
Under review as a conference paper at ICLR 2019

PENETRATING THE FOG: THE PATH TO EFFICIENT
CNN MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the increasing demand to deploy convolutional neural networks (CNNs) on
mobile platforms, the sparse kernel approach was proposed, which could save more
parameters than the standard convolution while maintaining accuracy. However,
despite the great potential, no prior research has pointed out how to craft an sparse
kernel design with such potential (i.e., effective design), and all prior works just
adopt simple combinations of existing sparse kernels such as group convolution.
Meanwhile due to the large design space it is also impossible to try all combinations
of existing sparse kernels. In this paper, we are the first in the field to consider
how to craft an effective sparse kernel design by eliminating the large design
space. Specifically, we present a sparse kernel scheme to illustrate how to reduce
the space from three aspects. First, in terms of composition we remove designs
composed of repeated layers. Second, to remove designs with large accuracy
degradation, we find an unified property named information field behind various
sparse kernel designs, which could directly indicate the final accuracy. Last, we
remove designs in two cases where a better parameter efficiency could be achieved.
Additionally, we provide detailed efficiency analysis on the final 4 designs in our
scheme. Experimental results validate the idea of our scheme by showing that our
scheme is able to find designs which are more efficient in using parameters and
computation with similar or higher accuracy.

1 INTRODUCTION

CNNs have achieved unprecedented success in visual recognition tasks. The development of mobile
devices drives the increasing demand to deploy these deep networks on mobile platforms such as cell
phones and self-driving cars. However, CNNs are usually resource-intensive, making them difficult
to deploy on these memory-constrained and energy-limited platforms.

To enable the deployment, one intuitive idea is to reduce the model size. Model compression
is the major research trend for it. Previously several techniques have been proposed, including
pruning (LeCun et al., 1990), quantization (Soudry et al., 2014) and low rank approximation (Denton
et al., 2014). Though these approaches can can offer a reasonable parameter reduction with minor
accuracy degradation, they suffer from the three drawbacks: 1) the irregular network structure after
compression, which limits performance and throughput on GPU; 2) the increased training complexity
due to the additional compression or re-training process; and 3) the heuristic compression ratios
depending on networks, which cannot be precisely controlled.

Recently the sparse kernel approach was proposed to mitigate these problems by directly training net-
works using structural (large granularity) sparse convolutional kernels with fixed compression ratios.
The idea of sparse kernel was originally proposed as different types of convolutional approach. Later
researchers explore their usages in the context of CNNs by combining some of these sparse kernels
to save parameters/computation against the standard convolution. For example, MobileNets (Howard
et al., 2017) realize 7x parameter savings with only 1% accuracy loss by adopting the combination of
two sparse kernels, depthwise convolution (Sifre & Mallat, 2014) and pointwise convoluiton (Lin
et al., 2013), to replace the standard convolution in their networks.

However, despite the great potential with sparse kernel approach to save parameters/computation
while maintaining accuracy, it is still mysterious in the field regarding how to craft an sparse kernel
design with such potential (i.e., effective sparse kernel design). Prior works like MobileNet (Howard
et al., 2017) and Xception (Chollet, 2016) just adopt simple combinations of existing sparse kernels,
and no one really points out the reasons why they choose such kind of design. Meanwhile, it has
been a long-existing question in the field whether there is any other sparse kernel design that is more
efficient than all state-of-the-art ones while also maintaining a similar accuracy with the standard
convolution.

1

Under review as a conference paper at ICLR 2019

To answer this question, a native idea is to try all possible combinations and get the final accuracy for
each of them. Unfortunately, the number of combination will grow exponentially with the number of
kernels in a design, and thus it is infeasible to train each of them. Specifically, even if we limit the
design space to four common types of sparse kernels – group convolution (Krizhevsky et al., 2012),
depthwise convolution (Sifre & Mallat, 2014), pointwise convolution (Lin et al., 2013) and pointwise
group convolution (Zhang et al., 2017) – the total number of possible combinations would be 4k,
given that k is the number of sparse kernels we allow to use in a design (note that each sparse kernel
can appear more than once in a design).

In this paper, we craft the effective sparse kernel design by efficiently eliminating poor candidates
from the large design space. Specifically, we reduce the design space from three aspects: composition,
performance and efficiency. First, observing that in normal CNNs it is quite common to have multiple
blocks which contain repeated patterns such as layers or structures, we eliminate the design space
by ignoring the combinations including repeated patterns. Second, realizing that removing designs
with large accuracy degradation would significantly reduce the design space, we identify a easily
measurable quantity named information field behind various sparse kernel designs, which is closely
related to the model accuracy. We get rid of designs that lead to a smaller information field compared
to the standard convolution model. Last, in order to achieve a better parameter efficiency, we remove
redundant sparse kernels in a design if the same size of information field is already retained by other
sparse kernels in the design. With all aforementioned knowledge, we present a sparse kernel scheme
that incorporates the final four different designs manually reduced from the original design space.

