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ABSTRACT

We study the problem of attacking machine learning models in the hard-label
black-box setting, where no model information is revealed except that the attacker
can make queries to probe the corresponding hard-label decisions. This is a very
challenging problem since the direct extension of state-of-the-art white-box attacks
(e.g., C&W or PGD) to the hard-label black-box setting will require minimizing a
non-continuous step function, which is combinatorial and cannot be solved by a
gradient-based optimizer. The only two current approaches are based on random
walk on the boundary (Brendel et al., 2017) and random trials to evaluate the loss
function (Ilyas et al., 2018), which require lots of queries and lacks convergence
guarantees. We propose a novel way to formulate the hard-label black-box attack
as a real-valued optimization problem which is usually continuous and can be
solved by any zeroth order optimization algorithm, such as randomized gradient-
free method (Nesterov & Spokoiny, 2017). We demonstrate that our proposed
method outperforms the previous stochastic approaches to attacking convolutional
neural networks on MNIST, CIFAR, and ImageNet datasets. More interestingly,
the proposed algorithm can also be used to attack other discrete and non-continuous
machine learning models, such as Gradient Boosting Decision Trees.

1 INTRODUCTION

It has been observed recently that machine learning algorithms, especially deep neural networks, are
vulnerable to adversarial examples (Goodfellow et al., 2014; Szegedy et al., 2013; Moosavi-Dezfooli
et al.; Moosavi Dezfooli et al., 2016; Chen et al., 2018a; Cheng et al., 2018). For example, in
image classification problems, attack algorithms (Carlini & Wagner, 2017; Goodfellow et al., 2014;
Chen et al., 2017) can find adversarial examples for almost every image with very small human-
imperceptible perturbation. The problem of finding an adversarial example can be posed as solving
an optimization problem—within a small neighbourhood around the original example, find a point
to optimize the cost function measuring the “successfulness” of an attack. Solving this objective
function with gradient-based optimizer leads to state-of-the-art attacks (Carlini & Wagner, 2017;
Goodfellow et al., 2014; Chen et al., 2017; Szegedy et al., 2013; Madry et al., 2018).

Most current attacks (Goodfellow et al., 2014; Carlini & Wagner, 2017; Szegedy et al., 2013; Chen
et al., 2018b) consider the “white-box” setting, where the machine learning model is fully exposed
to the attacker. In this setting, the gradient of an attacking objective function can be computed by
back-propagation, so attacks can be done very easily. This white-box setting is clearly unrealistic
when the model parameters are unknown to an attacker. Instead, several recent works consider the
“score-based black-box” setting, where the machine learning model is unknown to the attacker, but it
is possible to make queries to obtain the corresponding probability outputs of the model (Chen et al.,
2017; Ilyas et al., 2018). However, in many cases real-world models will not provide probability
outputs to users. Instead, only the final decision (e.g., top-1 predicted class) can be observed. It is
therefore interesting to show whether machine learning model is vulnerable in this setting.
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Furthermore, existing gradient-based attacks cannot be applied to some non-continuous machine
learning models which involve discrete decisions. For example, the robustness of decision-tree based
models (random forest and gradient boosting decision trees (GBDT)) cannot be evaluated using
gradient-based approaches, since the gradient of these functions may not exist.

In this paper, we develop an optimization-based framework for attacking machine learning models in
a more realistic and general “hard-label black-box” setting. We assume that the model is not revealed
and the attacker can only make queries to acquire the corresponding hard-label decision instead of
the probability outputs (also known as soft labels).

We make hard-label black-box attacks query-efficient by reformulating the attack as a novel real-
valued optimization problem, which is usually continuous and much easier to solve. Although the
objective function of this reformulation cannot be written in an analytical form, we show how to
use (hard-label) model queries to evaluate its function value and thus any zeroth order optimization
algorithm can be applied to solve it. In the experiments, we show our algorithm can be successfully
used to attack hard-label black-box CNN models on MNIST, CIFAR, and ImageNet with far less
number of queries compared to the state-of-art algorithm both in L2 and L∞ metric.

Moreover, since our algorithm does not depend on the gradient of the classifier, we can apply it to
attack other non-differentiable classifiers besides neural networks. We show an interesting application
in attacking Gradient Boosting Decision Tree, which cannot be attacked by all the existing gradient-
based methods even in the white-box setting. Our method can successfully find adversarial examples
with imperceptible perturbations for a GBDT within 30,000 queries.

