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Abstract
In many applications, the training data for a ma-
chine learning task is partitioned across multiple
nodes, and aggregating this data may be infeasible
due to storage, communication, or privacy con-
straints. In this work, we present Good-Enough
Model Spaces (GEMS), a novel framework for
learning a global satisficing (i.e. "good-enough")
model within a few communication rounds by
carefully combining the space of local nodes’ sat-
isficing models. In experiments on benchmark
and medical datasets, our approach outperforms
other baseline aggregation techniques such as en-
sembling or model averaging, and performs com-
parably to the ideal non-distributed models.

1. Introduction
There has been significant work in designing distributed
optimization methods in response to challenges arising from
a wide range of large-scale learning applications. These
methods typically aim to train a global model by performing
numerous communication rounds between distributed nodes.
However, most approaches treat communication reduction
as an objective, not a constraint, and seek to minimize the
number of communication rounds while maintaining model
performance. Less explored is the inverse setting—where
our communication budget is fixed and we aim to maximize
accuracy while restricting communication to only a few
rounds. These few-shot model aggregation methods are
ideal when any of the following conditions holds:

• Limited network infrastructure: Distributed optimiza-
tion methods typically require a connected network to sup-
port the collection of numerous learning updates. Such a
network can be difficult to set up and maintain, especially
in settings where devices may represent different organi-
zational entities (e.g., a network of different hospitals).

• Privacy and data ephemerality: Privacy policies or reg-
ulations like GDPR may require nodes to periodically
delete the raw local data. Few-shot methods enable learn-
ing an aggregate model in ephemeral settings, where a
node may lose access to its raw data. Additionally, as

fewer messages are sent between nodes, these methods
have the potential to offer increased privacy benefits.

• Extreme asynchronicity: Even in settings where privacy
is not a concern, messages from distributed nodes may
be unevenly spaced and sporadically communicated over
days, weeks, or even months (e.g., in the case of remote
sensor networks or satellites). Few-shot methods drasti-
cally limit communication and thus reduce the wall-clock
time required to learn an aggregate model.

Throughout this paper, we reference a simple motivating
example. Consider two hospitals, A and B, which each
maintain private (unshareable) patient data pertinent to some
disease. As A and B are geographically distant, the patients
they serve sometimes exhibit different symptoms. Without
sharing the raw training data, A and B would like to jointly
learn a single model capable of generalizing to a wide range
of patients. The prevalent learning paradigm in this setting—
distributed or federated optimization—dictates that A and
B share iterative model updates (e.g., gradient information)
over a network.

From a meta-learning or multitask perspective, we can view
each hospital (node) as a separate learning task, where our
goal is to learn a single aggregate model which performs
well on each task. However, these schemes often make sim-
ilar assumptions on aggregating data and learning updates
from different tasks.

As a promising alternative, we present good-enough model
spaces (GEMS), a framework for learning an aggregate
model over distributed nodes within a small number of
communication rounds. Intuitively, the key idea in GEMS is
to take advantage of the fact that many possible hypotheses
may yield ‘good enough’ performance for a learning task
on local data, and that considering the intersection between
these sets can allow us to compute a global model quickly
and easily. Our proposed approach has several advantages.
First, it is simple and interpretable in that each node only
communicates its locally optimal model and a small amount
of metadata corresponding to local performance. Second,
each node’s message scales linearly in the local model size.
Finally, GEMS is modular, allowing the operator to tradeoff
the aggregate model’s size against its performance via a
hyperparameter ε.
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We make the following contributions in this work. First,
we present a general formulation of the GEMS framework.
Second, we offer a method for calculating the good-enough
space on each node as a Rd ball. We empirically validate
GEMS on both standard benchmarks (MNIST and CIFAR-
10) as well as a domain-specific health dataset. We consider
learning convex classifiers and neural networks in standard
distributed setups as well as scenarios in which some small
global held-out data may be used for fine-tuning. We find
that on average, GEMS increases the accuracy of local base-
lines by 10.1 points and comes within 43% of the (unachiev-
able) global ideal. With fine-tuning, GEMS increases the
accuracy of local baselines by 41.3 points and comes within
86% of the global ideal.

