
Published as a workshop paper at ICLR 2019

DISCRETE FLOWS: INVERTIBLE GENERATIVE
MODELS OF DISCRETE DATA

Dustin Tran1 Keyon Vafa12∗ Kumar Krishna Agrawal1† Laurent Dinh1 Ben Poole1
1Google Brain 2Columbia University

ABSTRACT

While normalizing flows have led to significant advances in modeling high-
dimensional continuous distributions, their applicability to discrete distributions
remains unknown. In this paper, we show that flows can in fact be extended to
discrete events—and under a simple change-of-variables formula not requiring
log-determinant-Jacobian computations. Discrete flows have numerous applica-
tions. We display proofs of concept under two flow architectures: discrete autore-
gressive flows that enable bidirectionality, allowing for example tokens in text to
depend on both left-to-right and right-to-left contexts in an exact language model;
and discrete bipartite flows that enable efficient non-autoregressive generation as
in RealNVP.

1 INTRODUCTION

There have been many recent advances in normalizing flows, a technique for constructing
high-dimensional continuous distributions from invertible transformations of simple distributions
(Rezende and Mohamed, 2015; Tabak and Turner, 2013; Rippel and Adams, 2013). Applications
for high-dimensional continuous distributions are widespread: these include latent variable models
with expressive posterior approximations (Rezende and Mohamed, 2015; Ranganath et al., 2016;
Kingma et al., 2016), parallel image generation (Dinh et al., 2017; Kingma and Dhariwal, 2018),
parallel speech synthesis (Oord et al., 2017; Prenger et al., 2018), and general-purpose density esti-
mation (Papamakarios et al., 2017).

Normalizing flows are based on the change-of-variables formula, which derives a density given an
invertible function applied to continuous events. There have not been analogous advances for dis-
crete distributions, where flows are typically thought to not be applicable. Instead, most research
for discrete data has focused on building either latent-variable models with approximate inference
(Bowman et al., 2015), or increasingly sophisticated autoregressive models that assume a fixed or-
dering of the data (Bengio et al., 2003; Vaswani et al., 2017). In this paper, we present an alternative
for flexible modeling of discrete sequences by extending continuous normalizing flows to the dis-
crete setting. We demonstrate proofs of concept of discrete flows with two architectures:

1. Discrete autoregressive flows enable multiple levels of autoregressivity. For example,
one can design a bidirectional language model of text where each token depends on both
left-to-right and right-to-left contexts while maintaining an exact likelihood and sampling.

2. Discrete bipartite flows (i.e., with flow structure similar to RealNVP (Dinh et al., 2017))
enable flexible models with parallel generation. For example, one can design nonautore-
gressive text models which maintain an exact likelihood for training and evaluation.

1.1 RELATED WORK

Bidirectional models. Classically, bidirectional language models have been pursued but require
approximate inference (Mnih and Teh, 2012). Unlike bidirectional models, autoregressive mod-
els must impose a specific ordering, and this has been shown to matter across natural language

∗Work done as an intern at Google Brain. Supported by NSF grant DGE-1644869.
†Work done as an AI resident.

1



Published as a workshop paper at ICLR 2019

processing tasks (Vinyals et al., 2015; Ford et al., 2018; Xia et al., 2017). Bidirectionality such
as in encoders have been shown to significantly improve results in neural machine translation (Britz
et al., 2017). Most recently, BERT has shown bidirectional representations can significantly improve
transfer tasks (Devlin et al., 2018). In this work, discrete autoregressive flows enable bidirectionality
while maintaining the benefits of a (tractable) generative model.

Nonautoregressive models. There have been several advances for flexible modeling with nonau-
toregressive dependencies, mostly for continuous distributions (Dinh et al., 2014; 2017; Kingma and
Dhariwal, 2018). For discrete distributions, Reed et al. (2017) and Stern et al. (2018) have consid-
ered retaining blockwise dependencies while factorizing the graphical model structure in order to
simulate hierarchically. Gu et al. (2018) and Kaiser et al. (2018) apply latent variable models for
fast translation, where the prior is autoregressive and the decoder is conditionally independent. Lee
et al. (2018) adds an iterative refinement stage to initial parallel generations. In this work, discrete
bipartite flows enable nonautoregressive generation while maintaining an exact density—analogous
to RealNVP advances for image generation (Dinh et al., 2017).