Additionally, in practice, researchers would also like to select the most parameter/computation
efficient sparse kernel designs based on their needs, which drives the demand to study the efficiency
for different sparse kernel designs. Previously no research has investigated on the efficiency for any
sparse kernel design. In this paper, three aspects of efficiency are addressed for each of the sparse
kernel designs in our scheme: 1) what are the factors which could affect the efficiency for each
design? 2) how does each factor affect the efficiency alone? 3) when is the best efficiency achieved
combining all these factors in different real situations?

Besides, we show that the accuracy of models composed of new designs in our scheme are better than
that of all state-of-the-art methods under the same constraint of parameters, which implies that more
efficient designs are constructed by our scheme and again validates the effectiveness of our idea.

The contributions of our paper can be summarized as follows:

• We are the first in the field to point out that the information field is the key for the sparse
kernel designs. Meanwhile we observe the model accuracy is positively correlated to the
size of the information field.
• We present a sparse kernel scheme to illustrate how to eliminate the original design space

from three aspects and incorporate the final 4 types of designs along with rigorous mathe-
matical foundation on the efficiency.
• We provide some potential network designs which are in the scope of our scheme and have

not been explored yet and show that they could have superior performances.

2 PRELIMINARIES

We first give a brief introduction to the standard convolution and the four common styles of sparse
kernels.

2.1 STANDARD CONVOLUTION

Standard convolution is the basic component in most CNN models, kernels of which can be described
as a 4-dimensional tensor: W ∈ RC×X×Y×F , where C and F are the numbers of the input and the
output channels and X and Y are the spatial dimensions of the kernels. Let I ∈ RC×U×V be the
input tensor, where U and V denote the spatial dimensions of the feature maps. Therefore, the output
activation at the output feature map f and the spatial location (x, y) can be expressed as,

T (f, x, y) =

C∑
c=1

X∑
x′=1

Y∑
y′=1

I(c, x− x′, y − y′)W (c, x′, y′, f)

2.2 GROUP CONVOLUTION

Group convolution is first used in AlexNet (Krizhevsky et al., 2012) for distributing the model over
two GPUs. The idea of it is to split both input and output channels into disjoint groups and each

2

Under review as a conference paper at ICLR 2019

output group is connected to a single input group and vice versa. By doing so, each output channel
will only depend on a fraction of input channels instead of the entire ones, thus a large amount of
parameters and computation could be saved. Considering the number of group as M , the output
activation (f, x, y) can be calculated as,

T (f, x, y) =

C/M∑
c′=1

X∑
x′=1

Y∑
y′=1

I(
C

M
bf − 1

F
M

c+ c′, x− x′, y − y′)W (c′, x′, y′, f)

2.3 DEPTHWISE CONVOLUTION

The idea of depthwise convolution is similar to the group convolution, both of which sparsifies kernels
in the channel extent. In fact, depthwise convolution can be regarded as an extreme case of group
convolution when the number of groups is exactly the same with the number of input channels. Also
notice that in practice usually the number of channels does not change after the depthwise convolution
is applied. Thus, the equation above can be further rewritten as,

T (f, x, y) =

X∑
x′=1

Y∑
y′=1

I(f, x− x′, y − y′)W (x′, y′, f)

2.4 POINTWISE CONVOLUTION

Pointwise convolution is actually a 1× 1 standard convolution. Different from the group convolution,
pointwise convolution achieves the sparsity over the spatial extent by using kernels with 1× 1 spatial
size. Similarly, the equation below shows how to calculate one output activation from the pointwise
convolution in detail,

T (f, x, y) =

C∑
c=1

I(c, x, y)W (c, f)

2.5 POINTWISE GROUP CONVOLUTION

To sparsify kernels in both the channel and the spatial extents, the group convolution can be combined
together with the pointwise convolution, i.e., pointwise group convolution. Besides the use of 1× 1
spatial kernel size, in pointwise group convolution each output channel will also depend on a portion
of input channels. The specific calculations for one output activation can be found from the equation
below,

T (f, x, y) =

C/M∑
c′=1

I(
C

M
bf − 1

F
M

c+ c′, x, y)W (c′, f)

3 SPARSE KERNEL SCHEME

Recall that the total number of combinations will grow exponentially with the number of kernels
in a design, which could result in a large design space. In this paper, we craft the effective sparse
kernel design (i.e., design that consumes less parameters but maintains accuracy with the standard
convolution) by efficiently examining the design space.

Specifically, first we determine the initial design space by setting the maximum number of sparse
kernels (length). To decide this number, two aspects are considered: 1) in order to give the potential
to find more efficient designs which have not been explored yet, the maximum length of sparse kernel
design should be greater than the numbers of all state-of-the-art ones; 2) it is also obvious that the
greater length is more likely to consume more parameters, which contradicts our goal to find more
efficient designs. Therefore combining the two aspects together, we set the maximum length to 6,
which is not only greater than the largest number (i.e., 3) in all current designs, but also makes designs
with the maximum length could still be able to be more efficient than the standard convolution.

