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ABSTRACT

Attention networks show promise for both vision and language tasks, by empha-
sizing relationships between constituent elements through weighting functions.
Such elements could be regions in an image output by a region proposal network,
or words in a sentence, represented by word embedding. Thus far the learning
of attention weights has been driven solely by the minimization of task specific
loss functions. We introduce a method for learning attention weights to better
emphasize informative pair-wise relations between entities. The key component
is a novel center-mass cross entropy loss, which can be applied in conjunction
with the task specific ones. We further introduce a focused attention backbone to
learn these attention weights for general tasks. We demonstrate that the focused
supervision leads to improved attention distribution across meaningful entities, and
that it enhances the representation by aggregating features from them. Our focused
attention module leads to state-of-the-art recovery of relations in a relationship
proposal task and boosts performance for various vision and language tasks.

1 INTRODUCTION

Complex tasks involving visual perception or language interpretation are inherently contextual. In
an image of an office scene, for example, a computer mouse may be too small to detect but the
recognition of a computer keyboard might hint at its presence and its possible locations. The study
of objects in their context is a cornerstone of much past computer vision work (Rabinovich et al.,
2007). Scene categories are often determined by the relationships between objects or environments
commonly found in them (Zhou et al., 2017) while in natural language processing words must be
interpreted in relation to other words or phrases in sentences. Machine learning algorithms that learn
object to object or word to word relationships have thus been sought. Among them, attention networks
have shown great promise for the task of learning relationship attention weights between entities
(Veličković et al., 2017; Vaswani et al., 2017). As a recent example, the scaled dot product attention
module from Vaswani et al. (2017) achieves state of the art performance in language translation tasks.

We here propose to explicitly supervise the learning of attention weights between elements of a data
source using a novel center-mass cross entropy loss. The minimization of this loss increases relation
weights between entity pairs which are more commonly observed in the data, but without the need
for handcrafted frequency measurements. We design a focused attention network that is end-to-end
trainable and which explicitly learns pairwise element affinities without the need for relationship
annotations in the data. Multiple experiments demonstrate that such focused attention improves
upon the baseline as well as attention without focus, for both computer vision and natural language
processing tasks. In a relationship proposal task the use of this backbone achieves results comparable
to the present state-of-the-art (Zhang et al., 2017), even without the use of ground truth relationship
labels. The use of ground truth labels for focused attention learning leads to a further 25% relative
improvement, as measured by a relationship recall metric.

2 MOTIVATION

Attention Networks – The Present State The modeling of relations between objects as well as
objects in their common contexts has a rich history in computer vision (Rabinovich et al., 2007;
Torralba, 2003; Galleguillos & Belongie, 2010). Deep learning based object detection systems
leverage attention models to this end, to achieve impressive performance in recognition tasks. The
scaled dot product attention module of Vaswani et al. (2017), for example, uses learned pairwise
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Figure 1: A comparison of recovered relationships on the MIT67 dataset, with training only on the
minicoco dataset. The reference object is surrounded by a blue box and regions with which it learns
relationships are shown with orange boxes with the relationship weights visible in red text (zoom-in
on the PDF). Left: Relation Networks (Hu et al., 2018) often learn weights between a reference
object and its immediate surrounding context, while Focused Attention Networks better emphasize
relationships between distinct and spatially separated objects. Right: Relation Networks can suffer
from a poor selection of regions to pair, or low between object relationship weights in comparison to
Focused Attention Networks.

attention weights between region proposal network (RPN) generated bounding boxes in images of
natural scenes (Hu et al., 2018) to boost object detection. Pixel level attention models have also been
explored to aid semantic segmentation (Zhao et al., 2018) and video classification (Wang et al., 2018).