2. Related Work
Distributed Learning. Current distributed and federated
learning approaches typically rely on iterative optimization
techniques to learn a global model, continually communicat-
ing updates between nodes until convergence is reached. To
improve the overall runtime, a key goal in most distributed
learning methods is to minimize communication for some
fixed model performance; to this end, numerous methods
have been proposed for communication-efficient and asyn-
chronous distributed optimization (e.g., Dekel et al., 2012;
Recht et al., 2011; Dean et al., 2012; Li et al., 2014; Shamir
et al., 2014; Richtárik & Takáč, 2016; Smith et al., 2018;
McMahan et al., 2017). In this work, our goal is instead to
maximize performance for a fixed communication budget
(e.g., only one or possibly a few rounds of communication).

One-shot/Few-shot Methods. While simple one-shot dis-
tributed communication schemes, such as model averaging,
have been explored in convex settings (Mcdonald et al.,
2009; Zinkevich et al., 2010; Zhang et al., 2012; Shamir
et al., 2014; Arjevani & Shamir, 2015), guarantees typically
rely on data being partitioned in an IID manner and over
a small number of nodes relative to the total number of
samples. Averaging can also perform arbitrarily poorly in
non-convex settings, particularly when the local models con-
verge to differing local optima (Sun et al., 2017; McMahan
et al., 2017). Other one-shot schemes leverage ensemble
methods, where an ensemble is constructed from models
trained on distinct partitions of the data (Chawla et al., 2004;
Mcdonald et al., 2009; Sun et al., 2017). While these ensem-
bles can often yield good performance in terms of accuracy,
a concern is that the resulting ensemble size can become
quite large. In Section 4, we compare against these one-shot
baselines empirically, and find in that GEMs can outper-
form both simple averaging and ensembles methods while
requiring significantly fewer parameters.

Meta-learning and transfer learning. The goals of meta-
learning and transfer learning are seemingly related, as these

works aim to share knowledge from one learning process
onto others. However, in the case of transfer learning, meth-
ods are typically concerned with one-way transfer—i.e.,
optimizing the performance of a single target model, not
jointly aggregate knowledge between multiple models. In
meta-learning, such joint optimization is performed, but
similar to traditional distributed optimization methods, it is
assumed that these models can be updated in an iterative
fashion, with potentially numerous rounds of communica-
tion being performed throughout the training process.

Version Spaces. In developing GEMS, we draw inspira-
tion from work in version space learning, an approach for
characterizing the set of logical hypotheses consistent with
available data (Mitchell, 1978). Similar to (Balcan et al.,
2012), we observe that if each node communicates its ver-
sion space to the central server, the server can return a
consistent hypothesis in the intersection of all node version
spaces. However, (Mitchell, 1978; Balcan et al., 2012) as-
sume that the hypotheses of interest are consistent with the
observed data—i.e., they perfectly predict the correct out-
comes. Our approach significantly generalizes to explore
imperfect, noisy hypotheses spaces as more commonly ob-
served in practice.

3. Methodology
As in traditional distributed learning, we assume a training
set S = {(xi, yi)}mi=1 drawn from DX×Y is arbitrarily di-
vided amongst K nodes. We define Sk := {(xk1 , yk1 ), ...}
as the subset of training examples belonging to node k,
such that

∑K
k=1 |Sk| = m. We assume that a single node

(e.g., a central server) can aggregate updates communicated
in the network. Fixing a function class H, our goal is to
learn an aggregate model hG ∈ H that approximates the
performance of the optimal model h∗ ∈ H over S while
limiting communication to one (or possibly a few) rounds
of communication.

