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ABSTRACT

Existing works on disentangled representation learning usually lie on a common
assumption: all factors in a disentangled representation should be independent.
We argue that this assumption is not sufficient and another assumption is vital for
disentangled representation learning: information contained in each factor of a
disentangled representation is irrelevant to others, i.e. the containing information
about data of factors is isolated. We formulate this assumption into two equiv-
alent equations via mutual information, and theoretically show its relation with
independence and conditional independence of factors in a representation. Mean-
while, we prove that conditional independence is satisfied in encoders of VAEs
due to “no-sharing-parameter block” and reparameterization trick. To highlight
the importance of the proposed assumption, we show in experiments that violat-
ing the assumption leads to decline of disentanglement. Based on this assumption,
we further propose to split the deeper layers in encoder to ensure parameters in
these layers are not shared for different factors. The proposed encoder, called Split
Encoder, can be applied into other models and shows significant improvement in
unsupervised learning of disentangled representations and reconstructions.

1 INTRODUCTION

Learning disentangled representations has been considered as an important step towards inter-
pretable and more effective machine learning (Bengio et al., 2013; Bengio, 2007; Lake et al., 2017;
Shanmugam, 2018; Tschannen et al., 2018; Schmidhuber, 1992). The disentangled representations
are proved to be interpretable or semantically meaningful (Chen et al., 2016; Kumar et al., 2017),
robust to adversarial attacks (Alemi et al., 2017), more generalizable (Steenbrugge et al., 2018)
and correlated to fairness (Locatello et al., 2019). They are also useful to many downstream tasks,
including sequential data generating (Yingzhen & Mandt, 2018), reinforcement learning (Higgins
et al., 2017b; Nair et al., 2018), robot learning (Laversanne-Finot et al., 2018), transfer (Liu et al.,
2018) and few shot learning (Janzing et al., 2012; Bengio et al., 2013), etc. Although there is no
formal definition for a disentangled representation except some attempts (Higgins et al., 2018), we
adopt one from (Bengio et al., 2013): a representation in which each factor corresponds to a single
factor of variation in data, and meanwhile is invariant to other factors of variation.

There exist unsupervised approaches to learn disentangled representations, based on generative mod-
els including generative adversarial nets (GANs) (Goodfellow et al., 2014) and variational auto-
encoders (VAEs) (Kingma & Welling, 2014). And the VAE-based models have become mainstream
due to the stability of VAEs. Although different VAE-based models for learning disentangled repre-
sentations are proposed from different motivations, such as limiting the bottleneck capacity (Higgins
et al., 2017a; Burgess et al., 2018), penalizing the total correlation (Kim & Mnih, 2018; Chen et al.,
2018) and matching factorized priors (Kumar et al., 2017), they can be attributed to factorizing the
distribution of representations (Locatello et al., 2018a;b; Kim & Mnih, 2018; Chen et al., 2018).
Therefore, these models lie on a common assumption: the distribution of a disentangled represen-
tation is factorized, i.e. factors are independent. However, Locatello et al. (2018a) pointed out that
this assumption cannot ensures disentanglement, and inductive biases are necessary.

In this work, we argue that the independence of factors in a representation is not sufficient for the
disentanglement since it does not model the relation between representations and data, which should
be the foundation of disentanglement. Thus we consider another assumption: the information about
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data contained in a single factor of a disentangled representation is irrelevant to other factors, or
factors in a disentangled representation contain isolated information. This assumption is formulated
into two equivalent equations in terms of mutual information. Furthermore, we theoretically build up
its relation with independence and conditional independence of factors in the representation, show-
ing that conditional independence is also an important property for disentangled representations.
Then we divide the encoders in VAEs into “sharing-parameter block” and “no-sharing-parameter
block”, and prove that conditional independence originates from no-sharing-parameter block and
reparameterization trick (Kingma & Welling, 2014), which can be viewed as inductive biases for
disentangled representation learning.

To verify our assumption, we perform experiments by violating the conditional independence of
factors in representations and find it lead to decline of disentanglement, which demonstrates the im-
portance of conditional independence and supports our assumption. Motivated by this, we propose
the split encoder to improve model capacity of no-sharing-parameter block, which can help different
factors learn isolated information, and thus facilitates disentanglement. Our experiments show that
the split encoder can significantly improve disentanglement of representations learned by VAE and
FactorVAE (Kim & Mnih, 2018) on dSprites (Higgins et al., 2017a) and Cars3D (Reed et al., 2015)
datasets when the penalty for independence is strong, and also improves reconstructions.

The main contributions of this paper can be summarized as follows:

• We propose a novel and fundamental assumption for disentangled representation learning,
and connect it with independence and conditional independence. We show the importance
of both conditional independence and our assumption for disentanglement in experiments.