2 BACKGROUND AND RELATED WORK

We will first introduce our problem setting and give a brief literature review to highlight the difficulty
of attacking hard-label black-box models.
Problem Setting For simplicity, we consider attacking a K-way multi-class classification model
in this paper. Given the classification model f : Rd → {1, . . . ,K} and an original example x0, the
goal is to generate an adversarial example x such that

x is close to x0 and f(x) 6= f(x0) (i.e., x is misclassified by model f .) (1)

White-box attacks Most attack algorithms in the literature consider the white-box setting, where
the classifier f is exposed to the attacker. For neural networks, under this assumption, back-
propagation can be conducted on the target model because both network structure and weights
are known by the attacker. For classification models in neural networks, it is usually assumed that
f(x) = argmaxi(Z(x)i), where Z(x) ∈ RK is the final (logit) layer output, and Z(x)i is the
prediction score for the i-th class. The objectives in (1) can then be naturally formulated as the
following optimization problem:

argmin
x

{Dis(x,x0) + cL(Z(x))} := h(x), (2)

where Dis(·, ·) is some distance measurement (e.g., L2, L1 or L∞ norm in Euclidean space), L(·)
is the loss function corresponding to the goal of the attack, and c is a balancing parameter. For
untargeted attack, where the goal is to make the target classifier misclassify, the loss function can be
defined as

L(Z(x)) = max{[Z(x)]y0 −max
i 6=y0

[Z(x)]i,−κ}, (3)

where y0 is the original label predicted by the classifier, κ is the margin (usually set to be 1 or 0) of
the hinge loss. For targeted attack, where the goal is to turn it into a specific target class t, the loss
function can also be defined accordingly.

Therefore, attacking a machine learning model can be posed as solving this optimization prob-
lem (Carlini & Wagner, 2017; Chen et al., 2018b), which is also known as the C&W attack or the
EAD attack depending on the choice of the distance measurement. To solve (2), one can apply any
gradient-based optimization algorithm such as SGD or Adam, since the gradient of L(Z(x)) can be
computed via back-propagation.

The ability of computing gradient also enables many different attacks in the white-box setting.
For example, eq (2) can also be turned into a constrained optimization problem, which can then
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be solved by projected gradient descent (PGD) (Madry et al., 2018). FGSM (Goodfellow et al.,
2014) is the special case of one step PGD with L∞ norm distance. Other algorithms such as
Deepfool (Moosavi Dezfooli et al., 2016) also solve similar optimization problems to construct
adversarial examples.

Previous work on black-box attack In real-world systems, usually the underlying machine learn-
ing model will not be revealed and thus white-box attacks cannot be applied. This motivates the
study of attacking machine learning models in the black-box setting, where attackers do not have
any information about the function f . And the only valid operation is to make queries to the model
and acquire the corresponding output f(x). The first approach for black-box attack is using transfer
attack (Papernot et al., 2017) – instead of attacking the original model f , attackers try to construct
a substitute model f̂ to mimic f and then attack f̂ using white-box attack methods. This approach
has been well studied and analyzed in (Liu et al., 2017; Bhagoji et al., 2017). However, recent
papers have shown that attacking the substitute model usually leads to much larger distortion and low
success rate (Chen et al., 2017). Therefore, instead, (Chen et al., 2017) considers the score-based
black-box setting, where attackers can use x to query the softmax layer output in addition to the final
classification result. In this case, they can reconstruct the loss function (3) and evaluate it as long
as the objective function h(x) exists for any x. Thus a zeroth order optimization approach can be
directly applied to minimize h(x). (Tu et al., 2018) further improves the query complexity of (Chen
et al., 2017) by introducing an autoencoder-based approach to reduce query counts and an adaptive
random gradient estimation to balance query counts and distortion.

Difficulty of hard-label black-box attacks Throughout this paper, the hard-label black-box setting
refers to cases where real-world ML systems only provide limited prediction results of an input query.
Specifically, only the final decision (top-1 predicted label) instead of probability outputs is known to
an attacker.

Attacking in this setting is indeed very challenging. In Figure 1a, we show a simple 3-layer neural
network’s decision boundary. Note that the L(Z(x)) term is continuous as in Figure 1b because the
logit layer output is real-valued functions. However, in the hard-label black-box setting, only f(·)
is available instead of Z(·). Since f(·) can only be a one-hot vector, if we plug-in f into the loss
function, L(f(x)) (as shown in Figure 1c) will be discontinuous and with discrete outputs.

(a) Decision boundary
of f(x)

(b) L(Z(x)) (c) L(f(x)) (d) g(θ)

Figure 1: (a) A neural network classifier. (b) illustrates the loss function of C&W attack, which is
continuous and hence can be easily optimized. (c) is the C&W loss function in the hard-label setting,
which is discrete and discontinuous. (d) our proposed attack objective g(θ) for this problem, which
is continuous and easier to optimize. See detailed discussions in Section 3.

Optimizing this function will require combinatorial optimization or search algorithms, which is
challenging given the high dimensionality of the problem. The only two current approaches (Brendel
et al., 2017; Ilyas et al., 2018) are based on random-walk on the boundary and random trails on
the loss function. Although these “Boundary attack” and “Limited attack” can find adversarial
examples with comparable distortion with white-box attacks, they need lots of queries to explore
the high-dimensional space and lack convergence guarantees. We show that our optimization-based
algorithm can significantly reduce the number of queries, and has guaranteed convergence in the
number of iterations (queries) when the objective function is lipschitz smooth.