In developing a method for model aggregation, our intuition
is that the aggregate model should be at least good-enough
over each node’s local data, i.e., it should achieve some
minimum performance for the task at hand. Thus, we can
compute hG by having each node compute and communi-
cate a set of locally good-enough models to a central server,
which learns hG from the intersection of these sets.

Formally, let Q : (H, {(xi, yi)}d) → {−1, 1} denote a
model evaluation function, which determines whether a
given model h is good-enough over a sample of data points
{(xi, yi)}d ⊆ S. In this work, define "good-enough" in
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Figure 1. Illustration of good-enough model spaces.

terms of the accuracy of h and a threshold ε:

Q(h, {(xi, yi)}d) =

1
1

d

∑d
i=1 I{h(xi) = yi} ≥ ε

−1 else
(1)

Using these model evaluation functions, we formalize the
proposed approach for model aggregation, GEMS, in Algo-
rithm 1. In GEMS, each node k = 1, ...,K computes the
set of models Hk = {h1, ..., hn|hi ∈ H, Qk(hi, S

k) = 1}
and sends it to the central node. After collecting H1, ...HK ,
the central node selects hG from the intersection of the sets,
∩iHi. When granted access to a small sample of public data,
the server can additionally use this auxiliary data further
fine-tune the selected h ∈ ∩iHi, an approach we discuss
further below.

Figure 3 visualizes this approach for a model class with only
two weights (w1 andw2) and two learners ("red" and "blue").
The ‘good-enough’ model space, Hk, for each learner is
a set of regions over the weight space (the blue regions
correspond to one learner and the red regions correspond to
second learner). The final aggregate model, hG, is selected
from the area in which the spaces intersect.

For a fixed hypothesis class H, applying Algorithm 1 re-
quires two components: (i) a mechanism for computing Hk

over every node, and (ii) a mechanism for identifying the
aggregate model, hG ∈ ∩kHk. In this work, we present
methods for two types of models: convex models and simple
neural networks. For convex models, we find thatHk can be
approximated as Rd-ball in the parameter space, requiring
only a single round of communication between nodes to
learn hG. For neural networks, we apply Algorithm 1 to
each layer in a step-wise fashion, compute Hk as a set of
independent Rd-balls corresponding to every neuron in the
layer, and identify intersections between different neurons.
This requires one round of communication per layer (a few
rounds for the entire network).

We can compute these Rd balls by fixing the center at the

optimal local model on a device. The radius for the ball is
computed via binary search: at each iteration, the node sam-
ples a candidate hypothesis h and evaluates Q(h, Sk). The
goal is to identify that largest radius such that all models lo-
cated in the Rd ball are good-enough. Algorithm 2 presents
a simple method for constructing Hk. More details can
be found in Appendix A (convex setting) and Appendix B
(neural network setting).

Algorithm 1 GEMS Meta-Algorithm
1: Input: S = {(xi, yi)}mi=1

2: for k = 1, · · · ,m in parallel do
3: Node k computes good-enough model space, Hk,

according to (1)
4: end for
5: Return intersection hG ∈ ∩kHk

Algorithm 2 ConstructBall
1: Input: k, fw(·), Q(·),w∗k S

k = {(xk1 , yk1 ), ..}, Rmax, ∆
2: Sets ck to w∗k.
3: Initialize Rlower = 0, Rupper = Rmax
4: while Rupper −Rlower > ∆ do
5: Set R = Avg(Rupper, Rlower)
6: Sample w1, ..., wp from surface of BR(ck)
7: if Q(fw′ , Sk) = 1,∀w′ = w1, ..., w

′
p then

8: Set Rlower = R
9: else

10: Set Rupper = R
11: end if
12: end while
13: Return Hk

Fine-tuning. In many contexts, a small sample of public
data Spublic may be available to the central server. This could
correspond to a public research dataset, or devices which
have waived their privacy right. The coordinating server can
fine-tune HG on Spublic by updating the weights for a small
number of epochs. We find that fine-tuning is particularly
useful for improving the quality of the GEMS aggregate
model, HG, compared to other baselines.