2 BACKGROUND

2.1 NORMALIZING FLOWS

Normalizing flows transform a probability distribution using an invertible function (Tabak and
Turner, 2013; Rezende and Mohamed, 2015; Rippel and Adams, 2013). Let x be a D-dimensional
continuous random variable whose density can be computed efficiently. Given an invertible function
f : RD → RD, the change-of-variables formula provides an explicit construction of the induced
distribution on the function’s output, y = f(x):

p(y) = p(f−1(y)) det

∣∣∣∣dxdy
∣∣∣∣. (1)

The transformation f is referred to as a flow and x is referred to as the base distribution. Composing
multiple flows can induce further complex distributions.

2.2 FLOW TRANSFORMATION

For an arbitrary invertible f , the determinant of the Jacobian incurs an O(D3) complexity, which
is as costly as modeling with a full rank covariance matrix. Thus, normalizing flows are designed
so that the determinant of the flow’s Jacobian can be computed efficiently. Here, we review two
popular flow transformations.

Autoregressive flows. Autoregressive functions such as recurrent neural networks and Transform-
ers (Vaswani et al., 2017) have been shown to successfully model data across modalities. Specif-
ically, assume a base distribution x ∼ p(x). With µ and σ as autoregressive functions of y, i.e.
µd,σd = f(y1, . . . ,yd−1), and σd > 0 for all d, the flow computes a location-scale transform
(Papamakarios et al., 2017),

yd = µd + σd · xd for d in 1, . . . , D.

The transformation is invertible and in fact, the inverse can be vectorized and computed in paral-
lel:

xd = σ−1d (yd − µd) for d in 1, . . . , D

In addition to a fast-to-compute inverse, the autoregressive flow’s Jacobian is lower-triangular, so
its determinant is the product of the diagonal elements,

∏
d=1 σd. This enables autoregressive flow

models to have efficient log-probabilities for training and evaluation.

Bipartite flows. Real-valued non-volume preserving (RealNVP) flows are another transformation
(Dinh et al., 2017). For some d < D, RealNVP coupling flows follow a bipartite rather than

2



Published as a workshop paper at ICLR 2019

X1 X2 X3 X4 X1 X2 X3 X4

Figure 1: Flow transformation when computing log-likelihoods. (a) Discrete autoregressive flows
stack multiple levels of autoregressivity. The receptive field of output unit 2 (red) includes left and
right contexts. (b) Discrete bipartite flows apply a binary mask (blue and green) which determines
the subset of variables to transform. With 2 flows, the receptive field of output unit 2 is x1:3.

autoregressive factorization:

y1:d = x1:d (2)
yd+1:D = µ+ σ · x(d+1):D, (3)

where σ and µ are functions of x1:d with σ > 0. By changing the ordering of variables between
each flow, the composition of RealNVP flows can learn highly flexible distributions. RealNVP flows
have a lower-triangular Jacobian where its determinant is again the product of diagonal elements,∏D

i=d+1 σi.

RealNVP flows are not as expressive as autoregressive flows, as a subset of variables don’t undergo a
transformation. However, both their forward and inverse computations are fast to compute, making
them suitable for generative modeling where fast generation is desired.

3 DISCRETE FLOWS

Normalizing flows depend on the change of variables formula (Equation 1) to compute the change
in probability mass for the transformation. However, the change of variables formula applies only
to continuous random variables. We extend normalizing flows to discrete events.

3.1 DISCRETE CHANGE OF VARIABLES

Let x be a discrete random variable and y = f(x) where f is some function of x. The induced
probability mass function of y is the sum over the pre-image of f :

p(y = y) =
∑

x∈f−1(y)

p(x = x),

where f−1(y) is the set of all elements such that f(x) = y. For an invertible function f , this
simplifies to

p(y = y) = p(x = f−1(y)). (4)
Note Equation 4’s relationship to the continuous change of variables formula (Equation 1). It is the
same but without the log-determinant-Jacobian. Intuitively, the log-determinant-Jacobian corrects
for changes to the volume of a continuous space; volume does not exist for discrete distributions so
there is no need to adjust it. Computationally, Equation 4 is appealing as there are no restrictions on
f such as fast Jacobian computations in the continuous case, or tradeoffs in how the log-determinant-
Jacobian influences the output density compared to the base distribution.