• We mathematically prove the sources of conditional independence are no-sharing-
parameter block and reparameterization trick, which can be viewed as inductive biases
on encoders.

• Based on the above analysis, we then develop a simple and effective architecture called
split encoder to improve disentanglement and reconstructions, which can be applied into
other models to improve their performance.

• Experimental results on dSprites and Cars3D show our approach combined with vanilla
VAE and FactorVAE can significantly improve performance on disentanglement when the
penalty for independence is strong enough, and it also improves reconstructions.

2 THEORETICAL ANALYSIS

In this section, we first discuss the intuition and common assumption of disentangled representation
learning. Then we point out that the common assumption is not sufficient for disentanglement,
and motivated by this we propose another assumption from an information theoretic perspective.
Finally, we obtain two equivalent equations to formulate the proposed assumption, and connect it
with independence and conditional independence.

Although there is no formal definition for disentangled representations, the key intuition is that a
disentangled representation should isolate the distinct and semantic factors of variations in data. In
other words, a single factor in a disentangled representation is only sensitive to the changes of a
single underlying factor of variation in data, while being relatively invariant when other underlying
factors change. This statement lies on the relation between factors in representations and data, and
also indicates the independence of factors in a disentangled representation. Unfortunately, underly-
ing factors of variation in data commonly have no explicit expression, and thus the statement is hard
to be formulated into mathematical expression.

Most variational auto-encoders (VAEs) (Kingma & Welling, 2014) based models for unsupervised
disentanglement learning lie on a common assumption: factors in a disentangled representation are
independent. VAEs assume a factorized prior p(z) like standard normal distribution and utilize a
generative network to generate data and parameterize p(x|z). Meanwhile, an inference network is
used to learn representations from data distribution q(x) and parameterize p(z|x). The objective of
vanilla VAE is equivalent to the KL divergence DKL(q(z,x)‖p(z,x)), thus the aggregate posterior
q(z) is pushed to match p(z) and then becomes factorized – detailed discussion about this can be
found in Appendix. Due to this property, most works focus on factorizing the aggregated posterior
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q(z) to improve disentanglement. Therefore, those proposed models based on VAEs (Higgins et al.,
2017a; Burgess et al., 2018; Kumar et al., 2018; Kim & Mnih, 2018; Chen et al., 2018) are attributed
to penalizing the divergence between q(z) and

∏
j q(zj), and thus enhancing independence of factors

in representations, which coincides with the common assumption.

However, the common assumption is not sufficient for disentanglement of a representation. Because
it is only related to the inner property of a representation. While as pointed out above, the relation
between factors of a representation and data is also the foundation of disentanglement. Moreover
Locatello et al. (2018a) prove the impossibility to learn disentangled representations without induc-
tive biases in an unsupervised manner by simply ensuring the independence. To model the relation
between factors of a disentangled representation with data, more assumptions should be considered.

2.1 THE PROPOSED ASSUMPTION

Our key insight is that the relation between factors in a representation with data can be described
from the perspective of containing information. Since each factor in a disentangled representation
corresponds to a single factor of variation in data, each factor only contains the information of the
corresponding factor of variation in data. In other words, different factors in a disentangled repre-
sentation contain absolutely different information about data, and the containing information about
data in a single factor is irrelevant to other factors. Motivated by this insight, we aim at proposing an
information-based assumption to describe the relation between factors in a disentangled representa-
tion with factors of variation in data. For mathematical analysis of the information terms, we adopt
mutual information to measure the information of a variable contained by another:

I(x; z) = H(z)−H(z|x) (1)

where entropy H(z) = −Eq(z)[log q(z)] and conditional entropy H(z|x) = −Eq(z,x)[log q(z|x)]
are measures of uncertainty. Hence mutual information measures the uncertainty reduction of one
variable when another is given. The mutual information satisfies the symmetry I(x; z) = I(z;x).

Therefore, for a single factor zj in a disentangled representation z, its containing information about
the corresponding underlying factor of variation in data x can be expressed as I(z;x). To represent
the irrelevance of zj to other information in data, we involve conditional mutual information:

I(zj ;x|zi∈S−j ) = H(zj |zi∈S−j )−H(zj |x, zi∈S−j ) (2)

where j ∈ {1, 2, . . . , J}, S−j is any subset of {1, . . . , j − 1, j + 1, . . . , J} and zi∈S−j
denotes all

factors with subscript index in S−j . The conditional mutual information is the difference of two
conditional entropy, representing the containing information of zj on the corresponding underlying
factor of variation in data x when other factors zi∈S−j

are given. Considering the corresponding
factors of variation in data of zi∈S−j , they are fixed when zi∈S−j are given. Hence the conditional
mutual information term above can describe the their relation with zj .