4. Evaluation
We now present the evaluation results for GEMS on
three datasets: MNIST (LeCun et al., 1998), CIFAR-10
(Krizhevsky & Hinton, 2009), and HAM10000 (Tschandl
et al., 2018), a medical imaging dataset. HAM10000 (HAM)
consists of images of skin lesions, and our model is tasked
with distinguishing between 7 types of lesions. Full details
can be found in Appendix C.1. We focus on the perfor-
mance of GEMS for neural networks, and discuss results
for convex models in Appendix A.
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Table 1. NN Results

Dataset K Global Local Averaged GEMS GEMS Tuned

MNIST 5 0.965 (0.000) 0.199 (0.010) 0.259 (0.039) 0.439 (0.044) 0.886 (0.007)

CIFAR-10 5 0.651 (0.004) 0.183 (0.009) 0.128 (0.023) 0.223 (0.011) 0.502 (0.011)

HAM 3 0.601 (0.002) 0.271 (0.061) 0.195 (0.042) 0.269 (0.089) 0.525 (0.014)

Figure 2. Comparative effects of fine-tuning for GEMS vs Baselines (Neural Network)

We partitioned data by label, such that all train/validation im-
ages corresponding to a particular label would be assigned
to the same node. We consider three baselines: 1) global, a
model trained on data aggregated across all nodes, 2) local,
the average performance of models trained locally on each
node, and 3) naive average, a parameter-wise average of all
local models. All results are reported on the aggregated test
set consisting of all test data across all nodes. Fine-tuning
consists of updating the last layer’s weights of the GEMS
model for 5 epochs over a random sample of 1000 images
from the aggregated validation data. We report the average
accuracy (and standard deviation) of all results over 5 trials.

Neural network performance. We evaluated the neural
network variant of GEMS on simple two layer feedforward
neural networks (Table 1). The precise network configura-
tion and training details are outlined in Appendix C.4. In the
majority of cases, the untuned GEMS model outperforms
the local/average baselines. Moreover, fine-tuning has a
significant impact, and tuned GEMS model 1) significantly
outperforms every baseline, and 2) does not degrade as K
increases. In Appendix F, we demonstrate that GEMS is
more parameter efficient than ensemble baselines, delivering
better accuracy with fewer parameters.

Fine-tuning. The results in Table 1 suggest that fine-tuning
on a holdout set of samples Spublic has a significant effect on
the GEMS model. We evaluate the effect of fine-tuning as
the number of public data samples (the size of the tuning set)
changes. For neural networks (Figure 2), finetuned GEMS
consistently outperforms 1) the finetuned baselines, and 2) a
’raw’ model trained directly on Spublic. This suggest that the
GEMS model is learning weights that are more amenable to
fine-tuning, and are perhaps capturing better representations

for the overall task. Though this advantage diminishes as
the tuning sample size increases, the advantage of GEMS
is especially pronounced for smaller samples, and achieves
remarkable improvements with just 100 images.

Intersection Analysis. In certain cases, GEMS may not
find an intersection between different nodes. This occurs
when the task is too complex for the model, or ε is set too
high. In practice, we notice that finding an intersection
requires us to be conservative (e.g low values) when setting
ε for each node. We explain this by our choice to represent
Hk as an Rd ball. Though Rd balls are easy to compute and
intersect, they’re fairly coarse approximations of the actual
good-enough model space. To illustrate node behavior at
different settings of ε, we defer the reader to experiments
performed in Appendix G.

5. Conclusion
In summary, we introduce GEMS, a framework for learning
an aggregated model across different nodes within a few
rounds of communication. We validate one approach for
constructing good-enough model spaces (as Rd balls) on
three datasets for both convex classifiers and simple feed-
forward networks. Despite the simplicity of the proposed
approach, we find that it outperforms a wide range of base-
lines for effective model aggregation.
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A. GEMS: Convex
We provide a more detailed explanation of the GEMS algo-
rithm for convex settings.