Current approaches to learn the attention weights often do not reflect relations between entities in a
typical visual scene. In fact, for a given reference object (region), relation networks (Hu et al., 2018)
tend to predict high attention weights with scaled or shifted bounding boxes surrounding the same
object instance. This is likely because including surrounding context, or simply restoring missing
parts of the reference object, boosts object detection. The learned relationship weights between
distinct objects (regions) are also often small in magnitude. Typical qualitative examples comparing
Relation Networks with our Focused Attention Network are shown in Figure 1, with a quantitative
comparison reported in Section 5. Similar situations can occur in applications of attention networks
to natural language processing tasks. In document classification, for example, attention weights
learned using Hierarchical Attention Networks (Yang et al., 2016) tend to concentrate on a few words
in a sentence, while our Focused Attention Network leads to more distributed attention, allowing for
more comprehensive sentence level features, as illustrated in Figure 2.
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Figure 2: Left: Visualization of the word importance factor, which models the contribution of a
given word to its sentence level context (see Section 4.5). The sentence is in a clockwise direction
starting from 12 o’clock. "ait": weights learned using Hierarchical Attention Networks (Yang et al.,
2016), "unsup": weights from the unsupervised case of our Focused Attention Network module, and
"sup": weights from the supervised case. Right: semantic word-to-word relationship labels used in
the supervision of our network (see Section 3.2).

Attention Networks – Limitations A present limitation of attention networks in various applica-
tions is the use of only task specific losses as their training objectives. There is little work thus far on
explicitly supervising the learning of weights, so as to be more distributed across meaningful entities.
For example, Relation Networks (Hu et al., 2018) and those applied to segmentation problems, such
as PSANet (Zhao et al., 2018), learn attention weights solely by minimizing categorical cross entropy
for classification, L1 loss for bounding box localization or pixel-wise cross entropy loss for semantic
segmentation (Zhao et al., 2018). In language tasks including machine translation (Vaswani et al.,
2017) and document classification (Yang et al., 2016), the attention weights are also solely learned by
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minimizing the categorical cross entropy loss. In this article we refer to such attention networks as
being unsupervised.

Whereas attention aggregation with learned weights boosts performance for these specific tasks, our
earlier examples provide evidence that relationships between distinct entities may not be adequately
captured. We shall address this limitation by focusing the attention weight learning using a novel
center-mass cross entropy loss, as discussed in the following section.

3 FOCUSING THE ATTENTION

Given our goal of better reflecting learned attention weights between distinct entities, we propose to
explicitly supervise the learning of attention relationship weights. We accomplish this by introducing
a novel center-mass cross entropy loss.

3.1 PROBLEM STATEMENT

Given a set of N entities that are generated by a feature embedding framework, which can be a
region proposal network (RPN) (Ren et al., 2015) or a word embedding layer with a bidirectional
LSTM (Yang et al., 2016), for the i-th entity we define f i as the embedding feature. To compute
the relatedness or affinity between entity m and entity n, we define an attention function F which
computes the pairwise attention weight as

ωmn = F(fm, fn). (1)

A specific form of this attention function applied in this paper is reviewed in Section 4.1, and it
originates from the scaled dot product attention module of Vaswani et al. (2017).

We can now build an attention graph G whose vertices m represent entities in a data source with
features F = {fm} and whose edge weights {ωmn} represent pairwise affinities between the vertices.
We define the graph adjacency matrix for this attention graph asW . We propose to supervise the
learning ofW so that the matrix entries ωmn corresponding to entity pairs with high co-occurrence
in the training data gain higher attention weights.

3.2 SUPERVISION TARGET

We now discuss how to construct ground truth supervision labels in matrix form to supervise the
learning of the entries ofW . For visual recognition tasks we want our attention weights to focus on
relationships between objects from different categories, so for each entry tmn of the ground truth
relationship label matrix T , we assign tmn = 1 only when: 1) entities m and n overlap with two
different ground truth objects’ bounding boxes with intersection over union (IOU) > 0.5 and 2) their
category labels cm and cn are different. We provide a visualization of such ground truth relationships
in Figure 4 of the appendix. For language tasks we want the attention weights to reveal meaningful
word pairs. For example, semantic relationships between nouns and nouns, verbs and nouns, nouns
and adjectives, adverbs and verbs, and adverbs and adjectives should be encouraged. To this end, we
build a simple word category pair dictionary of valid pairings (see Figure 2) and assign label tmn = 1
when the word category pair cm and cn is found in this semantic pair dictionary.