Now we give more strict formulation. Since zj only contains information of the corresponding factor
of variation in data, denoted by I(zj ;x), its containing information should be irrelevant to other
factors of variation. Therefore, the conditional mutual information term I(zj ;x|zi∈S−j

) should be
equal to I(zj ;x). To conclude, we propose an assumption as follows:

Assumption. Suppose z ∈ RJ is a disentangled representation of data x and I(z;x) > 0, then for
any single factor zj , its containing information in data is irrelevant to other factors zi∈S−j

, i.e.

I(zj ;x|zi∈S−j
) = I(zj ;x) (3)

where j ∈ {1, 2, . . . , J} and S−j is any subset of {1, . . . , j − 1, j + 1, . . . , J}.

For further investigation on our proposed assumption, we consider turning Eq. 3 into a more intu-
itive one. Since the assumption is motivated by our insight that different factors in a disentangled
representation contain different information in data, the Eq. 3 should intuitively reflect the separa-
tion of those information terms. Using the chain rule of mutual information, we prove that Eq. 3 is
equivalent to the decomposition of mutual information as follows:
Lemma 1. I(zj ;x|zi∈S−j

) = I(zj ;x) for any j is equivalent to the following equation:

I(zi∈S ;x) = I(zj ;x) + I(zi∈S−j
;x) (4)

where S = {j} ∪ S−j is any subset of {1, 2, . . . , J}, j is any single element in S.

3



Under review as a conference paper at ICLR 2020

Based on our assumption and the lemma, we can draw an intuitive conclusion that in a disentangled
representation z, the containing information of zj is different from those of zi∈S−j

, and thus their
corresponding factors of variation in data are distinct. Furthermore, by iteratively using Eq. 1, we
can decompose the mutual information I(zi∈S ;x) into the sum of I(zi;x), which shows that the
containing information of different factors in a disentangled representation are different and coincide
with our insight. Hence our assumption can be summarized into an equivalent statement:
Assumption. Suppose z ∈ RJ is a disentangled representation of data x and I(z;x) > 0, then for
any subset S of {1, 2, . . . , J}, the containing information of zi ∈ S in data is isolated, i.e.

I(zi∈S ;x) =
∑
i∈S

I(zi;x) (5)

2.2 RELATION WITH INDEPENDENCE AND CONDITIONAL INDEPENDENCE

From the containing information perspective, an intuitive assumption of disentangled representations
has been proposed to describe the relation between factors in a disentangled representation and data.
Two equivalent expressions Eq. 3 and Eq. 5 are also derived. Although the two equations have clear
physical meanings, the structured relation between a disentangled representation and data in the
proposed assumption is still implicit. Hence in this subsection, we aim at investigating the structure
of the proposed assumption from Eq. 5.

To analyze Eq. 5, we investigate the conditions of establishing Eq. 5 by considering I(zi∈S ;x) −∑
i∈S I(zi;x). We find that this term is tightly related to independence and conditional indepen-

dence of factors in a representation. Specifically, we build up the following lemma:
Lemma 2. For any subset S of {1, 2, . . . , J}, we have:

I(zi∈S ;x)−
∑
i∈S

I(zi;x) = Eq(x)[DKL(q(zi∈S |x)‖
∏
i∈S

q(zi|x))]−DKL(q(zi∈S)‖
∏
i∈S

q(zi)) (6)

In the lemma above, the left term is equal to the difference of two KL divergences. The first diver-
gence measures the level of conditional independence for factors zi∈S conditioned on data x, and
the second one measures the level of independence for zi∈S . Specifically, when the conditional dis-
tribution q(zi∈S |x) is more factorized, the first divergence is closer to zero, which indicates higher
level of conditional independence. Similarly, when the distribution q(zi∈S) is more factorized, the
second divergence is more closer to zero, and hence the level of independence is higher.

Eq. 6 shows the importance of conditional independence and independence in our assumption: when
the factors in a representation are independent and conditionally independent, our assumption is
satisfied and thus the representation is oriented towards disentanglement. Note that conditional
independence and independence are sufficient but not necessary to our assumption. This shows that
our assumption is different and independent to the common assumption.

It is important to note that our assumption is necessary but not sufficient for learning meaningful
disentangled representations. For example, if q(z|x) = q(z), then the two divergences in Eq. 6
are equal, and thus Eq. 5 holds and our assumption is satisfied, but in this case z does not contain
any information about data x. To prevent this meaningless case, we should pay attention to the
reconstruction error, which reflects the containing information of a representation about data. Lower
reconstruction error indicates that more information about data is contained in representation.