Consider the class of linear separators fw(·) parameterized
by a weight vector w ∈ Rd. For each node k, we compute
Hk as Rd-ball in the parameter space, represented as a tuple
(ck ∈ Rd, rk ∈ R) corresponding to the center and radius.
Formally, Hk = {w ∈ Rd|||ck − w||2 ≤ rk}. Fixing ε as
our minimum acceptable performance, we want to compute
Hk such that ∀w ∈ Hk, Q(w, Sk) = 1. Intuitively, every
model contained within the d-ball should have an accuracy
greater than or equal to ε.
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Construction: Algorithm 2 presents the Hk construction
algorithm for node k, where

w∗k = arg min
w

1

|Sk|

|Sk|∑
i=1

`(fw(xi), yi)

over node data Sk, ε is fixed hyperparameter, and Q(·) is a
minimum accuracy threshold defined according to Eq. 1.
Rmax and ∆ define the scope and stopping criteria for the
binary search.

Intersection: Given K nodes with individual Hi = (ci, ri),
then ∩iHi = {w ∈ Rd | ||ci − w||2 ≤ ri,∀i = 1, ..,K}.
We pick a point in this intersection by solving:

hG = arg min
w

K∑
i=1

max(0, ||ci − w||2 − ri) (2)

which takes a minimum value of 0 when w ∈ ∩iHi. This
w can be improved by fine-tuning on a limited sample of
’public data’.

B. GEMS: Neural Networks
We provide a more detailed explanation of the GEMS algo-
rithm applied to neural networks.

First, we observe that the final layer of an MLP is a linear
model. Hence, we can apply the method above with no
modification. However, the input to this final layer is a set
of stacked, non-linear transformations which extract feature
from the data. For these layers, the approach presented
above faces two challenges:

1. Node specific features: When the distribution of data is
non-i.i.d across nodes, different nodes may learn differ-
ent feature extractors in lower layers.

2. Model Isomorphisms: MLPs are extremely sensitive
to the weight initialization. Two models trained on the
same set of samples (with different initializations) may
have equivalent behavior despite learning weights. In
particular, reordering a model’s hidden neurons (within
the same layer) does not alter the model’s predictions,
but corresponds to a different weight vector w.

In order to construct Hk for hidden layers, we modify
the approach presented in Appendix A, applying it to
individual hidden units. Formally, let the ordered set
[f jw1

(·), ..., [f jwL
(·)] correspond to the set of L hidden neu-

rons in layer j. Here, f jwl
(·) = g(wTl z

j−1) denotes the
function computed by the l-th neuron over the output from
the previous layer zj−1, with g(·) corresponding to some
non-linearity (i.e. ReLU). Fixing an indexed ordering over

d data points, let zjl = [(zjl )1, ..., (z
j
l )d] denote the vector of

activations produced by f jwl
(·). We can define an alternative

Q over a neuron, in terms of zj−1 and zjl (the neuron’s input
and output):

Qneuron(w′, {((zj−1)i, (z
j
l )i)}

d)

= I
{√√√√ d∑

i=1

(
f jw′(zj−1)i)− (zjl )i

)2 ≤ εj} (3)

Broadly, Qneuron returns 1 if the output of fw′ over zj−1

is within ε of zjl , and −1 otherwise. We can now apply
Algorithm 2 to each neuron. Formally:

1. Each node k learns a locally optimal model mk, with
optimal neuron weights wjl

∗
, over all j, l.

2. Fix hidden layer j = 1. Apply Algorithm 2 to each
hidden neuron [f jw1

(·), ..., [f jwL
(·)], with Q(·) according

to Eq 3 and predefined hyperparameter εj . Denote the
Rd ball constructed for neuron l as Hk

j,l.