3 ALGORITHMS

Now we introduce a novel way to re-formulate hard-label black-box attack as another optimization
problem, show how to evaluate the function value using hard-label queries, and then apply a zeroth
order optimization algorithm to solve it.
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3.1 A BOUNDARY-BASED RE-FORMULATION

For a given example x0, true label y0 and the hard-label black-box function f : Rd → {1, . . . ,K},
we define our objective function g : Rd → R depending on the type of attack:

Untargeted attack: g(θ) = min
λ>0

λ s.t f(x0 + λ
θ

||θ||
) 6= y0 (4)

Targeted attack (given target t): g(θ) = min
λ>0

λ s.t f(x0 + λ
θ

||θ||
) = t (5)

In this formulation, θ represents the search direction and g(θ) is the distance from x0 to the nearest
adversarial example along the direction θ. The difference between (4) and (5) corresponds to the
different definitions of “successfulness” in untargeted and targeted attack, where the former one aims
to turn the prediction into any incorrect label and the later one aims to turn the prediction into the
target label. For untargeted attack, g(θ) also corresponds to the distance to the decision boundary
along the direction θ. In image problems the input domain of f is bounded, so we will impose
corresponding upper/lower bounds in the definition of (4) and (5).

Figure 2: Illustration

Instead of searching for an adversarial example, we search the direc-
tion θ to minimize the distortion g(θ), which leads to the following
optimization problem:

min
θ

g(θ). (6)

Finally, the adversarial example can be found by x∗ = x0 +
g(θ∗) θ∗

‖θ∗‖ , where θ∗ is the optimal solution of (6).

Note that unlike the C&W or PGD objective functions, which are
discontinuous step functions in the hard-label setting (see Section 2),
g(θ) maps input direction to real-valued output (distance to decision
boundary), which is usually continuous – a small change of θ usually
leads to a small change of g(θ), as can be seen from Figure 2.

Moreover, we give three examples of f(x) defined in two dimension input space and their corre-
sponding g(θ). In Figure 3a, we have a continuous classification function defined as follows

f(x) =

{
1, if ‖x‖22 ≥ 0.4

0, otherwise.
In this case, as shown in Figure 3c, g(θ) is continuous. Moreover, in Figure 3b and Figure 1a,
we show decision boundaries generated by GBDT and neural network classifier, which are not
continuous. However, as showed in Figure 3d and Figure 1d, even if the classifier function is not
continuous, g(θ) is still continuous. This makes it easy to apply zeroth order method to solve (6).

(a) Decision boundary
of continuous function

(b) Decision boundary
of GBDT

(c) g(θ) of (a) (d) g(θ) of (b)

Figure 3: Examples of decision boundary of classification function f(x) and corresponding g(θ).

Compute g(θ) up to certain accuracy. We are not able to evaluate the gradient of g, but we can
evaluate the function value of g using the hard-label queries to the original function f . For simplicity,
we focus on untargeted attack here, but the same procedure can be applied to targeted attack as well.

First, we discuss how to compute g(θ) directly without additional information. This is used in the
initialization step of our algorithm. For a given normalized θ, we do a coarse-grained search and then
a binary search. In coarse-grained search, we query the points {x0 + αθ,x0 + 2αθ, . . . } one by one
until we find f(x+ iαθ) 6= y0. This means the boundary lies between [x0 + (i− 1)αθ,x0 + iαθ].
We then enter the second phase and conduct a binary search to find the solution within this region
(same with line 11–17 in Algorithm 1). Note that there is an upper bound of the first stage if we
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choose θ by the direction of x− x0 with some x from another class. This procedure is used to find
the initial θ0 and corresponding g(θ0) in our optimization algorithm. We omit the detailed algorithm
for this part since it is similar to Algorithm 1.

Next, we discuss how to compute g(θ) when we know the solution is very close to a reference
point v. This is used in all the function evaluations in our optimization algorithm, since the current
solution is usually close to the previous solution, and when we estimate the gradient using (7),
the queried direction will only be a slight modification of the previous one. In this case, we first
increase or decrease v in the local region to find the interval that contains the nearby boundary (e.g,
f(x0 + vθ) = y0 and f(x0 + v′θ) 6= y0), then conduct a binary search to find the final value of g.
Our procedure for computing the g value is presented in Algorithm 1.