As mentioned above, the common assumption highlights the independence of factors in a disentan-
gled representation, which is enhanced via the objective in VAEs. Given the establishment of the
common assumption, our proposed assumption is equivalent to conditional independence, which is
exactly the structured relation between a disentangled representation and data. Motivated by this
consideration, we investigate the inductive biases on model about conditional independence, and
successfully find the sources of conditional independence in encoders of VAEs.

3 INDUCTIVE BIASES ON ENCODERS

On condition of independence, the proposed assumption is equivalent to conditional independence.
In this section we analyze the inductive biases about conditional independence, and then propose a
simple architecture to improve disentanglement based on our assumption and the inductive biases.
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Figure 1: Structure of vanilla encoder and split encoder. The blue and short-dash box denotes
sharing-parameter block, and the red and long-dash box represents no-sharing-parameter block.

3.1 SOURCES OF CONDITIONAL INDEPENDENCE

Motivated by our proposed assumption, we find that there are some inductive biases on encoders
of VAEs to ensure conditional independence. Considering q(z) is pushed to match a factorized
prior p(z) in VAE-based models and thus encourages independence and the common assumption is
satisfied, this discovery shows that our assumption is also satisfied in these models.

In VAEs, the encoders encode data into a Gaussian distribution of representation q(z|x) via repa-
rameterization trick. Specifically, the data is encoded into a mean µ(x) and a variance σ(x), then
the representation is sampled from N (z;µ(x), σ2(x)I) with reparameterization trick:

z ∼ q(z|x)⇔ z = µ(x) + σ(x)� ε, ε ∼ N (0, I) (7)

For analyzing the outputs of those encoders, we divide them into two blocks: if the parameters of
several layers are shared for different factors in a representation, the block consists of these layers is
called “sharing-parameter block”. Conversely, those layers without shared parameters for different
factors form “no-sharing-parameter block”. In vanilla VAE, the last layers in encoders are fully-
connected nets, which are no-sharing-parameter block (see Fig. 1). Obviously, factors in the output
of no-sharing-parameter block are independent conditioned on the input, thus factors in µ(x) and
σ(x) are conditionally independent. Considering the independence of factors in ε, we have:

q(µ|x) =

J∏
j=1

q(µj |x) q(σ|x) =

J∏
j=1

q(σj |x) q(ε) =

J∏
j=1

q(εj) (8)

From these equations, we can obtain the conditional independence of factors in a representation:

q(z|x) =

J∏
j=1

q(zj |x) (9)

To conclude, conditional independence originates from no-sharing-parameter block and the inde-
pendence of noise in reparameterization trick, which can be regarded as inductive biases on model.
These two inductive biases are very important for disentangled representation learning. We will see
in experiments that without no-sharing-parameter block or independent noise, the learned represen-
tations are more entangled, which indicates that our proposed assumption is vital for disentangle-
ment.

3.2 SPLIT ENCODER

In this subsection, we aim at devising a simple and effective architecture to enhance disentanglement
in encoders based on our assumption and the inductive biases about conditional independence.

5



Under review as a conference paper at ICLR 2020

According to the proposed assumption, factors in a disentangled representation contain isolated
information about data. Intuitively no-sharing-parameter block is beneficial to learn isolated infor-
mation from input, but in previous works, the no-sharing-parameter block is a single fully-connected
layer, which limits the model ability to learn isolated information. A limited no-sharing-parameter
block may encourage the conditional distribution q(z|x) to match q(z) without capturing any infor-
mation about data, which violates the essence of our assumption.

To tackle this problem, we propose split encoder, which improves model capacity of the no-sharing-
parameter block without increasing the depth of encoder. As Fig. 1 shows, in split encoder more
convolution layers and fully-connected layers are created for each single factor in representation
without parameter sharing, then the outputs are concatenated to calculate a representation with repa-
rameterization trick. In experiments, we only create one convolution layer and two fully-connected
layers for each factor due to the increase of parameters.

From the perspective of containing information, split encoder coincides with the essence of the
proposed assumption: factors in a disentangled representation contain isolated information. But
in the case of q(z|x) = q(z), the containing information of factors are zero. This trivial case is
excluded to ensure our assumption meaningful. To conclude, the split encoder is to prevent the
trivial case, rather than improve conditional independence.

The split encoder can be viewed as an architecture to improve the flexibility for z. Improving flex-
ibility of representation in split encoder is beneficial to independence of factors and thus improves
disentanglement when the penalty for independence is strong enough. But when the penalty is too
weak, flexibility for factors might lead to smaller probability to be independent, and thus causes less
disentanglement. As will be shown in the experiment part, these phenomena described from the two
perspective above are observed in experiments of learning disentangled representations. In addition,
the relation of split encoder KL term in objective of VAEs is discussed in Appendix A.2.