3. Each node communicates its set of Hk
j,· =

[Hk
j,1, ...,H

k
j,L] to the central server which con-

structs the aggregate hidden layer fGj,· such
∀i, k, ∃i′ : fGj,i′ ∈ Hk

j,i. This is achieved by
greedily applying Eq 2 to tuples in the cartesian product
H1
j,· × ... × HK

j,·. Neurons for which no intersection
exists are included in fGj,·, thus trivially ensuring the
condition above.

4. The server sends hGj,· to each node, which insert hGj,·
at layer j in their local models and retrain the layers
above j.

5. Increment j, and return to (2) if any hidden layers remain.

Step (3) is expensive for large L and K as |H1
j,·× ...×HK

j,·|
increases exponentially. A simplifying assumption is that if
Hk
j,i and Hk

j,l are ‘far’, then the likelihood of intersection is
low. Operationalizing this, we can perform k-means clus-
tering over all neurons. In step (3), we now only look for
intersections between tuples of neurons in the same cluster.
Neurons for which no intersection exists are included in
fGj,·. For notational clarity, we denote the number of clus-
ters with which k-means is run asmε, in order to distinguish
it from device index k.

C. Experimental Setup
C.1. Preprocessing

We describe preprocessing/featurization steps for our
empirical results.
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Figure 3. Illustration of how GEMS is used to construct a hidden
layer for neural networks. In this example, neurons with overlap-
ping good-enough spaces have the same color.

MNIST. We used the standard MNIST dataset.

CIFAR-10. We featurize CIFAR-10 (train, test, and vali-
dation sets) using a pretrained ImageNet VGG-16 model
(Simonyan & Zisserman, 2014) from Keras. All models are
learned on these featurized images.

HAM10000. The HAM dataset consists of 10015 images
of skin lesions. Lesions are classified as one of seven po-
tential types: actinic keratoses and intraepithelial carcinoma
(akiec), basal cell carcinoma (bcc), benign keratosis (bkl),
dermatofibroma (df), melanoma (mel), melanocytic nevi
(nv), and vascular lesions (vasc). As Figure 4 shows, the
original original dataset is highly skewed, with almost 66%
of images belonging to one class. In order to balance the
dataset, we augment each class by performing a series of ran-
dom transformations (rotations, width shifts, height shifts,
vertical flips, and horizontal flips) via Keras (Chollet et al.,
2015). We sample 2000 images from each class. We initially
experimented with extracting ImageNet features (similar to
our proceedure for CIFAR-10). However, training a model
on these extractions resulted in poor performance. We con-
structed our own feature extractor, by training a simple
convolutional network on 66% of the data, and trimming the
final 2 dense layers. This network contained 3 convolutional
layers (32, 64, 128 filters with 3× 3 kernels) interspersed
with 2× 2 MaxPool layers, and followed by a single hidden
layer with 512 neurons.

C.2. Data Partitioning

Given K nodes, we partitioned each dataset in order to
ensure that all images corresponding to the same class be-
longed to the same node. Table 2 provides an explicit break-
down of the label partitions for each of the three datasets,
across the different values of K we experimented with.

We divided each dataset into train, validation, and test
splits. All training occurs exclusively on the train split
and all results are reported for performance on the test
split. We use the validation split to construct each node’s

Figure 4. Distribution of classes for HAM

Dataset K Label Division

MNIST 2 [{0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}]
MNIST 3 [{0, 1, 2}, {3, 4, 5}, {6, 7, 8, 9}]
MNIST 5 [{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}]
CIFAR10 2 [{0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}]
CIFAR10 3 [{0, 1, 2}, {3, 4, 5}, {6, 7, 8, 9}]
CIFAR10 5 [{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}]
HAM 2 [{0, 1, 2, 3}, {4, 5, 6}]
HAM 3 [{0, 1}, {2, 3}, {4, 5, 6}]

Table 2. Label Partitions across different K

good-enough model space. We use a train/val/test split of
50000/5000/5000 for MNIST and CIFAR-10. For HAM,
we use a 80/10/10 percentage split (since no conventional
train/test partitioning exists).