Center-Mass Intuitively, we would like W to have high affinity weights at those entries where
tmn = 1, and low affinity weights elsewhere, i.e., the attention weights should concentrate on the 1’s
in the ground truth relationship label matrix T . We capture this via a notion of center-massM of
ground truth relation weights, defined as

M =
∑
W̃ � T , (2)

where W̃ = softmax(W) is a matrix-wise softmax operation.

3.3 CENTER-MASS CROSS ENTROPY LOSS

The key to our approach is the introduction of a center-mass cross entropy loss, which aims to focus
attention weight learning so that ωmn is high for pairs of commonly occurring distinct entities. The
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Figure 3: Top: The Focused Attention Network backbone. Bottom left: we add a detection branch
to the backbone, similar to that of Hu et al. (2018). Bottom middle: we add a scene recognition
branch to the backbone. Bottom right: we insert the Focused Attention Module into a Hierarchical
Attention Network (Yang et al., 2016). Here “FC" stands for fully connected layer and “Conv" stands
for convolutional layer.

loss is computed as
L = −(1−M)r log(M). (3)

When minimizing this center-mass loss more frequently occurring 1-labeled pairs in the matrix will
cumulatively receive stronger emphasis, for example, human-horse pairs versus horse-chair pairs in
natural images. Furthermore, when supervising the attention learning in conjunction with another
task specific loss, the matrix entries that reduce the task loss will also be optimized. The resultant
dominant ωmn entries will not only reflect entity pairs with high co-occurrence, but will also help
improve the main objective. The focal term (1−M)r (Lin et al., 2017) helps narrow the gap between
well converged center-masses and those that are far from convergence. For example, with a higher
center-mass value the gradient on the log loss will be scaled down, whereas for a lower center-mass
the gradient will be scaled up. The focal term prevents the network from committing only to the most
dominant ωmn entries, and thus promotes diversity. We choose r = 2 in our experiments, motivated
by the model ablation study conducted in Section 5.3.

4 NETWORK ARCHITECTURE

Our focused attention module originates from the scaled dot product attention module in Vaswani
et al. (2017). We discuss our network structures for the focused attention weight learning backbone
and various specific tasks, as shown in Figure 3, with implementation details provided in the appendix.

4.1 SCALED DOT PRODUCT ATTENTION NETWORK

We briefly review the computation of attention weights in Vaswani et al. (2017), given a pair of nodes
from the attention graph defined in Section 3.1. Let an entity node consist of its feature embedding,
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defined as f . Given a reference entity node m, such as one of the blue boxes in Figure 1, the attention
weight ω̃mn indicates its affinity to a surrounding entity node n. It is computed using a softmax
activation over the scaled dot products ωmn defined as:

ω̃mn =
exp(ωmn)∑
k exp(ω

kn)
, ωmn =

dot(WKfm,WQf
n)√

dk
. (4)

Both WK and WQ are matrices and so this linear transformation projects the embedding features fm
and fn into metric spaces to measure how well they match. The feature dimension after projection is
dk. With the above formulation, the attention graph affinity matrix is defined asW = {ωmn}.

4.2 FOCUSED ATTENTION NETWORK (FAN) BACKBONE

In Figure 3 (top) we illustrate the base Focused Attention Network architecture. Here the dot product
attention weightsW go through a matrix-wise softmax operation to generate the attention matrix
output W̃ , that is used for the focused supervision with the center-mass cross entropy loss defined
in Section 3.3. We shall refer to this loss term as relation loss. In parallel, a row-wise softmax is
applied toW to output the coefficientsWagg , which are then used for attention weighted aggregation:
fmout =

∑
n ω

mn
aggf

n. The aggregated output from the FAN module is sent to a task specific loss
function. The entire backbone is end-to-end trainable, with both the task loss and the relation loss.