3

Under review as a conference paper at ICLR 2019

3.1 REDUCE THE DESIGN SPACE

We then start to reduce the design space from three aspects: composition, performance and efficiency.
In the following paragraphs, we will introduce the three aspects in detail.

Composition. The overall layout in CNNs provides a good insight for us to quickly reduce the
design space. Specifically, in normal CNNs it is quite common to have multiple stages/blocks which
contain repeated patterns such as layers or structures. For example, in both VGG (Simonyan &
Zisserman, 2014) and ResNet (He et al., 2016a) there are 4 stages and inside each stage are several
same repeated layers. Inspired by the fact, when we replace the standard convolution using various
sparse kernel designs intuitively there is no need to add these repeated patterns to the original place
of each standard convolutional layer. For example, suppose there are three types of sparse kernels,
A, B and C, then the following combinations should be removed as containing repeated patterns:
AAAAAA, ABABAB and ABCABC. AAAAAA contains the repeated pattern of A, while ABABAB
and ABCABC have the patterns of AB and ABC respectively.

Repeated patterns are also easy to detect, which makes the entire process extremely fast. To find such
patterns, we can use the regular expression matching. The corresponding expression for the matched
combinations should be (.+?)1+, where (.+?) denotes the first capturing group which contains
at least one character, but as few as possible, and 1+ means try to match the same character(s) as
most recently matched by the first group as many times as possible. As a result, we can efficiently
eliminate the design space with the help of the regular expression.

Conv

In

Out

Conv

In

Out

(a) Standard

In

DW

PW

In

DW

PW

Out

Out

(b) DW+PW

In

Out

GConv

Permute

PWGConv

In

Out

GConv

Permute

PWGConv

(c) GC+PWG

In

Out

PW

DW

PW

In

Out

PW

DW

PW

(d) PW+DW+PW

In

Out

PWGConv

Permute

DW

PWGConv

In

Out

PWGConv
Permute

DW

PWGConv

(e) PWG+DW+PWG

Figure 1: Spatial and channel dependency of the standard convolution and four different sparse
kernel designs. The spatial kernel size is 3× 3. Green edges denote the spatial dependency of output
activation and blue edges represent the channel dependency.

Performance. There are lots of sparse kernel designs that could result in large accuracy degradation,
which gives us another opportunity to greatly reduce the design space. To get rid of them, we need an
easily measurable (i.e., no training) property behind various designs that could directly indicate the
final accuracy. Fortunately, after analyzing many prior works and conducting many experimental
studies, we do find such property. We name it information field.
Definition 1. (Information Field) Information field is the area in input tensor which one or more
convolutional layers use to generate one output activation. For one output tensor, sizes of information
fields for all activations are usually the same.

Figure 1a shows the spatial and channel dependency for the standard convolution, from which we can
also find out the size of information field. Assuming the spatial kernel size is 3× 3, starting from
any output node in the figure we can see that in terms of the channel dimension each output channel
will connect to all input channels and for the spatial dimensions one output activation will depend on
activations inside a 3× 3 spatial area. Therefore the information field for the standard convolution
will be (3, 3, C) where C is the number of input channels.

We find that information field is the key behind all sparse kernel designs, and also observe the model
accuracy is positively correlated to the size of information field, the idea of which is also validated by
later experiments in Section 4.2.

With the help of information field, sparse kernel designs that would result in large accuracy degra-
dation could be easily removed from the original design space without actually training the models.
Specifically, first for each design we calculate the size of information field by adding up it sequentially
from the leftmost kernel to the rightmost one. For example, we use a three-dimensional vector, (1,1,1),
to represent the initial values of information field on three different dimensions (i.e., two spatial
dimensions and one channel dimension), then corresponding values of the vector will be updated
based on the known properties of the sparse kernel encountered. After the rightmost kernel, the final

4

Under review as a conference paper at ICLR 2019

vector we get will be the size of information field for the design. Finally we compare it with that of
the standard convolution. If the two sizes are the same, we will keep the design, otherwise we will
simply discard it. For instance, the design composed of one depthwise convolution will be removed
since the information field of it only contains one channel area instead of the full channel space from
the standard convolution.

Efficiency. Considering a better parameter efficiency more designs could be removed. In paragraphs
above, we only eliminate designs in terms of the accuracy via checking the size of information field.
Recall that our goal is also to find efficient designs. Thus, while ensuring the accuracy we also need
to take the efficiency into consideration. In fact, there are two cases that could worsen the efficiency
and should be regarded as redundant designs: 1) it can be easily verified that the size of information
field will never decrease when passing through sparse kernels in a design, thus there could be one
situation that after one kernel, the size of information field still remains the same, which means the
kernel does not help with regards to the information field even if the final size is the same as the
standard convolution; 2) it is also possible that the same size of information field with the standard
convolution is already retained by a fraction of sparse kernels in a design, in which case, other kernels
can also be considered as not contributing to the information field. In terms of parameter efficiency
designs in both of the two cases contain non-contributed kernels, therefore we can remove them from
the original design space.