3.2 DISCRETE FLOW TRANSFORMATION

Next we develop discrete invertible functions. To build intuition, first consider the binary case.
Given a D-dimensional binary vector x, one natural function applies the XOR bitwise opera-

3



Published as a workshop paper at ICLR 2019

(a) Data (b) Factorized Base (c) 1 Flow

Figure 2: Learning a discretized mixture of Gaussians with maximum likelihood. Discrete flows
help capture the multi-dimensional modes, which a factorized distribution cannot. (Note because
the data is 2-D, discrete autoregressive flows and discrete bipartite flows are equivalent.)

tor,
yd = µd ⊕ xd, for d in 1, . . . , D,

where µd is a function of previous outputs, y1, . . . ,yd−1; ⊕ is the XOR function (0 if µd and xd

are equal and 1 otherwise). The inverse is xd = µd ⊕ yd. We provide an example next.

Example. Let D = 2 where p(x) is defined by the following probability table:

x2 = 0 x2 = 1

x1 = 0 0.63 0.07
x1 = 1 0.03 0.27

The data distribution cannot be captured by a factorized one p(x1)p(x2). However, it can with a
flow: set f(x1,x2) = (x1,x1⊕x2); p(x1) with probabilities [0.7, 0.3]; and p(x2) with probabilities
[0.9, 0.1]. The flow captures correlations that cannot be captured alone with the base. More broadly,
discrete flows perform a multi-dimensional relabeling of the data such that it’s easier to model with
the base. This is analogous to continuous flows, which whiten the data such that it’s easier to model
with the base (typically, a spherical Gaussian).

Modulo location-scale transform. To extend XOR to the categorical setting, consider a D-
dimensional vector x, each element of which takes on values in 0, 1, . . . ,K − 1. One can perform
location-scale transformations on the modulo integer space,

yd = (µd + σd · xd) mod K. (5)
Here, µd and σd are autoregressive functions of y taking on values in 0, 1, . . . ,K−1 and 1, . . . ,K−
1 respectively. For this transformation to be invertible, σ and K must be coprime (an explicit
solution for σ−1 is Euclid’s algorithm). An easy way to ensure coprimality is to set K to be prime;
mask noninvertible σ values for a given K; or fix σ = 1. Setting K = 2 and σ = 1, it’s easy to
see that the modulo location-scale transform generalizes XOR. The idea also extends to the bipartite
flow setting: the functions (µ,σ) are set to (0, 1) for a subset of the data dimensions, and are
functions of that subset otherwise.

Example. Figure 2 illustrates an example of using flows to model correlated categorical data.
Following Metz et al. (2016), the data is drawn from a mixture of Gaussians with 8 means evenly
spaced around a circle of radius 2. The output variance is 0.01, with samples truncated to be between
−2.25 and 2.25, and we discretize at the 0.05 level. A factorized base distribution cannot capture
the data correlations, while a single discrete flow can. (Note the modulo location-scale transform
does not make an ordinal assumption. We display ordinal data as an example only for visualization;
other experiments use non-ordinal data.)

3.3 TRAINING DISCRETE FLOWS

With discrete flow models, the maximum likelihood objective per datapoint is
log p(y) = log p(f−1(y)),

4



Published as a workshop paper at ICLR 2019

Autoregressive Base Autoregressive Flow Factorized Base Bipartite Flow

D = 2,K = 2 0.9 0.9 1.3 1.0
D = 5,K = 5 7.7 7.6 8.0 7.9
D = 5,K = 10 10.7 10.3 11.5 10.7
D = 10,K = 5 15.9 15.7 16.6 16.0

Table 1: Negative log-likelihoods for the full rank discrete distribution (lower is better). Autore-
gressive flows improve over its autoregressive base. Bipartite flows improve over its factorized base
and achieve nats close to an autoregressive distribution while remaining parallel.

Autoregressive Base Autoregressive Flow

D = 16, coupling = 0.5 0.73 0.73
D = 25, coupling = 0.1 1.62 1.12
D = 25, coupling = 0.5 0.92 0.92
D = 25, coupling = 1.0 7.54 4.53
D = 25, coupling = 1.5 15.05 5.81

Table 2: Negative log-likelihoods on the square-lattice Ising model (lower is better). Higher cou-
pling strength corresponds to more spatial correlations.

where the flow f has free parameters according to its autoregressive or bipartite network, and the
base distribution p has free parameters as a factorized (or itself an autoregressive) distribution. Gra-
dient descent with respect to base distribution parameters is straightforward. To perform gradient
descent with respect to flow parameters, one must backpropagate through the discrete-output func-
tion µ and σ. We use the straight-through gradient estimator (Bengio et al., 2013). In particular, the
(autoregressive or bipartite) network outputs two vectors of K logits θd for each dimension d, one
for the location and scale respectively. On the forward pass, we take the argmax of the logits, where
for the location,

µd = one_hot(argmax(θd)). (6)
Because the argmax operation is not differentiable, we replace Equation 6 on the backward pass
with the softmax-temperature function:

dµd

dθd
≈ d

dθd
softmax

(
θd
τ

)
.

