & Suchanek (2014). Indeed, discovering patterns by learning rules from knowl-
edge graphs enables us to obtain concise descriptions of a domain as well as to complete and clean
the data. Especially by considering numerical values such as age, weight or experimental measure-
ments, which are common, e.g., for scientific knowledge graphs |Auer et al.| (2018)), learned rules
might reveal interesting correlations in the data or even lead to scientific discoveries.

Our proposed procedure is the first approach that is capable of learning such rules (even though we
of course do not allow for arbitrary aggregates, the fact that we incorporate such learning at all is a
substantial contribution to the KG literature). Because this is a key capability of our approach, in this
section we further formally present the exact structure of the rules that we support and illustrate them
by examples, motivating their applicability in various scenarios. The notation and definitions here
are not crucial for understanding the remainder of the paper, but will provide context and clarify the
contribution of the current work from the perspective of the knowledge representation community.

A.1 RULES WITH AGGREGATES

We consider aggregate atoms of the form f{Y7,...,Y,: p1(X,Y),...,pn(X,Y)} o Z, where f
is an aggregate function symbol, {Y3,...,Y, : p1(X,Y),...,pn(X,Y)} is called an aggregate
element, o € {<, >} and Z is a numerical value. For any aggregate in the above form we assume
that p1,...,pn € Ry, i.€., p1,...,p, are numerical features of an entity X.

Example 2. The aggregate element {Y1,Ys: citedIn(X,Y1), singleAuthorArticles(X, Y2)} de-
notes the numerical feature vector containing ¢ = (Y1,Y2), where Y1 is the number of citations X
has, and Y5 is the number of articles with X being a single author.

The function f can in principle be arbitrarily complex and can be even represented by a neural
network. In our work, as a starting point we restrict ourselves to linear functions of the following
form: sigmoid(w " ¢ + b), where ¢ is the respective numerical feature vector for the target entity X.

Example 3. Reconsider the knowledge graph in Figure [I| extended with the facts
singleAuthorArticles(pete, 6), singleAuthorArticles(john, 20). For the aggregate f{Y1,Ys :
hasCitation(X, Y1), singleAuthorArticles(X,Y2)} > 0.5, with f being the sigmoid function of
the above form, suppose that w = (1,10) and b = 200. We have ¢ = (50,6) for X = pete and
© = (124, 8) for X = john. Since 50 4+ 6 - 10 — 200 < 0.5, for pete the respective aggregate atom
evaluates to false, while for john it is true, which is easy to verify based on analogous computations.

In this work we have described procedures for learning rules that have the following form
p(X,Y) (X, Z) Ao o ANgn(Z,,Y). 4

where p; (Y, X) is an atom, and every q,,(Y, Z,,), ..., q1(Z1, X) is either an atom, a negated atom,
an aggregate atom of the form f{Y1,..., Y, : p1(X1, V), . ., 0m(X1,Ym)} 0 0.5, 0 € {<, >}
with p1,...pm € R, and f being a sigmoid function or it is a comparison concunction of the form

1og(Z,Y) < p(Z,N) N q(Y, M) NN o M.
where o € {<,>} and Y, Z are present in some rule body atom elsewhere.

As described in Section[d]the above condition that Y, Z must be connected via some relation ensures
that the entities that participate in the comparison are semantically related to each other, which is
needed to avoid irrelevant comparisons.

Example 4. Consider the following rule

topStudentOf (Z, Z") < f{ Y, Yo : hasCitation(X, Y;), singleAuthorArticles(X, Y)} > 0.5/
supervisorOf (X, Z) A affiliated With(X , Z').

Intuitively, the aggregate function computes a certain index for a person based on the number of his
citations and the number of publications, with him being a single author. The rule states that people
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with an index above a certain threshold supervise only top students of the university with which they
are affilliated.

The following expression demostrates rule with a comparison atom:

influences(X, V') <—colleagueOf (X, Z) N supervisorOf (Z, Y)A
hasCitation(X, N) A hasCitation(Z, M), N > M.

This rule states that students are typically influenced by colleagues of their supervisors with a higher
number of citations. The expression r,%ascu ation Y Z) can be used as a shortcut for the last three
atoms in the body of the above rule.

A.2 EXECUTION OF RULES WITH AGGREGATES

The execution of rules with negation and aggregates that we focus on is defined in the standard way
(see|Faber et al.|(2011); [Eiter et al.|(2012)) for details). More precisely, let G be a KG, r a rule over G,
and a be a standard atom from G. Then, rule =g a holds if there is a variable assignment that maps
atoms in the positive part of rule body (body:rul .) in G such that it does not map any of the atoms in
the negative part of rule body (body,,.) in G. For aggregate atoms a we have that rule =g a if the
value of the respective aggregate function on the KG satisfies the given inequality constraint.

G = GU{a|r [Eg a} extends G with atoms derived from G by applying r. Note that to avoid
propagating uncertain predictions, given a set of rules R we execute every rule in R on G indepen-
dently, i.e. Gp = UT cR G,. Given additional syntactic restrictions on rules in R, which disallow
cycles through negation consistency is ensured.
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