To detect designs within the two cases, we introduce a early-stop mechanism during the process to
check the size of information field above. Specifically, as per the two cases we check two things when
adding up information field from the leftmost kernel in a design: 1) we record the size of information
field before entering each kernel and compare it with the new size calculated after that kernel. If the
two sizes are the same, we stop adding up information field for the design and directly go to the next
one; 2) we add another conditional check every time we get a new size of information field. If the size
is still less than or equal to that of the standard convolution, we will continue to add up information
field from the next kernel, otherwise we will stop and go to the next design.

With all aforementioned knowledge, we manually reduce the original design space (41+42+ · · ·+46)
to 4 different types of sparse kernel designs1. In the next section we will present the 4 final designs
respectively.

Also notice that other techniques to save parameters such as bottleneck structure (He et al., 2016a)
appear to be complimentary to our approach, which can be combined together to further improve
parameter efficiency while maintaining accuracy. To validate this idea, we also consider the bottleneck
structure when reducing the design space.

3.2 FINAL SPARSE KERNEL DESIGNS

Depthwise Convolution + Pointwise Convolution. Unlike the standard convolution which com-
bines spatial and channel information together to calculate the output, the combination of depthwise
convolution (DW) and pointwise convolution (PW) split the two kinds of information and deal with
them separately. The output activation at location (f, x, y) can be written as

T (f, x, y) =

C∑
c=1

[

X∑
x′=1

Y∑
y′=1

I(c, x− x′, y − y′)W1(c, x
′, y′)]W2(c, f),

where W1 and W2 correspond to the kernels of depthwise convolution and pointwise convolution
respectively. The dependency of such design is depicted in Figure 1b, from which we can easily
verify that the size of information field is the same with the standard convolution.

Group Convolution + Pointwise Group Convolution. The combination of group convolution
(GC) and pointwise group convolution (PWG) can be regarded as an extension for the design
above, where group convolution is applied on the pointwise convolution. However, simply using
pointwise group convolution would reduce the size of information field on the channel dimension
since depthwise convolution will not deal with any channel information. To recover the information
field depthwise convolution is replaced with the group convolution. Meanwhile channel permutation
should be added between the two layers. Assuming the number of channels does not change after the

1During the process to eliminate the design space, we allow channel permutation within the designs, and
when a group convolution is encountered, we will try all possible numbers of groups to calculate the size
of information field. As long as there is one group number that can pass the entire process, we will keep the
design. In case there are multiple group numbers passing the process, we will consider them as same design.

5

Under review as a conference paper at ICLR 2019

first group convolution, the output activation can be calculated as

T (f, x, y) =

C/N∑
k′=1

[

C/M∑
c′=1

X∑
x′=1

Y∑
y′=1

I(
C

M
bk − 1

C
M

c+ c′, x− x′, y − y′)W1(c
′, x′, y′, k)]W2(k

′, f),

where k = C
N b

f−1
F
N

c+ k′, M and N denote numbers of groups for group convolution and pointwise
group convolution and W1 and W2 correspond to the kernels of group convolution and pointwise
group convolution respectively. Figure 1c shows the information field of this design clearly.

Pointwise Convolution + Depthwise Convolution + Pointwise Convolution. Although two
pointwise convolutions do not ensure a better efficiency in our scheme, the combination with bottle-
neck structure can help ease the problem, which makes it survive as one of the last designs. Following
the normal practice we set bottleneck ratio to 1 : 4, which implies the ratio of bottleneck channels
to output channels. Also notice that more parameters could be saved if we place the depthwise
convolution between the two pointwise convolutions since now depthwise convolution would only
apply on a reduced number of channels. As a result, the output activation T (f, x, y) is calculated as

T (f, x, y) =

K∑
k=1

[
X∑
x′=1

Y∑
y′=1

[
C∑
c=1

I(c, x− x′, y − y′)W1(c, k)]W2(k, x
′, y′)]W3(k, f),

where K denote the number of bottleneck channels and W1, W2 and W3 correspond to the kernels of
first pointwise convolution, depthwise convolution and second pointwise convolution respectively.
Along with the equation Figure 1d shows that the information field of such design is same with the
standard convolution.

Pointwise Group Convolution + Depthwise Convolution + Pointwise Group Convolution. The
combination of two pointwise group convolutions and one depthwise convolution can also ensure the
same size of information field. Similarly, channel permutation is needed. The bottleneck structure is
also adopted to achieve a better efficiency. The output activation is calculated as

T (f, x, y) =

K/N∑
k′=1

[

X∑
x′=1

Y∑
y′=1

[

C/M∑
c′=1

I(
C

M
bk − 1

K
M

c+c′, x−x′, y−y′)W1(c
′, k)]W2(k, x

′, y′)]W3(k
′, f),

where k = K
N b

f−1
F
N

c+ k′, K, M and N represent the number of bottleneck channels and numbers of
groups for first pointwise group convolution and second pointwise group convolution and W1, W2
and W3 correspond to the kernels of first pointwise group convolution, depthwise convolution and
second pointwise group convolution respectively. Both the equation and Figure 1e could verify the
same size of information field with the standard convolution.