Algorithm 1 Compute g(θ) locally

1: Input: Hard-label model f , original image x0, query direction θ, previous solution v, in-
crease/decrease ratio α = 0.01, stopping tolerance ε (maximum tolerance of computed error)

2: θ ← θ/||θ||
3: if f(x0 + vθ) = y0 then
4: vleft ← v, vright ← (1 + α)v
5: while f(x0 + vrightθ) = y0 do
6: vright ← (1 + α)vright
7: else
8: vright ← v, vleft ← (1− α)v
9: while f(x0 + vleftθ) 6= y0 do

10: vleft ← (1− α)vleft
11: ## Binary Search within [vleft, vright]
12: while vright − vleft > ε do
13: vmid ← (vright + vleft)/2
14: if f(x0 + vmidθ) = y0 then
15: vleft ← vmid
16: else
17: vright ← vmid
18: return vright

3.2 HARD-LABEL BLACK-BOX ATTACKS WITH L∞ NORM CONSTRAINT

Although we could let ‖θ‖ = ‖θ‖∞ in (4) and (5) directly, g(θ) will be harder to optimize in practice
because of introducing the max term in ‖ · ‖∞. Instead, with an L∞ constraint ε , we design a smooth
approximation loss as follows:

Untargeted attack: g(θ) = min
λ
{
d∑
i=1

(max{λ |θi|
‖θ‖∞

− ε, 0})2} s.t f(x0 + λ
θ

‖θ‖∞
) 6= y0

Targeted attack: g(θ) = min
λ
{
d∑
i=1

(max{λ |θi|
‖θ‖∞

− ε, 0})2} s.t f(x0 + λ
θ

‖θ‖∞
) = t.

Here θi is the i-th coordinate of θ. Notably, when λ ≤ ε, we have g(θ) = 0. That’s to say, we have
obtained a legitimate θ to make a valid adversarial example x0 + λ∗ θ

‖θ‖∞ .

3.3 ZEROTH ORDER OPTIMIZATION

To solve the optimization problem (6) for which we can only evaluate function value instead of
gradient, zeroth order optimization algorithms can be naturally applied. In fact, after the reformulation,
the problem can be potentially solved by any zeroth order optimization algorithm, like zeroth order
gradient descent, genetic algorithm (Alzantot et al., 2018) or coordinate descent (see Conn et al.
(2009) for a comprehensive survey).

Here we propose to solve (1) using Randomized Gradient-Free (RGF) method proposed in (Nesterov
& Spokoiny, 2017; Ghadimi & Lan, 2013). In practice, we found it outperforms zeroth-order
coordinate descent. At each iteration, the gradient is estimated by

ĝ =
g(θ + βu)− g(θ)

β
· u (7)
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Algorithm 2 RGF for hard-label black-box attack

1: Input: Hard-label model f , original image x0, initial θ0.
2: for t = 0, 1, 2, . . . , T do
3: Randomly choose ut from a zero-mean Gaussian distribution
4: Evaluate g(θt) and g(θt + βu) using Algorithm 1

5: Compute ĝ =
g(θt + βu)− g(θt)

β
· u

6: Update θt+1 = θt − ηtĝ
7: return x0 + g(θT )θT

where u is a random Gaussian vector, and β > 0 is a smoothing parameter (we set β = 0.005 in all
our experiments). The solution is then updated by θ ← θ − ηĝ with a step size η. The procedure is
summarized in Algorithm 2.

Also, if g(θ) is Lipschitz-smooth, we are able to bound the number of iterations needed with O( dδ2 )
for our algorithm to achieve stationary points. See the appendix for details.

3.3.1 IMPLEMENTATION DETAILS

There are several implementation details when we apply this algorithm. First, for high-dimensional
problems, we found the estimation in (7) is very noisy. Therefore, instead of using one vector, we
sample q vectors from Gaussian distribution and average their estimators to get ĝ. We set q = 20
in all the experiments. Second, instead of using a fixed step size (suggested in theory), we use a
backtracking line-search approach to find step size at each step. This leads to additional query counts,
but makes the algorithm more stable and eliminates the need to hand-tuning the step size. Third,
instead of using a random direction θ as initialization, we sample t vectors from Gaussian distribution
and choose the one with smallest g(θ) as our initialization. It helps us to find a good initialization
direction and thus get a smaller distortion in the end with limited number of additional queries. We
set t = 100 in all the experiments.

4 EXPERIMENTAL RESULTS

We test the performance of our hard-label black-box attack algorithm on convolutional neural network
(CNN) models and compare with Boundary attack (Brendel et al., 2017), Limited attack (Ilyas et al.,
2018) and a random trail baseline. Furthermore, we show our method can be applied to attack
Gradient Boosting Decision Tree (GBDT) and present some interesting findings.

4.1 ATTACKING CNN IMAGE CLASSIFICATION MODELS

We use three standard datasets: MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky, 2009) and
ImageNet-1000 (Deng et al., 2009). To have a fair comparison with previous work, we adopt the same
networks used in both Carlini & Wagner (2017) and Brendel et al. (2017). In detail, both MNIST and
CIFAR use the same network structure with four convolution layers, two max-pooling layers and
two fully-connected layers. Using the parameters provided by Carlini & Wagner (2017), we could
achieve 99.5% test accuracy on MNIST and 82.5% test accuracy on CIFAR-10, which is similar to
accuracy reported in Carlini & Wagner (2017). For Imagenet-1000, we use the pretrained network
Resnet-50 (He et al., 2016) and Inception-V3 (Szegedy et al., 2016) provided by torchvision1, which
could achieve 76.15% and 77.45 % top-1 test accuracy respectively. For simplicity, all images are
normalized into [0, 1]d scale. All models are trained using Pytorch and our source code is publicly
available2.