As the temperature τ → 0, the softmax-temperature becomes close to the argmax and the bias of
the gradient estimator disappears. However, when τ is too low, the gradients vanish, inhibiting the
optimization. Work with the Gumbel-softmax distribution indicates that this approximation works
well when the number of classes K < 200 (Maddison et al., 2016; Jang et al., 2017), which aligns
with our experimental settings; we also fix τ = 0.1.

4 TOY EXPERIMENTS

In addition to the experiment in Figure 2, we perform three toy experiments to show the utility of
discrete autoregressive flows and discrete bipartite flows. For discrete autoregressive flows, we used
an autoregressive Categorical base distribution where the first flow is applied in reverse ordering.
(This setup lets us compare its advantage of bidirectionality to the baseline of an autoregressive base
with 0 flows.) For discrete bipartite flows, we used a factorized Categorical base distribution where
the bipartite flows alternate masking of even and odd dimensions.

Full-rank Discrete Distribution. A natural experiment is to analyze the expressivity of the flows
for an arbitrary discrete distribution. In particular, we sample a true set of probabilities for all D
dimensions of K classes according to a Dirichlet distribution of size KD − 1, α = 1. For the
network for both the base and flows, we used a Transformer with 64 hidden units.

5



Published as a workshop paper at ICLR 2019

Table 1 displays negative log-likelihoods (nats) of trained models over data simulated from this
distribution. Across the data dimension D and number of classes K, autoregressive flows gain
several nats over the autoregressive base distribution, which has no flow on top. Bipartite flows
improve over its factorized base and in fact obtain nats competitive with the autoregressive base
while remaining fully parallel for generation.

Addition. Following Zaremba and Sutskever (2014), we examine an addition task: there are two
input numbers with D digits (each digit takes K = 10 values), and the output is their sum with D
digits (we remove the D + 1th digit if it appears). Addition naturally follows a right-to-left order-
ing: computing the leftmost digit requires carrying the remainder from the rightmost computations.
Given an autoregressive base which poses a left-to-right ordering, we examine whether the bidirec-
tionality that flows offer can adjust for wrong orderings. We use an LSTM to encode both inputs,
apply 0 or 1 flows on the output, and then apply an LSTM to parameterize the autoregressive base
where its initial state is set to the concatenated two encodings. All LSTMs use 256 hidden units for
D = 10; 512 for D = 20.

For D = 10, an autoregressive base achieves 4.0 nats; an autoregressive flow achieves 0.2 nats (i.e.,
close to the true deterministic solution over all pair of 10-digit numbers). A bipartite model with 1,
2, and 4 flows achieves 4.0, 3.17, and 2.58 nats respectively. For D = 20, an autoregressive base
achieves 12.2 nats; an autoregressive flow achieves 4.8 nats. A bipartite model with 1, 2, 4, and 8
flows achieves 12.2, 8.8, 7.6, and 5.08 nats respectively.

Ising Model. We examine how bidirectional generative models can be used for learning undirected
models. For the base network, we used a single layer LSTM with 8 hidden units. For the flow
network, we used an embedding layer with 8 hidden units.

Table 2 displays negative log-likelihoods (nats) of trained models over data simulated from Ising
models with varying lattice size and coupling strength. As Ising models are undirected models, the
autoregressive base posits a poor inductive bias by fixing an ordering and sharing network param-
eters across the individual conditional distributions. Over data dimension D and coupling, autore-
gressive flows perform as well as, or improve upon, autoregressive base models.

5 LIMITATIONS

We describe discrete flows, a class of invertible functions for flexible modeling of discrete data.
Note our experiments are only toy to show proofs of concept. We’re continuing to push these
ideas to larger-scale text data. We’re also applying discrete inverse autoregressive flows, which
enable flexible variational approximations for discrete latent variable models. One open question
remains with scaling discrete flows to large numbers of classes: in particular, the straight-through
gradient estimator works well for small numbers of classes such as for character-level language
modeling, but it may not work for (sub)word-level modeling where the vocabulary size is greater
than 5,000.