4 RELATED WORKS

There are many works related to disentangled representation with different objectives. A line of
works focus on learning disentangled representations from typical types of data (Yingzhen & Mandt,
2018), some pay attention to supervised learning (Mathieu et al., 2016) or semi-supervised learning
of disentangled representations (Spurr et al., 2017; Siddharth et al., 2017), others explore other ob-
jectives (Rubenstein et al., 2018; Zhao et al., 2019). There are also works on the evaluation of disen-
tanglement (Eastwood & Williams, 2018). Since our assumption and analysis lie on the foundation
of disentangled representation learning, in this section we focus on those related to the understanding
of disentanglement or basic unsupervised models for disentangled representation learning.

Some works on unsupervised learning of disentangled representations are proposed based on early
generative models. Schmidhuber (1992) proposes a variant of auto-encoder to learn disentangled
representations by minimizing the predictablity of one factor in representation when other factors
are fixed, this model obviously is motivated by the independence of factors, i.e. the common as-
sumption. Desjardins et al. (2012) and Reed et al. (2014) propose variants of (Restricted) Boltzmann
Machine in which interactions act to entangle the factors.

Recent works on unsupervised learning of disentangled representations are mainly based on GANs
and VAEs. In line with GANs, InfoGAN (Chen et al., 2016) penalizes the mutual information of
representations, and qualitatively shows that different factors in a representation correspond to dif-
ferent visual concepts. Brakel & Bengio (2018) propose to penalize the Jensen-Shannon divergence
between the distribution of representations and its factorized distribution with a discriminator, based
on Independent Component Analysis.

The mainstream models of disentangled representation learning are variants of VAE due to its sta-
bility. β-VAE (Higgins et al., 2017a) introduces to encourage the encoder to learn a disentangled
representation by penalizing the KL term in the objective of vanilla VAE. AnneledVAE (Burgess
et al., 2018) proposes to progressively increase the bottleneck capacity of VAE to encourage the en-
coder to learn different factors of variation when capacity grows. FactorVAE (Kim & Mnih, 2018)
uses a discriminator to penalize the KL divergance between the distribution of representations and
its factorized distribution (total correlation) via ratio trick to enhance independence of factors in
representations. DIP-VAE (Kumar et al., 2017) matches the distribution of representations with dis-
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(a) Vanilla VAE (b) FactorVAE

Figure 2: MIG scores of verifying experiments in vanilla VAE and FactorVAE on dSprite. In
subfigures, the first violin graph is the baseline, the second one is a vanilla encoder with correlated
noise (σ = 0.9), and the third one is a sharing-parameter encoder with uncorrelated noise.

entangled priors. In TC-VAE (Chen et al., 2018), the authors decompose the objective of VAE and
argue that the total correlation term is the source of disentanglement, then they derive a mini-batch
estimator for the total correlation term and penalize it to enhance disentanglement. Most VAE-based
models can be attributed to enhance independence, which coincides with the common assumption.

5 EXPERIMENTS

The objective in this section is not only to show our trick can improve unsupervised learning of
disentangled representations, but also to verify the importance of the proposed assumption by inves-
tigating the change of disentanglement when conditional independence is violated.

Datasets: We use dSprites (Higgins et al., 2017a) and a more complex dataset Cars3D (Reed et al.,
2015). DSprites is a set of 737280 64*64 images in black and white, generated from fives indepen-
dent latent factors. Cars3D consists of 199 colorful 3D car models in shape of 128*128*3*24*4.

Models: We select two models as baselines: vanilla VAE and FactorVAE. Since most VAE-based
models are attributed to enhance independence of factors in representations, it might be redundant
to consider more VAE-based models. Vanilla VAE and FactorVAE are weakly and strongly penalize
the total correlation respectively, hence we believe that this choice is sufficient for showing the
importance of our assumption and the power of our proposed split encoder. Additional experiment
results of β-VAE, which does not explicitly penalize total correlation, are reported in Appendix.

Metrics: Following (Watters et al., 2019), we use Mutual Information Gap (MIG) (Chen et al.,
2018) to evaluate disentanglement for its usefulness and rationality. MIG is defined by first com-
puting the normalized mutual information of each factor in representations and each ground truth
factor, then computing the gap between the highest two normalized mutual information values along
factors in representations, and finally returning the gap averaged along ground truth factors. We
also use reconstruction error to reflect the quality of the containing information for representations.
Lower reconstruction error means more meaningful information are contained in representations.
Additional results of FactorVAE Score (Kim & Mnih, 2018) are reported in Appendix.