3.3 EFFICIENCY ANALYSIS

In addition, we find that the efficiency for different designs in our scheme do not always overlap.
Thus to save the pain for researchers to find the most parameter/computation efficient designs based
on their needs, we study the efficiency for each of the designs. Specifically, we consider two real
situations which are frequently encountered by researchers when applying sparse kernel designs (i.e.,
given the input and the output for a layer and given the total number of parameters for a layer) and
give accurate conditions when the best efficiency could be achieved.

3.3.1 DEPTHWISE CONVOLUTION + POINTWISE CONVOLUTION.

Efficiency given the input and the output. Given the numbers of input and output channels C
and F . The total number of parameters after applying this design is 9C + CF , and the number of
parameters for standard convolution is 9CF . Therefore the parameter efficiency of such method is
1/F + 1/9 represented by the ratio of parameters after and before applying such design. Clearly,
given C and F , the parameter efficiency is always the same.

Efficiency given the total amount of parameters. It can be easily verified that given the total
number of parameters the greatest width is reached when the best efficiency is achieved. Thus the
condition for the best efficiency given the total amount of parameters should be the same with the
one when the greatest width is reached.

6

Under review as a conference paper at ICLR 2019

The total number of parameters P for the design can be expressed as

P = 3 · 3 · C + 1 · 1 · C · F,
when studying the greatest width, we need to assume the ratio between C and F does not change,
thus the number of output channels F could be written like F = α · C where usually α ∈ N+. As a
result, from the equation above when P is fixed, the greatest width G (i.e., −9+

√
81+4αP
2α) will also

be fixed, which indicates that the parameter efficiency is always the same.

3.3.2 GROUP CONVOLUTION + POINTWISE GROUP CONVOLUTION.

Efficiency given the input and the output. Similarly, we use the ratio of parameters to show
parameter efficiency of this design. Given C and F , the number of parameters after using such design
can be written as 3 · 3 · CM · C + 1 · 1 · CN · F = 9C2

M + CF
N . Since the number of parameters for

standard convolution is 9CF , the ratio will become C
MF + 1

9N . Notice that to ensure the same size
of information field with standard convolution, in any input group of the second layer there should
be at least one output channel from each one of the output groups of the first layer, therefore M ·N
should be less than or equal to the number of output channels from the first layer, i.e., M ·N ≤ C.
To further illustrate the relationship between the best parameter efficiency and the choices of M and
N , we have the following theorem (the proof is given in the Appendix):
Theorem 1. With the same size of information field, the best parameter efficiency is achieved if and
only if the product of the two group numbers equals the channel number of the intermediate layer.

As per the theorem, the best parameter efficiency can be achieved only when M ·N = C. Thus the
ratio will become N

F + 1
9N . When F is a fixed number, N is the only variable which could affect the

efficiency. Since N
F + 1

9N ≥
2
3

√
1
F , the best efficiency can be achieved when N

F = 1
9N , or N =

√
F
3 .

Efficiency given the total amount of parameters. Given the total number of parameters P for
one design, both M and N could affect the width of the network. As per Theorem 1 the greatest C
can be reached only when C =M ·N . When F = α · C, P could be written like

P = 3 · 3 ·N ·M ·N + 1 · 1 ·M · α ·M ·N =MN(9N + αM)

≥MN · 2
√
9αMN = 6

√
αC

3
2

Given the number of parameters P , width C has a upper bound when 9N = αM , which is also the
condition for the best efficiency. The greatest width G is (P

6
√
α
)

2
3 .

3.3.3 POINTWISE CONVOLUTION + DEPTHWISE CONVOLUTION + POINTWISE
CONVOLUTION.

Efficiency given the input and the output. Same as before, given the number of input channels
C, bottleneck channels K and output channels F . After applying the design, the total amount of
parameters is reduced to 1 · 1 · C ·K + 3 · 3 ·K + 1 · 1 ·K · F = K(C + F + 9). The number
of parameters for standard convolution is still 9CF . Notice that K = F/4, therefore the ratio can
be further expressed as C+F+9

36C . Clearly, given C, K and F , such design will also result in a fixed
efficiency.

Efficiency given the total amount of parameters. When F = α · C and K = F/4, the total
number of parameters P will be

P = 1 · 1 · C · αC
4

+ 3 · 3 · αC
4

+ 1 · 1 · αC
4
· αC,

when P is fixed, the greatest width G is also fixed, i.e., −9α+
√
81α2+16α2P+16αP
2(α2+α) .