4.3 OBJECT DETECTION AND RELATIONSHIP PROPOSALS

In Figure 3 (bottom left) we demonstrate how to generalize the FAN module for object detection
and relationship proposal generation. The network is end-to-end trainable with detection loss, RPN
loss and our relation loss. In addition to the ROI pooling features F ∈ RNobj×1024 from the Faster
R-CNN backbone of Ren et al. (2015), contextual features Fc from attention aggregation are applied
to boost detection performance: Fc =WaggF. The final feature descriptor for the detection head is
Fd = F + Fc, following Hu et al. (2018). In parallel, the attention matrix output W̃ ∈ RN×N is
used to generate relationship proposals by finding the top K weighted pairs in the matrix.

4.4 SCENE CATEGORIZATION TASK

In Figure 3 (bottom middle) we demonstrate how to apply the FAN module to scene categorization.
Since there are no bounding box annotations in most scene recognition datasets, we adopt a pre-trained
FAN detection module, described in Section 4.3, in conjunction with a newly added convolution
branch, to perform scene recognition. From the convolution backbone, we apply an additional
convolution layer followed by a global average pooling to acquire the scene level feature descriptor
Fs. The FAN module takes as input the object proposals’ visual features F, and outputs the
aggregation result as the scene contextual feature Fc. The input to the scene classification head thus
becomes Fmeta = concat(Fs,Fc), and the class scores are output.

4.5 DOCUMENT CATEGORIZATION TASK

In Figure 3 (bottom right) we demonstrate how to apply the FAN module to a document classification
task, using Hierarchical Attention Networks (Yang et al., 2016). We insert the FAN module into the
word level attention layer, but making it parallel to the original word-to-sentence attention module,
and denote it as “FAN-hatt”. FAN module learns word-to-word attention and outputs a sentence level
descriptor. The FAN descriptor is concatenated with the output from the word-to-sentence attention
to result in enhanced sentence level embedding. The rest of the computation follows the original
paper (Yang et al., 2016), where a sentence level attention model is applied and a final document
level descriptor is abstracted.

5 EXPERIMENTS

5.1 DATASETS AND NETWORK TRAINING

Datasets. We evaluate our FAN architecture using the following datasets: VOC07, MSCOCO, Visual
Genome, MIT67, 20 Newsgroups, Yahoo Answers. Details are provided in the appendix.
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Vision Network Training Following Section 4.3, we first train the detection-and-relation joint
framework end-to-end with a detection task loss and a relation loss on the minicoco dataset, dubbing
this network “FAN-minicoco”. We report detection results as well as relation learning quality. We
then fine tune the scene task structure on the MIT67 dataset, using the pre-trained FAN-minicoco
network (see Section 4.4), and report scene categorization performance. Details on the network
architecture, the input/output dimensions and the hyper-parameters are in the appendix.
Language Network Training We train the FAN models with Hatt (Yang et al., 2016) as the backbone.
Details on the architecture and hyper-parameters are in the appendix.

5.2 EVALUATION METRICS

Object Detection Task. For the VOC07 and MSCOCO datasets the evaluation metric is mAP (mean
average precision), as defined in (Everingham et al., 2010; Lin et al., 2014).
Relationship Proposal Task. We evaluate the learned relationships using a recall metric which
measures the percentage of ground truth relations that are covered in the predicted top K relationship
list, which is consistent with (Zhang et al., 2017; Zellers et al., 2018; Xu et al., 2017). A detailed
definition is in the appendix.
Classification Tasks. For MIT67, 20 Newsgroups and Yahoo Answers, where the task is to classify
scenes or documents, we use classification accuracy as the evaluation metric.