We include the following algorithms for comparisons in attacking performance:

• Opt-based black-box attack (Opt-attack): our proposed algorithm.
• Boundary black-box attack (Brendel et al., 2017) (Boundary-attack): first work on attacking

hard-label black box model in L2 distance metric. We use the authors’ implementation and the
parameters provided in Foolbox3.

1https://github.com/pytorch/vision/tree/master/torchvision
2https://github.com/LeMinhThong/blackbox-attack
3https://github.com/bethgelab/foolbox
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Table 1: Results for (L2-norm based) untargeted attacks. ASR stands for Attack Success Rate.

MNIST CIFAR10 Imagenet (ResNet-50)
Avg L2 # queries Avg L2 # queries Avg L2 # queries

Boundary-attack 1.1222 60,293 0.1575 123,879 5.9791 123,407
1.1087 143,357 0.1501 220,144 3.7725 260,797

Opt-attack 1.188 22,940 0.2050 40,941 6.9796 71,100
1.049 51,683 0.1625 77,327 4.7100 127,086
1.011 126,486 0.1451 133,662 3.1120 237,342

C&W (white-box) 0.9921 - 0.1012 - 1.9365 -
Random distortion 1.0(2% ASR) 300,000 0.15(10% ASR) 300,000 3.11(0% ASR) 480,000

• Limited black-box attack (Ilyas et al., 2018) (Limited-attack): previous work on targeted black-
box attack in L∞ distance constraint in the hard-label setting. We use the authors’ implementation
and the parameters provided in Github4.

• C&W white-box attack (Carlini & Wagner, 2017): one of the current state-of-the-art attacking
algorithm in the white-box setting. We do binary search on parameter c per image to achieve the
best performance. Attacking in the white-box setting is a much easier problem, so we include
C&W attack just for reference and indicate the best performance we can possibly achieve.

• Random distortion: we use 300,000 and 480,000 i.i.d random directions as the baseline. We note
that while all other methods could achieve 100 % attack success rate (ASR), the ASR of random
distortion appears to be quite low.

For all the cases except Limited-attack, we conduct adversarial attacks for randomly sampled
N = 100 images from validation sets. Note that all three attacks (Opt-attack, Boundary-attack,
C&W attack) have 100% successful rates, and we report the average L2 distortion, defined by
1
N

∑N
i=1 ‖x(i) − x(i)

0 ‖2, where x(i) is the adversarial example constructed by an attack algorithm
and x(i)

0 is the original i-th example. For black-box attack algorithms, we also report average and
median number of queries for comparison. To compare with Limited-attack, we randomly sampled
50 images and report targeted ASR with average and median number of queries when limiting L∞
distortion to be 0.3 and 0.15 for ImageNet dataset. We also restrict the maximum number of queries
to be 1,000,000 for all attacks.

4.1.1 UNTARGETED ATTACK

For untargeted attack, the goal is to turn a correctly classified image into any other label. The results
are presented in Table 1. Note that for both Opt-attack and Boundary-attack, by changing the stopping
conditions we can attain different distortions by varying the number of queries.

First, we compare Boundary-attack and the proposed Opt-attack in Table 1 and Table 5 in appendix.
Our algorithm consistently achieves smaller distortion with less number of queries than Boundary-
attack. For example, on MNIST data, we are able to reduce the number of queries by 3-4 folds, and
Boundary-attack converges to worse solutions in all the 3 datasets. In addition, we include the average
L2 norm distortion plot with different query budgets in Figure 5(a) in appendix. And our method
consistently outperforms the Boundary-attack and achieves nearly 2x speedup on both datasets.

Compared with C&W attack, we found black-box attacks attain slightly worse distortion on MNIST
and CIFAR. This is reasonable because white-box attack has much more information than black-box
attack and is strictly easier. We note that the experiments in Brendel et al. (2017) conclude that
C&W and Boundary-attack have similar performance because they only run C&W attack with a
single regularization parameter c, without doing binary search to obtain the optimal parameter. For
ImageNet, since we constraint the number of queries, the distortion of black-box attacks is much
worse than C&W attack. The gap can be reduced by increasing the number of queries as showed in
Figure 5(b) in appendix.

4.1.2 TARGETED ATTACK

The results for targeted attack is presented in Table 2 and Table 5 in appendix. Following the
experiments in Brendel et al. (2017), for each randomly sampled image with label i we set target
label t = (i + 1) module 10. On MNIST, we found our algorithm is more than 4 times faster (in
terms of number of queries) than Boundary-attack and converges to a better solution. On CIFAR, our
algorithm has similar efficiency with Boundary-attack at the first 60,000 queries, but converges to a
slightly worse solution. Also, we show an example quality comparison from the same starting point
to the original sample in Figure 4. And we also include some adversarial example in Figure 4.