3.3.4 POINTWISE GROUP CONVOLUTION + DEPTHWISE CONVOLUTION + POINTWISE GROUP
CONVOLUTION

Efficiency given the input and the output. We use the same way to evaluate parameter efficiency
for this design. First, the number of parameters after applying such method is 1 · 1 · CM ·K + 3 · 3 ·
K +1 · 1 · KN ·F = K(CM + F

N +9). The number for standard convolution is 9CF . Since K = F/4

7

Under review as a conference paper at ICLR 2019

and as per Theorem 1 the best parameter efficiency can be achieved only when K =M ·N , the ratio
of parameters can then be represented as

C
M +4M+9

36C . Thus given C, K and F , the best parameter
efficiency can be reached by setting C

M = 4M , or M =
√
C
2 .

Efficiency given the total amount of parameters. Similarly, according to the Theorem 1 the
greatest C can be reached only when the number of bottleneck channels K = M · N . Since
F = α · C and K = F/4, the total number of parameters of one design P can be expressed as

P = 1 · 1 · 4N
α
·MN + 3 · 3 ·MN + 1 · 1 ·M · 4MN =MN(

4N

α
+ 9 + 4M)

≥MN(9 + 2

√
16MN

α
) =

α

4
C(9 + 4

√
C)

Given the number of parameters P , the greatest width G exists when αM = N .

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Table 1: Overall network layout. B is the number of blocks at each stage. At the first block of each
stage except the first stage down-sampling is performed and the channel number is doubled.

Layer Output size KSize Strides Repeat

Image 224× 224

Conv1 112× 112 3× 3 2 1

Max Pool 56× 56 3× 3 2 1
Stage 1 56× 56 1 B

Stage 2 28× 28 2 1
28× 28 1 B − 1

Stage 3 14× 14 2 1
14× 14 1 B − 1

Stage 4 7× 7 2 1
7× 7 1 B − 1

Average Pool 1× 1 7× 7 1

1000-d FC, Softmax

The overall layout of the network is shown in Table 1. Identity mapping (He et al., 2016b) is used
over each block. When building the models, we can simply replace every block in the layout with
the standard convolution or the sparse kernel designs mentioned in Section 3. Batch normalization
(BN) (Ioffe & Szegedy, 2015) is adopted right after each layer in the block and as suggested
by (Chollet, 2016) nonlinear activation ReLU is only performed after the summation of the identity
shortcut and the output of each block.

We evaluate our models on ImageNet 2012 dataset (Deng et al., 2009; Russakovsky et al., 2015),
which contains 1.2 million training images and 50000 validation images from 1000 categories.
We follow the same data augmentation scheme in (He et al., 2016b;a) which includes randomized
cropping, color jittering and horizontal flipping. All models are trained for 100 epochs with batch
size 256. SGD optimizer is used with the Nesterov momentum. The weight decay is 0.0001 and the
momentum is 0.9. We adopt the similar weight initialization method from (He et al., 2015; 2016a;
Huang et al., 2016). The learning rate starts with 0.1 and is divided by 10 every 30 epochs. All results
reported are single center crop top-1 performances.

4.2 EMPIRICAL STUDY

Relationship between the information field and the model accuracy. In Section 3, we have
shown that all the sparse kernel designs generated by our scheme share the same size of the infor-

8

Under review as a conference paper at ICLR 2019

Table 2: Comparisons to illustrate the relationship between the information field and the model
accuracy. We tune the number of group to achieve different parameter efficiency. Width here is the
number of input channels to the first stage in the network. InfoSize is the size of information field
with regards to the input to the first stage. Numbers within the parentheses represent the number
of groups. For example, GConv(1) means group convolution with only 1 group, which is also the
standard convolution.

Network Unit #Params(×M) Depth Width InfoSize Error (%)

PW+GConv(1)+PW 13.9 98 128 (3, 3, 128) 30.0
PW+GConv(32)+PW 13.9 98 256 (3, 3, 256) 29.2

PW+GConv(1)+PW 28.4 194 128 (3, 3, 128) 29.7
PW+GConv(1)+PW 28.4 98 200 (3, 3, 200) 29.3

PW+GConv(2)+PW 28.4 98 256 (3, 3, 256) 28.7
PW+GConv(64)+PW 28.4 98 512 (3, 3, 512) 28.4

mation field when the size of input is fixed. Meanwhile different sparse kernel designs could save
different amount of parameters/computation compared to the standard convolution and the saved
computation/parameters can then be used to increase the number of channels, enlarge the information
field, and increase the final accuracy. The fundamental idea behind this is that we believe the infor-
mation field is an essential property of all sparse kernel designs and could directly affect the final
accuracy.

To verify this idea we choose a bottleneck-like design and conduct some comparisons by tuning
different number of groups. We adopt the same overall network layout in Table 1. It can be easily
verified that given the same size of the input tensor the change of the number of groups in the
bottleneck-like design will not affect the size of the information field in the output. Results are shown
in Table 2. Specifically, compare results on row 2 and row 5, we can see that by increasing the number
of group from 2 to 32, more than a half amount of parameters will be saved to generate the same
width, however the model accuracy will only decrease slightly. Meanwhile a further comparison
on row 5 and row 6 indicate that if we use the saved parameters to increase the network width,
the accuracy could still be improved. Since both of the two networks contain the same amount of
parameters, overall network layout and type of sparse kernel design, the performance gains should
only come from the increase of network width (information field). Same phenomenon could also be
found by comparing results on row 1 and row 2.