5.3 MODEL ABLATION STUDY

Prior to evaluating the FAN model we carry out ablation studies to examine ways of supervising the
center mass and different choices of loss functions.

Focused Supervision Strategies We consider different approaches to training the focused attention,
using the detection-and-relation joint framework from Section 4.3 on the VOC07 dataset for each case.
First, we apply a row-wise softmax over the pre-activation matrixW and calculate the center-mass
in a row-wise manner and apply the center-mass cross entropy loss accordingly. We refer to this as
“row”. Second, we apply the supervision explained in Section 3.3 but without the use of the focal term,
and refer to this as “mat”. Third, we add the focal term to the matrix supervision, referring to this as
“mat-focal”. The results in Table 1 show that the focused attention weights, when supervised using the
center-mass cross entropy loss with a focal term (Section 3.3), are better concentrated on inter-object
relationships, as reflected by the recall metric (Section 5.2) when compared with the unsupervised
case. In all further experiments, unless stated otherwise, we apply the matrix supervision with the
focal term, since it provides the best performance.

1k 2k 5k 8k 10k
unsup 21.9 29 43.5 52.2 56.3
row 23.8 34.7 50.7 61.2 66.5
mat 43 50.3 62.1 68.8 71.8
mat-focal 48.6 56.1 69.9 76.6 79.3
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Table 1: Evaluating different supervision strate-
gies with varying top K, using the VOC07 test-
set, with ground truth relation labels as de-
scribed in Section 3.2.

1k 2k 5k 8k 10k
unsup 8.5 12.8 20 25 27.8
RelProp 29.8 39.4 42.8 43.2
sup-cate 25.7 31.5 38.9 43.1 44.7
supe-gt 36.6 42.8 49.4 52.9 54.2
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Table 2: Recall comparison for the Visual
Genome dataset with varying top K, where the
ground truth relation labels are human annotated.
See text in Section 5.4 for a discussion.

Design of Loss Functions. We conduct a second ablation study to examine additional loss functions
for optimizing the center mass as well as varying focal terms r, as introduced in Section 3.3. Defining
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VOC07 smooth L1 L2 r = 0 r = 1 r = 2 r = 3 r = 4
mAP@0.5 79.6 ± 0.2 79.7 ± 0.2 79.4 ± 0.1 79.5 ± 0.2 79.9 ± 0.2 79.8 ± 0.1 79.7 ± 0.2
recall@5k 60.3 ± 0.3 64.6 ± 0.5 62.1 ± 0.3 66.5 ± 0.2 69.9 ± 0.3 68.7 ± 0.4 67.1 ± 0.3

Table 3: An evaluation of smooth L1 and L2 loss functions and variations of the focal loss factor r,
on the VOC07 dataset. The results are reported as percentages (%) averaged over 3 runs.

x = 1−M ∈ [0, 1], we consider loss function variants L2 = x2 and

smoothL1
(x) =

{
x2 if |x| < 0.5

|x| − 0.25 otherwise,
(5)

in addition to the focal loss. The results in Table 3 show that focal loss is in general better than
smooth L1 and L2 when supervising the center mass. In subsequent experiments we apply focal loss
with r = 2, which empirically gives the best performance.

5.4 RELATIONSHIP PROPOSAL TASK

Table 2 shows the evaluation of relationships learned on the Visual Genome dataset, by the un-
supervised Focused Attention Network model “unsup” (similar to (Hu et al., 2018)), the Focused
Attention Network supervised with weak relation labels described in Section 3.2 “sup-cate”, and
supervision with human annotated ground truth relation labels “sup-gt”. We also include the reported
recall metric from Relationship Proposal Networks (Zhang et al., 2017), which is a state-of-the-art
level relationship learning network with strong supervision, using ground truth relationships. Our
center-mass cross entropy loss does not require potentially costly human annotated relationship labels
for learning, yet it achieves the same level of performance as the present state-of-the-art (Zhang et al.,
2017) (the green curve in Table 2). When supervised with the ground truth relation labels instead of
the weak labels (Section 3.2), we significantly outperform relation proposal networks (by about 25%
in relative terms for all K thresholds) with this recall metric (the red curve in Table 2).