4https://github.com/labsix/limited-blackbox-attacks
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For attacks in L∞ norm constraint, we conduct experimental comparisons with Limited-attack5. the
results are shown in Table 3. In the cases of an L∞ constraint ε ∈ {0.15, 0.3}, our Opt-attack roughly
halves the average number of queiries relative to Limited-attack. In addition, our ASR is 40% higher
than Limited-attack when ε = 0.15.

(a) Examples of targeted Opt-attack (b) Examples of targeted Boundary-attack

(c) Examples of targeted Opt-attack on CIFAR-10 (d) Examples of targeted Opt-attack on ImageNet

Figure 4: (a)(b): Example quality comparison between targeted Opt-attack and Boundary-attack .
Opt-attack can achieve a better result with less queries. (c)(d): Some adversarial examples generated
by Opt-attack . From initialization image (left), through several number of model queries, we could
generate a adversarial example very close to original image (right).

Table 2: Results of (L2-norm based) targeted attack.

MNIST CIFAR10
Avg L2 # queries Avg L2 # queries

Boundary-attack (black-box)
2.3158 30,103 0.2850 55,552
2.0052 58,508 0.2213 140,572
1.8668 192,018 0.2122 316,791

Opt-attack (black-box)
1.8522 46,248 0.2758 61,869
1.7744 57,741 0.2369 141,437
1.7114 73,293 0.2300 186,753

C&W (white-box) 1.4178 - 0.1901 -

Table 3: Results of targeted attacks in L∞
constraint. ASR stands for Attack Success Rate.

ImageNet (Inception V3)
ε ASR Avg queries Median queries

Opt-attack 0.30 100 % 167,080 119,925
0.15 90% 310,952 183,217

Limited-attack 0.30 100 % 436,561 295,918
0.15 50% 896,558 981,272

Table 4: Results of (L2-norm based) untargeted
attack on gradient boosting decision tree.

HIGGS MNIST
Avg L2 # queries Avg L2 # queries

Opt-attack
0.3458 4,229 0.6113 5,125
0.2179 11,139 0.5576 11,858
0.1704 29,598 0.5505 32,230

4.1.3 ATTACKING GRADIENT BOOSTING DECISION TREE (GBDT)
To evaluate our method’s ability to attack models with discrete decision functions, we conduct our
untargeted attack on gradient booting decision tree (GBDT). In this experiment, we use two standard
datasets: HIGGS (Baldi et al., 2014) for binary classification and MNIST (LeCun et al., 1998) for
multi-class classification. We use popular LightGBM framework to train the GBDT models and use
suggested parameters in https://github.com/Koziev/MNIST_Boosting. To be more
specific, for MNIST model, it has 100 trees and the max number of leaves in each tree is 100. For
Higgs model, it has 255 trees and the max number of leaves in each tree is 500. And we don’t limit
the max depth on both models. We could achieve 0.8457 AUC for HIGGS and 98.09% accuracy for
MNIST. The results of untargeted attack on GBDT are given in Table 4.

As shown in Table 4, by using around 30K queries, we could get a small distortion on both datasets,
which firstly uncovers the vulnerability of GBDT models. Tree-based methods are well-known for
its good interpretability. And because of that, they are widely used in the industry. However, we
show that even with good interpretability and a similar prediction accuracy with convolution neural
network, the GBDT models are vulnerable under our Opt-attack. This result raises a question about
tree-based models’ robustness, which will be an interesting direction in the future.

5Note that there’s a bug in the original version of (Ilyas et al., 2018) for counting number of queries, which
makes the reported number of queries less than they actually used. We use their modified version in our
experiments, which has fixed this bug.
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5 CONCLUSION

In this paper, we propose a generic and optimization-based hard-label black-box attack algorithm,
which can be applied to discrete and non-continuous models other than neural networks, such as the
gradient boosting decision tree. Our method enjoys query-efficiency and has a theoretical convergence
guarantee on the attack performance under mild assumptions. Moreover, our attack achieves smaller
or similar distortion using 3-4 times less queries compared with the state-of-the-art algorithms.
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6 APPENDIX

6.1 MEDIAN RESULT

Table 5: Results of median L2 distortion on different attack methods.

Type MNIST CIFAR10 Imagenet (ResNet-50)
Median L2 # queries Median L2 # queries Median L2 # queries

Boundary-attack Untargeted 1.0832 142,686 0.1359 235,285 2.7879 261,258
Targeted 1.8004 171,151 0.1962 314,839 - -

Opt-attack Untargeted 1.0206 127,077 0.1344 159,276 2.0687 246,755
Targeted 1.7375 72,318 0.2020 158,438 - -

6.2 RESULTS ON DIFFERENT NUMBER OF SAMPLE DIRECTIONS ut

Table 6: Results of average L2 distortion on different number of sample directions ut.