Besides we investigate on different usages of parameters, results on row 3 and row 4 show that
the increase of network width has better potential for the improvement of accuracy than that of
the depth, which also indicates that the size of the information field could play a more important
role on the model accuracy. Additionally results in Table 2 can further explain the sparse kernel
design (PW+DW+PW) in Section 3.2 where we directly apply the most parameter-efficient depthwise
convolution in the middle since it has the same size of the information field with other group numbers.

Comparisons of different sparse kernel designs. We also compare different sparse kernel designs
mentioned in Section 3. Results are shown in Table 3. As mentioned in Section 3 all designs have the
same-sized information field given the same input. Results from Table 3 show that given the close
amount of parameters by choosing different sparse kernel designs or group numbers models with
different widths can be constructed, and the final accuracy is positively correlated to the model width
(the size of the information field), which also coincides with our analysis above. Also notice that
results here do not necessarily indicate one type of sparse kernel design is always better than the
other one in terms of the parameter efficiency since as per the analysis in Section 3 the efficiency also
depends on other factors like the number of groups. For example, considering the same number of
parameters and overall network layout, there could be a combination of group numbers M and N
such that the network with the design GConv(M)+PWGConv(N) is wider than that of DW+PW.

4.3 COMPARISONS WITH THE STATE-OF-THE-ARTS.

Based on the sparse kernel scheme, we are also able to construct more efficient designs than the
state-of-the-art ones. Table 4 shows comparisons between the sparse kernel designs generated by our
scheme and the state-of-the-art ones. For fair comparisons, we use the same network layout as shown
in Table 1 and replace blocks in it with corresponding designs, and the model size around 11.0M
is selected as it is the size that different models (e.g., Xception, ResNeXt and ShuffleNet) can be

9

Under review as a conference paper at ICLR 2019

Table 3: Comparisons of different sparse kernel designs. All designs share the same network layout.

Network Unit #Params(×M) Width InfoSize Error (%)

Standard Convolution 11.2 64 (3, 3, 64) 31.1

DW+PW 0.8 72 (3, 3, 72) 31.7
DW+PW 11.2 280 (3, 3, 280) 28.5

GConv(4)+PWGConv(32) 11.2 128 (3, 3, 128) 30.8
GConv(16)+PWGConv(16) 11.3 256 (3, 3, 256) 29.4

PW+DW+PW 11.0 400 (3, 3, 400) 26.9

PWGConv(4)+DW+PWGConv(4) 11.3 560 (3, 3, 560) 25.6

Table 4: Comparisons with different state-of-the-art sparse kernel designs. All settings are restored
from the original papers. Specifically, bottleneck ratio is 1 : 4 for ResNet and ResNeXt adopts
cardinality of 16 and bottleneck ratio of 1 : 2. Meanwhile 4 groups are used for ShuffleNet.

Network Unit #Params(×M) Width InfoSize Error (%)

ResNet (He et al., 2016a) 11.2 64 (3, 3, 64) 31.3
ResNet with bottleneck (He et al., 2016a) 11.3 192 (3, 3, 192) 29.9
ResNeXt (Xie et al., 2017) 11.1 192 (3, 3, 192) 29.8
Xception (Chollet, 2016) 11.2 280 (3, 3, 280) 28.5
ShuffleNet (Zhang et al., 2017) 11.3 560 (3, 3, 560) 25.6

GConv(100)+PWGConv(2) 8.6 200 (3, 3, 200) 27.0
PWGConv(100)+DW+PWGConv(2) 10.4 700 (3, 3, 700) 24.9

easily configured to. Results in Table 4 indicate that sparse kernel designs in our scheme could even
yield better accuracy with a smaller model size, which also validates the idea of our sparse kernel
scheme. Also notice that the choices of group numbers used in our designs are chosen to help easily
accommodate both the similar model size and the overall network layout, which may not be the most
efficient ones that are supposed to result in a wider network with better accuracy under the same
limitation of parameters.

5 RELATED WORKS

Model Compression. Traditional model compression techniques include pruning, quantization
and low-rank approximation. Pruning (Wen et al., 2016; Ardakani et al., 2016; Liu et al., 2017; Li
et al., 2016; He et al., 2017; Liu et al., 2015) reduces redundant weights, network connections or
channels in a pre-trained model. However, it could face difficulty for deploying on hardware like
GPU since some pruning methods may be only effective when the weight matrix is sufficiently sparse.
Quantization (Zhou et al., 2016; 2017; Courbariaux et al., 2015; 2016; Deng et al., 2018; Micikevicius
et al., 2017) reduces the number of bits required to represent weights. Unfortunately, this technique
will require specialized hardware support. Low rank approximation (Lebedev et al., 2014; Jin et al.,
2014; Wang et al., 2016; Xue et al., 2014; Novikov et al., 2015; Garipov et al., 2016) uses two or
more matrices to approximate the original matrix values in a pre-trained model. Nevertheless, since
the process is an approximation of original matrix values maintaining a similar accuracy will always
need additional re-training. The focus of this paper, the sparse kernel approach, mitigates all these
problems by directly training networks using structural sparse convolutional kernels.