5.1 VIOLATING CONDITIONAL INDEPENDENCE

When independence holds, our assumption is equivalent to conditional independence. According
to our analysis, conditional independence originates from no-sharing-parameter block and the inde-
pendence of noise in reparameterization trick. Therefore, for verifying the importance and necessity
of our assumption, in this section we adopt two ways to violate conditional independence and com-
pare the disentanglement of learned representations in terms of MIG: involving a encoder without
no-sharing-parameter block, and a correlated noise for reparameterization.
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(a) Vanilla VAE (+ split encoder) (b) FactorVAE (+ split encoder)

Figure 3: MIG scores of vanilla VAE and FactorVAE (+ split encoder) on dSprites.
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Figure 4: KL vs. reconstruction error of vanilla VAE, FactorVAE (+ split encoder) on dSprites.

To show the necessity of no-sharing-parameter block, we remove it and develop a sharing-parameter
encoder: the inputs are extracted features by a sequence of convolution neural networks, then the
features are straightly flattened into representations. We compare the disentangling performance of
sharing-parameter encoder and the vanilla encoder on dSprites.

To show the importance of the independence of noise in reparameterization trick, we introduce a
correlated noise for comparison: ε ∼ N (0,Σ),Σ = (1−σ)I+σ11T where 1 is an identity column
vector, and σ ∈ [0, 1) is correlation weight. Larger σ corresponds to higher correlation. We set
σ = 0.9.

The two designs are applied into vanilla VAE and FactorVAE, and compare with the original models
in terms of MIG metric. The results are shown in Fig.2, from which we can see that both using
a correlated noise and removing the no-sharing-parameter block lead to the significant decrease
of MIG metric in both vanilla VAE and FactorVAE. These results show that without uncorrelated
noise and no-sharing-parameter block the learned representations will become more entangled, i.e.
conditional independence and our assumption are vital for disentanglement. And rarely ensuring
independence like FactorVAE is not sufficient for learning disentangled representations.

5.2 UNSUPERVISED LEARNING OF DISENTANGLED REPRESENTATIONS

In this subsection, we compare the performance of vanilla VAE and FactorVAE with ones combined
with split encoder on dSprites and Cars3D. We not only focus on the MIG metric to reflect the
performance of disentanglement, but also concern the reconstruction loss which indicates the quality
of containing information in representations, and meanwhile observe the quality of reconstructed
images and traversals for intuitive understanding. Traversals are generated from a data point, which

8



Under review as a conference paper at ICLR 2020

(a) Vanilla VAE baseline
(MIG=0.135)

(b) Vanilla VAE + split
encoder (MIG=0.176)

(c) FactorVAE baseline
(MIG=0.249)

(d) FactorVAE + split en-
coder (MIG=0.314)

Figure 5: Reconstructions and traversals of VAE and FactorVAE (+ split encoder) on dSprites.

(a) Vanilla VAE (+ split encoder) (b) FactorVAE (+ split encoder)

Figure 6: MIG scores of vanilla VAE and FactorVAE (+ split encoder) on Cars3D.
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Figure 7: KL vs. reconstruction error of vanilla VAE, FactorVAE (+ split encoder) on Cars3D.

is first encoded into a representation, then for each row only a single factor in the representation is
changed in [−2, 2] and then reconstruct the data point. For the fairness of comparison, we show the
reconstruction images and traversals from output model with the highest MIG score for each case.

5.2.1 PERFORMANCE ON DSPRITE

As shown in Fig.3, combing split encoder with both vanilla VAE and FactorVAE significantly im-
prove disentanglement in terms of MIG on dSprites. This result indicates that dSprites is simple and
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(a) Vanilla VAE baseline
(MIG=0.138)

(b) Vanilla VAE + split
encoder (MIG=0.087)

(c) FactorVAE baseline
(MIG=0.126)

(d) FactorVAE + split encoder
(MIG=0.136)

Figure 8: Reconstructions and traversals of VAE and FactorVAE (+ split encoder) on Cars3D.

the penalty for independence of representation in vanilla VAE is strong enough, so that improving
flexibility of representations by involving split encoder can significantly improve disentanglement.

And Fig.4 shows that involving split encoder leads to smaller reconstruction error. This result means
that split encoder is beneficial to learn meaningful information from data, which coincides with our
assumption. Note that the KL term in vanilla VAE with split encoder is smaller, while in FactorVAE
with split encoder it is larger. This phenomenon prove that the improvement of disentanglement in
split encoder cannot be explained as the results of implicitly penalizing the KL term, which does not
coincide with the analysis for β-VAE (Higgins et al., 2017a; Burgess et al., 2018).