MNIST
# of directions ut Average L2 Average # queries Median L2 Median # queries

Opt-attack 1 2.0525 9,820 2.0188 8,093
5 1.0550 59,901 1.0639 56,890
10 1.0345 63,652 1.0420 62,209
15 1.0257 71,045 1.0256 73,227
20 1.0112 126,486 1.0206 127,077
25 1.0098 146,516 1.0117 145,862

6.3 L2 DISTORTION VERSUS MODEL QUERIES PLOT

(a) Average L2-distortion comparison (b) Log distortion comparison

Figure 5: Left:Log distortion comparison of Boundary-attack (solid curves) vs Opt-attack (dotted
curves) over number of queries for 6 different images. Right: Average L2-distortion versus number
of queries plot.

6.4 THEORETICAL ANALYSIS

If g(θ) can be computed exactly, it has been proved in Nesterov & Spokoiny (2017) that RGF in
Algorithm 2 requires at most O( dδ2 ) iterations to converge to a point with ‖∇g(θ)‖2 ≤ δ2. However,
in our algorithm the function value g(θ) cannot be computed exactly; instead, we compute it up
to ε-precision, and this precision can be controlled by binary threshold in Algorithm 1. We thus
extend the proof in Nesterov & Spokoiny (2017) to include the case of approximate function value
evaluation, as described in the following theorem.

11
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Theorem 1 In Algorithm 2, suppose g has Lipschitz-continuous gradient with constant L1(g) and
g∗ (optimal value) is finite. If the error of function value evaluation is controlled by ε = O(βδ2)

and β ≤ δ
dL1(g)

, then in order to obtain 1
N+1

N∑
k=0

EUk(‖∇g(θk)‖2) ≤ δ2, the upper bound of total

number of iterations is O( dδ2 ).

Note that the binary search procedure could obtain the desired function value precision in O(log δ)
steps. By using the same idea with Theorem 1 and following the proof in Nesterov & Spokoiny
(2017), we could also achieve O(d

2

δ3 ) complexity when g(θ) is non-smooth but Lipschitz continuous.

Because there is a stopping criterion in Algorithm 1, we couldn’t achieve the exact g(θ). Instead, we
could get g̃ with ε error, i.e., g(θ)− ε ≤ g̃(θ) ≤ g(θ) + ε. Also, we define ĝ(θ) = g̃(θ+βu)−g̃(θ)

β ·u
to be the noise gradient estimator.

Following Nesterov (2011), we define the Guassian smoothing approximation over g(θ), i.e,

gβ(θ) =
1

κ

∫
E

g(θ + βu)e−
1
2 ||u||

2

du. (8)

Also, we have the upper bounds for the momentsMp =
1
κ

∫
E
||u||pe− 1

2 ||u||
2

du from Nesterov (2011)
Lemma 1.

For p ∈ [0, 2], we have
Mp ≤ dp/2. (9)

If p ≥ 2, we have two-sided bounds
np/2 ≤Mp ≤ (p+ n)p/2. (10)

6.5 PROOF OF THEOREM 1

Suppose f has a lipschitz-continuous gradient with constant L1(g), then

|g(y)− g(x)− 〈∇g(x), y − x〉| ≤ 1

2
L1(g)||x− y||2 (11)

We could bound Eu(||ĝ(θ)||2) as follows,

Since
(g̃(θ + βu)− g̃(θ))2 = [g̃(θ + βu)− g̃(θ)− β〈∇g(θ), u〉+ β〈∇g(θ), u〉]2

≤ 2(g(θ + βu)− g(θ) + εθ+βu − εθ − β〈∇g(θ), u〉)2 + 2β2〈∇g(θ), u〉2
(12)

Because |εθ+βu − εθ| ≤ 2ε,

[g̃(θ + βu)− g̃(θ)]2 ≤ 2(
β2

2
L1(g)||u||2)2 + 4β2L1(g)||u||2ε+ 8ε2 + 2β2〈∇g(θ), u〉2 (13)

Take expectation over u, and with Theorem 3 in Nesterov (2011), which is Eu(||g′(θ, u) · u||2) ≤
(d+ 4)||∇g(θ)||2

Eu(||ĝ(θ)||2) ≤
β2

2
L2
1(g)Eu(||u||6) + 2Eu(||g′(θ, u) · u||2) + 4L1(g)εEu(||u||4) + 8

ε2

β2
Eu(||u||2)

≤ β2

2
L2
1(g)(d+ 6)3 + 2(d+ 4)||∇g(θ)||2 + 4εL1(g)(d+ 4)2 + 8

ε2

β2
d

(14)
With ε = O(δ2β), we could bound Eu(||g̃(θ)||2)

Eu(||ĝ(θ)||2) ≤
β2

2
L2
1(g)(d+ 6)3 + 2(d+ 4)||∇g(θ)||2 + 4βL1(g)(d+ 4)2δ2 + 8dδ4 (15)

And with

||∇g(θ)||2 ≤ 2||∇gβ(θ)||2 +
β2

2
L2
1(g)(d+ 4)2 (16)

Which is proved in Nesterov (2011) Lemma 4.