REFERENCES

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic language model.
Journal of machine learning research, 3(Feb):1137–1155.

Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Bengio, S. (2015). Generat-
ing sentences from a continuous space. arXiv preprint arXiv:1511.06349.

Britz, D., Goldie, A., Luong, M.-T., and Le, Q. (2017). Massive exploration of neural machine
translation architectures. arXiv preprint arXiv:1703.03906.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

6



Published as a workshop paper at ICLR 2019

Dinh, L., Krueger, D., and Bengio, Y. (2014). NICE: Non-linear independent components estima-
tion. arXiv preprint arXiv:1410.8516.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using real nvp. In Interna-
tional Conference on Learning Representations.

Ford, N., Duckworth, D., Norouzi, M., and Dahl, G. E. (2018). The importance of generation order
in language modeling. In Empirical Methods in Natural Language Processing.

Gu, J., Bradbury, J., Xiong, C., Li, V. O., and Socher, R. (2018). Non-autoregressive neural machine
translation. In International Conference on Learning Representations.

Jang, E., Gu, S., and Poole, B. (2017). Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations.

Kaiser, Ł., Roy, A., Vaswani, A., Pamar, N., Bengio, S., Uszkoreit, J., and Shazeer, N. (2018). Fast
decoding in sequence models using discrete latent variables. arXiv preprint arXiv:1803.03382.

Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pages 10236–10245.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling, M. (2016). Im-
proved variational inference with inverse autoregressive flow. In Advances in neural information
processing systems, pages 4743–4751.

Lee, J., Mansimov, E., and Cho, K. (2018). Deterministic non-autoregressive neural sequence mod-
eling by iterative refinement. arXiv preprint arXiv:1802.06901.

Maddison, C. J., Mnih, A., and Teh, Y. W. (2016). The concrete distribution: A continuous relaxation
of discrete random variables. arXiv preprint arXiv:1611.00712.

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. (2016). Unrolled generative adversarial net-
works. arXiv preprint arXiv:1611.02163.

Mnih, A. and Teh, Y. W. (2012). A fast and simple algorithm for training neural probabilistic
language models. arXiv preprint arXiv:1206.6426.

Oord, A. v. d., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O., Kavukcuoglu, K., Driessche, G.
v. d., Lockhart, E., Cobo, L. C., Stimberg, F., et al. (2017). Parallel wavenet: Fast high-fidelity
speech synthesis. arXiv preprint arXiv:1711.10433.

Papamakarios, G., Murray, I., and Pavlakou, T. (2017). Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems, pages 2335–2344.

Prenger, R., Valle, R., and Catanzaro, B. (2018). Waveglow: A flow-based generative network for
speech synthesis. arXiv preprint arXiv:1811.00002.

Ranganath, R., Tran, D., and Blei, D. (2016). Hierarchical variational models. In International
Conference on Machine Learning, pages 324–333.

Reed, S., van den Oord, A., Kalchbrenner, N., Colmenarejo, S. G., Wang, Z., Chen, Y., Belov, D.,
and de Freitas, N. (2017). Parallel multiscale autoregressive density estimation. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pages 2912–2921. JMLR.
org.

Rezende, D. J. and Mohamed, S. (2015). Variational inference with normalizing flows. In Interna-
tional Conference on Machine Learning.

Rippel, O. and Adams, R. P. (2013). High-dimensional probability estimation with deep density
models. arXiv preprint arXiv:1302.5125.

Stern, M., Shazeer, N., and Uszkoreit, J. (2018). Blockwise parallel decoding for deep autoregressive
models. In Advances in Neural Information Processing Systems, pages 10107–10116.

Tabak, E. and Turner, C. V. (2013). A family of nonparametric density estimation algorithms.
Communications on Pure and Applied Mathematics, 66(2):145–164.

7



Published as a workshop paper at ICLR 2019

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polo-
sukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing
Systems, pages 5998–6008.

Vinyals, O., Bengio, S., and Kudlur, M. (2015). Order matters: Sequence to sequence for sets. arXiv
preprint arXiv:1511.06391.

Xia, Y., Tian, F., Wu, L., Lin, J., Qin, T., Yu, N., and Liu, T.-Y. (2017). Deliberation networks:
Sequence generation beyond one-pass decoding. In Advances in Neural Information Processing
Systems, pages 1784–1794.

Zaremba, W. and Sutskever, I. (2014). Learning to execute. arXiv preprint arXiv:1410.4615.

8