The reconstructions and traversals are shown in Fig. 5. We can see the four models work well in
dSprites, and the learned representations are well disentangled except some small flaws.

5.2.2 PERFORMANCE ON CARS3D

The results on Car3D are different from those on dSprites. As shown in Fig.6, vanilla VAE combined
with split encoder leads to lower MIG, while FactorVE combined with split encoder outperforms
FactorVAE. This result is not surprising, which means that Car3D is too complex and the penalty of
independence in vanilla VAE is not strong enough, and involving split encoder leads to flexibility
for representation and smaller probability of being disentangled. While for FactorVAE, the penalty
of independence is strong enough, and thus involving split encoder leads to better performance.

As shown in Fig. 7, involving split encoder can lead to smaller reconstruction error, which indicates
the containing information in representations is more meaningful. While the KL terms are larger in
both models with split encoder. This suggests the effect of split encoder is not penalizing the KL
terms, but increasing the quality of information contained in representations and flexibility.

The reconstructions and traversals results on the four models are different, as shown in Fig. 8.
Models with split encoder obviously have better reconstructions. And traversals in FactorVAE with
split encoder are more disentangled than FactorVAE.

6 CONCLUSION

We argue that an assumption from the perspective of information is vital for disentanglement: fac-
tors in a disentangled representation should contain isolated information about data. We formulate
this assumption into mathematical equation and connect it with independence and conditional in-
dependence of factors. Then we find two inductive biases are the key to conditional independence:
no-sharing-parameter block and uncorrelated noise in reparameterization trick. Inspired by this, we
propose split encoder to improve model capacity of no-sharing-parameter block and thus improve
disentanglement. Experimental results demonstrate the importance of our assumption and the power
of split encoder for improving disentanglement and reconstructions.
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A DISCUSSION ABOUT OBJECTIVE OF VAE

The objective of VAE is usually derived as a lower bound of log-likelihood:

L = Eq(x)q(z|x)[log p(x|z)]− Eq(x)[DKL(q(z|x)‖p(z))] ≤ Ep(x)[log q(x)]

where the first term (negative reconstruction error) encourages reconstructions when the objective is
maximized and the second term (KL term) is a regularizer.And obviously the objective is equivalent
to the negative KL divergence between two joint distributions:

L = −DKL(q(z,x)‖p(z,x)) + Eq(x)[log q(x)]

Hence maximizing the objective mathcalL is equivalent to minimizing the KL divergence between
joint distributions of encoder and decoder. From these two equivalent objectives, we can further
understand VAEs from different perspectives.

A.1 SOURCE OF INDEPENDENCE IN VAES

Factors in representations of VAEs are encouraged to be in dependent, which is attributed to total
correlation penalty in KL term (Chen et al., 2018). Here we demonstrate this property from the
decomposition of DKL(q(z,x)‖p(z,x)):

DKL(q(z,x)‖p(z,x)) = DKL(q(z)‖p(z)) + Ep(x)[DKL(q(z|x)‖p(z|x))]

When minimizing the DKL(q(z,x)‖p(z,x)), the two KL divergences on the right are minimized.
Using the factorizing of p(z), the first one can be further decomposed into two KL divergences:

DKL(q(z)‖p(z)) = DKL(q(z)‖
∏
j

q(zj)) +
∑
j

DKL(q(zj)‖p(zj)

where the first term is exactly the total correlation, which is the source of independence.

To conclude, the objectiveDKL(q(z,x)‖p(z,x)) can be decomposed into three KL divergences, and
thus they are minimized when minimizing DKL(q(z,x)‖p(z,x)). One term is the total correlation,
which is exactly the source of independence.

A.2 KL TERM AND SPLIT ENCODER

Chen et al. (2018) decompose the KL term into three KL divergences:

DKL(q(z|x)‖p(z)) = DKL(q(z,x)‖q(z)q(x)) +DKL(q(z)‖
∏
j

q(zj)) +
∑
j

DKL(q(zj)‖p(zj))

The fist term is mutual information between data with representation, the second term is total cor-
relation, and the third one is divergence between distribution of representations with prior. Hence
minimizing the KL term leads to dropping information, independence and matching prior for repre-
sentations due to the three KL divergences, respectively.

Our split encoder encourages learning isolated information for factors in representations, prevents
dropping information and improves the flexibility of representations. Therefore, split encoder can
be regarded as an inductive bias, which limits minimizing of the first term, and meanwhile enhances
minimizing the other terms. Experiments on dSprites and Cars3D shows that the KL term in models
with split encoder can be larger or smaller than the original models, but reconstructions are improved
significantly. These results support our opinion.