12
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Therefore, since (n+ 6)3 + 2(n+ 4)3 ≤ 3(n+ 5)3, we could get

Eu(||ĝ(θ)||2) ≤
β2

2
L2
1(g)(d+ 6)3 + 2(d+ 4)||∇g(θ)||2 + 2(d+ 4)||∇g(θ)||2

+ 4βL1(g)(d+ 4)2δ2 + 8dδ4

≤ β2

2
L2
1(g)(d+ 6)3 + 2(d+ 4)(2||∇gβ(θ)||2 +

β2

2
L2
1(g)(d+ 4)2)

+ 4βL1(g)(d+ 4)2δ2 + 8dδ4

≤ 4(d+ 4)||∇gβ(x)||2 +
3β2

2
L2
1(g)(d+ 5)3 + 4βL1(g)(d+ 4)2δ2 + 8dδ4

(17)

Therefore, since gβ(θ) has Lipshcitz-continuous gradient:

|gβ(θk+1)− gβ(θk) + α〈∇gβ(θk), ĝβ(θk)〉| ≤
1

2
α2L1(gβ)||ĝβ(θk)||2 (18)

So that
gβ(θk+1) ≤ gβ(θk)− α〈∇gβ(θk), ĝβ(θk)〉+

1

2
α2L1(gβ)||ĝβ(θk)||2 (19)

Since

Eu(ĝ(θk)) =
1

κ

∫
E

g(θ + βu)− g(θ) + εθ+βu − εθ
β

ue−
1
2 ||u||

2

du

= ∇gβ(θk) +
1

κ

∫
E

εθ+βu − εθ
β

ue−
1
2 ||u||

2

du

≤ ∇gβ(θk) +
2ε

β
n1/2 · 1

(20)

where 1 is a all-one vector. Taking the expectation in uk, we obtain

Euk
(gβ(θk+1)) ≤ gβ(θk)− αk||∇gβ(θk)||2 + αk〈∇gβ(θk),

2ε

β
d1/2 · 1〉+ 1

2
α2
kL1(gβ)Euk

||ĝβ(θk)||2

Euk
(gβ(θk+1)) ≤ gβ(θk)− αk||∇gβ(θk)||2 + αk

2ε

β
n1/2||∇gβ(θk)||

+
1

2
α2
kL1(g)(4(d+ 4)||∇gβ(θk)||2 +

3β2

2
L2
1(g)(d+ 5)3 + 4βL1(g)(d+ 4)2δ2 + 8dδ4)

(21)
Choosing αk = α̂ = 1

4(d+4)L1(g)
, we obtain

Euk
(gβ(θk + 1)) ≤ gβ(θk)−

1

2
α̂||∇gβ(θk)||2 + α̂

2ε

β
d1/2||∇gβ(θk)||+

3β2

64
L1(g)

(d+ 5)3

(d+ 4)2

+
β

8
δ2 +

d

4(d+ 4)2L1(g)
δ4

(22)
Since (d+5)3 ≤ (d+8)(d+4)2, taking expectation over Uk, where Uk = {u1, u2, . . . , uk}, we get

φk+1 ≤ φk−
1

2
α̂EUk(||∇gβ(θk)||2)+

3β2(d+ 8)

64
L1(g)+

β

8
δ2+

d

4(d+ 4)2L1(g)
δ4+α̂d1/2EUk(||∇gβ(θk)||)δ2

(23)
Where φk = EUk−1(g(θk)), k ≥ 1 and φ0 = g(θ0).

Assuming g(x) ≥ g∗, summing over k and divided by N+1, we get
1

N + 1

N∑
k=0

EUk(||∇gβ(θk)||2) ≤ 8(d+ 4)L1(g)[
g(x0)− g∗

N + 1
+

3β2(d+ 8)

16
L1(g) +

β

8
δ2

+
d

4(d+ 4)2L1(g)
δ4 +

1

N + 1

N∑
k=0

EUk(||∇gβ(θk)||)δ2]

(24)

Clearly, 1
N+1

N∑
k=0

EUk(||∇gβ(θk)||) ≤ δ2.
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Since ϑ2k = EUk(||∇g(θk)||2) ≤ 2EUk(||∇gβ(θk)||2) +
β2(d+4)2

2 L2
1(g), ϑ

2
k is in the same order of

EUk(||∇gβ(θk)||2). In order to get 1
N+1

N∑
k=0

ϑ2k ≤ δ2, we need to choose β ≤ δ
dL1(g)

, then N is

bounded by O( dδ2 )
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