6 CONCLUSION

In this paper, we present a scheme to craft the effective sparse kernel design by eliminating the large
design space from three aspects: composition, performance and efficiency. During the process to
reduce the design space, we find an unified property named information field behind various designs,
which could directly indicate the final accuracy. Meanwhile we show the final 4 designs in our
scheme along with detailed efficiency analysis. Experimental results also validate the idea of our
scheme.

10

Under review as a conference paper at ICLR 2019

REFERENCES

Arash Ardakani, Carlo Condo, and Warren J Gross. Sparsely-connected neural networks: towards
efficient vlsi implementation of deep neural networks. arXiv preprint arXiv:1611.01427, 2016.

François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint,
2016.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information processing
systems, pp. 3123–3131, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248–255. IEEE, 2009.

Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, and Guoqi Li. Gxnor-net: Training deep neural networks
with ternary weights and activations without full-precision memory under a unified discretization
framework. Neural Networks, 100:49–58, 2018.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In Advances in neural information
processing systems, pp. 1269–1277, 2014.

Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry Vetrov. Ultimate tensorization:
compressing convolutional and fc layers alike. arXiv preprint arXiv:1611.03214, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision, pp. 630–645. Springer, 2016b.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In International Conference on Computer Vision (ICCV), volume 2, 2017.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely connected
convolutional networks. arXiv preprint arXiv:1608.06993, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Jonghoon Jin, Aysegul Dundar, and Eugenio Culurciello. Flattened convolutional neural networks for
feedforward acceleration. arXiv preprint arXiv:1412.5474, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

11

Under review as a conference paper at ICLR 2019

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 806–814, 2015.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In Computer Vision (ICCV), 2017
IEEE International Conference on, pp. 2755–2763. IEEE, 2017.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
networks. In Advances in Neural Information Processing Systems, pp. 442–450, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Laurent Sifre and Stéphane Mallat. Rigid-motion scattering for image classification. 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Daniel Soudry, Itay Hubara, and Ron Meir. Expectation backpropagation: Parameter-free training of
multilayer neural networks with continuous or discrete weights. In Advances in Neural Information
Processing Systems, pp. 963–971, 2014.

Min Wang, Baoyuan Liu, and Hassan Foroosh. Design of efficient convolutional layers using single
intra-channel convolution, topological subdivisioning and spatial" bottleneck" structure. arXiv
preprint arXiv:1608.04337, 2016.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, pp. 2074–2082,
2016.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Computer Vision and Pattern Recognition (CVPR),
2017 IEEE Conference on, pp. 5987–5995. IEEE, 2017.

Jian Xue, Jinyu Li, Dong Yu, Mike Seltzer, and Yifan Gong. Singular value decomposition based
low-footprint speaker adaptation and personalization for deep neural network. In Acoustics, Speech
and Signal Processing (ICASSP), 2014 IEEE International Conference on, pp. 6359–6363. IEEE,
2014.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083, 2017.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantization:
Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044, 2017.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

12

Under review as a conference paper at ICLR 2019

7 APPENDIX

Proof of Theorem 1

Proof. Without loss of generality we use the example in Section 3.3.2 to prove the theorem. Recall
that the total number of parameters for such design can be expressed as

P = 3 · 3 · C
M
· C + 1 · 1 · C

N
· F =

9C2

M
+
CF

N
,

then the problem could be interpreted as proving that the minimum value of P can be achieved if and
only if M ·N = C.

We prove the theorem by contradiction. Assume the minimum value of P could be achieved when
M · N < C. Then we can always find a N ′ = C/M > N such that the combination of M and
N ′ could result in a smaller value of P , which contradicts our assumption. The theorem is hence
proved.

13

	Introduction
	Preliminaries
	Standard Convolution
	Group Convolution
	Depthwise Convolution
	Pointwise Convolution
	Pointwise Group Convolution

	Sparse Kernel Scheme
	Reduce the Design Space
	Final Sparse Kernel Designs
	Efficiency Analysis
	Depthwise Convolution + Pointwise Convolution.
	Group Convolution + Pointwise Group Convolution.
	Pointwise Convolution + Depthwise Convolution + Pointwise Convolution.
	Pointwise Group Convolution + Depthwise Convolution + Pointwise Group Convolution

	Experiments
	Implementation Details
	Empirical Study
	Comparisons with the State-of-the-Arts.

	Related Works
	Conclusion
	Appendix