B PROOFS OF LEMMAS

Lemma 1. I(zj ;x|zi∈S−j
) = I(zj ;x) for any j is equivalent to the following equation:

I(zi∈S ;x) = I(zj ;x) + I(zi∈S−j
;x)

where S = {j} ∪ S−j is any subset of {1, 2, . . . , J}, j is any single element in S.
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Proof: This conclusion is a straight corollary of chain rule of mutual information. For further
understanding, here we derive it from scratch using Bayes rule:

I(zj ;x|zi∈S−j
) = Eq(zi∈S ,x)[log

q(zj ,x|zi∈S−j )

q(zj |zi∈S−j
)q(x|zi∈S−j

)
]

= Eq(zi∈S ,x)[log
q(x|zi∈S)

q(x|zi∈S−j
)
]

= Eq(zi∈S ,x)[log
q(x, zi∈S)q(zi∈S−j )

q(zi∈S)q(x, zi∈S−j
)
]

= Eq(zi∈S ,x)[log
q(x, zi∈S)

q(zi∈S)q(x)
− log

q(x, zi∈S−j
)

q(zi∈S−j )q(x)
]

= I(zi∈S ;x)− I(zi∈S−j
;x)

Hence we have:
I(zj ;x|zi∈S−j

) = I(zj ;x)⇔ I(zi∈S ;x) = I(zj ;x) + I(zi∈S−j
;x)

Lemma 2. For any subset S of {1, 2, . . . , J}, we have:

I(zi∈S ;x)−
∑
i∈S

I(zi;x) = Eq(x)[DKL(q(zi∈S |x)‖
∏
i∈S

q(zi|x))]−DKL(q(zi∈S)‖
∏
i∈S

q(zi))

Proof:

I(zi∈S ;x)−
∑
i∈S

I(zi;x) = Eq(zi∈S ,x)[log
q(zi∈S ,x)

q(zi∈S)q(x)
]−

∑
i∈S

Eq(zi,x)[log
q(zi,x)

q(zi)q(x)
]

= Eq(zi∈S ,x)[log
q(zi∈S ,x)

q(zi∈S)q(x)
−
∑
i∈S

log
q(zi,x)

q(zi)q(x)
]

= Eq(zi∈S ,x)[log
q(zi∈S |x)

q(zi∈S)
−

∑
i∈S

log
q(zi|x)

q(zi)
]

= Eq(zi∈S ,x)[log
q(zi∈S |x)

∏
i∈S q(zi)

q(zi∈S)
∏

i∈S q(zi|x)
]

= Eq(zi∈S ,x)[log
q(zi∈S |x)∏
i∈S q(zi|x)

− log
q(zi∈S)∏
i∈S q(zi)

]

= Eq(x)[DKL(q(zi∈S |x)‖
∏
i∈S

q(zi|x))]−DKL(q(zi∈S)‖
∏
i∈S

q(zi))

C MODELS PERFORMANCE IN TERMS OF FACTORVAE SCORE

There are several metrics for evaluating disentanglement, including Mutual Information Gap (MIG)
(Chen et al., 2018), DCI Disentanglement (Ridgeway & Mozer, 2018), BetaVAE metric (Higgins
et al., 2017a), FactorVAE Score (Kim & Mnih, 2018), SAP Score (Kumar et al., 2018) and Modular-
ity (Ridgeway & Mozer, 2018). Locatello et al. (2018a) report that MIG and DCI Disentanglement
strongly correlated with each other, and so do BetaVAE Score and FactorVAE Score, but SAP and
Modularity are not correlated with other metrics. This result indicates that not all metrics are suitable
for evaluating disentanglement. We believe that MIG is a suitable metric due to its usefulness and
rationality, so we mainly report experimental results in terms of MIG. However, for a more complete
comparison, here we report models performance in terms of evaluation accuracy in FactorVAE score
as shown in Fig. 9 and Fig. 10, which is not well correlated with MIG.

D EXPERIMENTAL RESULTS OF BETA-VAE ON DSPRITES

In Fig. 11, we can see that split encoder significantly improves the disentanglement performance
of β-VAE in terms of MIG. And the KL term in β-VAE is larger while the reconstruction error is
smaller. These results supports our analysis on the effect of split encoder in Section A.
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(a) Vanilla VAE (+ split encoder) (b) FactorVAE (+ split encoder)

Figure 9: FactorVAE Score of vanilla VAE and FactorVAE (+ split encoder) on dSprites.

(a) Vanilla VAE (+ split encoder) (b) FactorVAE (+ split encoder)

Figure 10: FactorVAE Score of vanilla VAE and FactorVAE (+ split encoder) on Cars3D.
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Figure 11: Experimental results of β-VAE (+ split encoder) on dSprites.
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