C.3. Convex Model Training

Our convex model consists of a simple logistic regression
classifier. We train with Adam, a learning rate of 0.001,
and a batch size of 32. We terminate training when training
accuracy converges.

C.4. Neural Network Model Training

Our non-convex model consists of a simple two layer feed-
forward neural network. For MNIST and HAM, we fix the
hidden layer size to 50 neurons. For CIFAR-10, we fix the
hidden layer size to 100 neurons. We apply dropout (Sri-
vastava et al., 2014) with a rate of 0.5 to the hidden layer.
We train with Adam, a learning rate of 0.001, and a batch
size of 32. We terminate training when training accuracy
converges.
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D. Convex Results
We evaluate the convex variant of GEMS on logistic classi-
fiers. The results for all three datasets for a varying number
nodes K is presented in Table 3. Fine-tuning consists of
updating the weights of the GEMS model for 5 epochs over
a random sample of 1000 images from the aggregated vali-
dation data. Training details are provided in Appendix C.3

In a convex setting, we find that GEMS frequently defaults
to a weighted average of the parameters. Hence, the GEMS
results closely mirror naive averaging. As the number of
agents increases, both untuned GEMS and the baselines sig-
nificantly decrease in performance. However, tuned GEMS
remains relatively consistent, and outperforms all other base-
lines. We use ε = 0.70 for MNIST, ε = 0.40 for HAM, and
ε = 0.20 for CIFAR-10.

Figure 5. Comparative effects of fine-tuning for GEMS vs Base-
lines (Convex)

E. Neural Network Results
Table 4 presents the neural network results for MNIST. We
use ε = 0.7 for the final layer, and let εj denote the deviation
allowed for the hidden neurons (as defined in Eq 3).

Table 5 presents the neural network results for CIFAR-10.
We use ε = 0.2 for the final layer.

Table 6 presents the neural network results for CIFAR-10.
We use ε = 0.25 for the final layer.

F. Ensemble Results
For neural networks, GEMS provides a modular framework
to tradeoff between the model size and performance, via
hyperparameters mε (the number of clusters created when
identifying intersections) and εj (the maximum output devi-
ation allowed for hidden neurons). Intuitively both parame-
ters control the number of hidden neurons in the aggregate
model hG. Table 7 compares adjustments for εj and mε on
CIFAR-10 for 5 nodes against an ensemble of local device
models. We observe that the GEMS performance corre-
lates with the number of hidden neurons, and that GEMS
outperforms the ensemble method at all settings (despite
having fewer parameters). For ease of clarity, we describe
the model size in terms of the number of hidden neurons.
For ensembles, we sum the hidden neurons across all en-
semble members. All results are averaged over 5 trials, with
standard deviations reported.

G. Intersection Analysis
We notice that in order for GEMs to find an intersection, we
have to set ε conservatively. We illustrate this phenomenon
in Figure 6. We consider the convex MNIST case (K = 2),
and do a grid search over different values of ε for each
node. We plot whether an intersection was identified, and
the resulting accuracy at that setting.
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Table 3. Convex Results

Dataset K Global Local Averaged GEMS GEMS Tuned

MNIST 2 0.926 (0.001) 0.481 (0.027) 0.780 (0.015) 0.780 (0.015) 0.889 (0.003)

MNIST 3 0.926 (0.001) 0.325 (0.042) 0.705 (0.013) 0.647 (0.033) 0.878 (0.004)

MNIST 5 0.925 (0.001) 0.198 (0.010) 0.458 (0.038) 0.458 (0.038) 0.880 (0.006)

CIFAR-10 2 0.585 (0.013) 0.385 (0.025) 0.253 (0.027) 0.234 (0.017) 0.494 (0.009)

CIFAR-10 3 0.590 (0.006) 0.273 (0.062) 0.193 (0.020) 0.193 (0.020) 0.491 (0.008)

CIFAR-10 5 0.591 (0.015) 0.178 (0.010) 0.150 (0.008) 0.150 (0.008) 0.500 (0.014)

HAM 2 0.559 (0.002) 0.344 (0.018) 0.400 (0.020) 0.353 (0.011) 0.491 (0.006)

HAM 3 0.559 (0.002) 0.263 (0.054) 0.343 (0.012) 0.343 (0.012) 0.483 (0.009)

Table 4. MNIST Results (Neural Network)

K εhidden mε Global Local Averaged GEMS GEMS Tuned

2 0.01 1 0.964 (0.001) 0.492 (0.024) 0.641 (0.058) 0.766 (0.083) 0.888 (0.004)

3 1.0 100 0.965 (0.002) 0.329 (0.043) 0.422 (0.038) 0.754 (0.024) 0.926 (0.006)

5 1.0 100 0.965 (0.000) 0.199 (0.010) 0.259 (0.039) 0.439 (0.044) 0.886 (0.007)

Table 5. CIFAR-10 Results (Neural Network

K εj mε Global Local Averaged GEMS GEMS Tuned

2 0.1 1.0 0.650 (0.004) 0.405 (0.019) 0.192 (0.026) 0.335 (0.041) 0.568 (0.007)

3 0.3 150 0.653 (0.004) 0.284 (0.061) 0.163 (0.029) 0.333 (0.059) 0.538 (0.009)

5 0.3 200 0.651 (0.004) 0.183 (0.009) 0.128 (0.023) 0.223 (0.011) 0.502 (0.011)

Table 6. HAM Results (Neural Network)

K εj mε Global Local Averaged GEMS GEMS Tuned

2 0.01 1.0 0.594 (0.005) 0.354 (0.022) 0.273 (0.032) 0.399 (0.039) 0.539 (0.008)

3 0.07 100 0.601 (0.002) 0.271 (0.061) 0.195 (0.042) 0.269 (0.089) 0.525 (0.014)

Table 7. Model Size Results (MNIST, K = 5)

Method Accuracy # hidden neurons

Tuned GEMS (mε = 75, εj = 0.5) 0.872 (0.007) 74.00 (0.00)

Tuned GEMS (mε = 100, εj = 1.0) 0.886 (0.007) 99.00 (0.00)

Tuned GEMS (mε = 50, εj = 1.0) 0.862 (0.009) 49.0 (0.00)

Tuned GEMS (mε = 75, εj = 1.0) 0.867 (0.008) 79.00 (0.00)

Ensemble 0.210 (0.006) 250.00 (0.0)
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Table 8. Model Size Results (CIFAR-10, K = 5)

Method Accuracy # hidden neurons

Tuned GEMS (mε = 150, εj = 0.7) 0.454 (0.018) 163.40 (1.20)

Tuned GEMS (mε = 150, εj = 0.5) 0.492 (0.012) 246.20 (8.93)

Tuned GEMS (mε = 200, εj = 0.3) 0.502 (0.011) 379.60 (6.68)

Tuned GEMS (mε = 100, εj = 0.3) 0.501 (0.011) 386.00 (18.76)

Ensemble 0.194 (0.005) 500.00 (0.0)

Table 9. Model Size Results (HAM, K = 3)

Method Accuracy Num hidden

Tuned GEMS (mε = 75, εj = 0.07) 0.517 (0.006) 76.00 (0.89)

Tuned GEMS (mε = 100, εj = 0.07) 0.525 (0.014) 100.20 (1.17)

Tuned GEMS (mε = 75, εj = 0.03) 0.521 (0.016) 114.60 (0.80)

Ensemble 0.245 (0.010) 150

Figure 6. The x-axis corresponds to different settings of ε for 1 node, and the y-axis corresponds to different settings of ε for the 2nd
node. Red crosses denote values where GEMS failed to find an intersection. The color of the circular markers denotes the accuracy of the
intersected model.
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