5.5 OBJECT DETECTION TASK

In Table 4 we provide object detection results on the VOC07 and MSCOCO datasets. In both cases
we improve upon the baseline and slightly outperform the unsupervised case (similar to Relation
Networks (Hu et al., 2018)). This suggests that relation weights learned using our focused attention
network are at least as good as those from (Hu et al., 2018), in terms of object detection performance.

VOC07 base F-RCNN FAN + Ldet (Hu et al., 2018) FAN + Ldet + Lrel

avg mAP (%) 47.0 47.7 ± 0.1 48.2 ± 0.2
mAP@0.5 (%) 78.2 79.3 ± 0.2 79.9 ± 0.2
mini COCO base F-RCNN FAN + Ldet (Hu et al., 2018) FAN + Ldet + Lrel

avg mAP (%) 26.8 27.5 27.9
mAP@0.5 (%) 46.6 47.4 47.8

Table 4: Object Detection Results. mAP@0.5: average precision over a bounding box overlap
threshold as IOU = 0.5. avg mAP: averaged mAP over multiple bounding box overlap thresholds.
VOC07 experiments are reported over 3 runs, demonstrating stability. Ldet stands for detection task
loss as defined in Ren et al. (2015) and Lrel for the center mass relation loss defined in section 3.3.

5.6 SCENE CATEGORIZATION TASK

We adopt the FAN-minicoco network (Section 5.1), and add an additional scene task branch to fine
tune it on MIT67, as discussed in Section 4.4. Table 5 shows the results of applying this model to
the MIT67 dataset. We refer to the backbone as “CNN” (first column), which is the left branch in
Figure 3 (bottom middle). In the second column we apply the same network further fine-tuned on
minicoco before training on MIT67. In the third column we include the detection branch, which is
the right branch in Figure 3 (bottom middle) but remove its FAN module. In the fourth and fifth
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CNN CNN CNN + ROIs CNN + FAN-unsup CNN + FAN-sup
Pretraining Imgnet Imgnet+COCO Imgnet+COCO Imgnet+COCO Imgnet+COCO
Features FS FS FS ,max(F) FS ,FC FS ,FC

Accuracy (%) 75.1 76.8 78.0 ± 0.3 77.1 ± 0.2 80.2 ± 0.3

Table 5: MIT67 Scene Categorization Results. The important entries are averages over 3 runs. See
the text in Section 5.6 for a discussion. For details regarding Fs, Fc and F , see Section 4.4.

columns we apply the full scene architecture in Figure 3 (bottom middle), using FAN-minicoco
network pretrained without (unsupervised) and with (supervised) relation loss, respectively. The
FAN supervised case (fifth column) demonstrates a non-trivial improvement over the baseline (third
column) and also significantly outperforms the unsupervised case (fourth column). This suggests that
the relation weights learned solely by minimizing detection loss do not generalize well to a scene
task, whereas those learned by our Focused Attention Network supervised by weak relations labels
can. We hypothesize that recovering informative relations between distinct objects, which is what our
Focused Attention Network is designed to do, is particularly beneficial for scene categorization.

5.7 DOCUMENT CATEGORIZATION TASK

Datasets Train Vol. Per Cate Hatt (Yang et al., 2016) FAN-hatt-unsup FAN-hatt-sup

20 News 550 64.0 ± 0.3 64.6 ± 0.2 65.6 ± 0.2
Yahoo-mini 5,000 64.9 ± 0.2 65.2 ± 0.2 66.0 ± 0.1
Yahoo-half 70,000 72.2 ± 0.1 72.1 ± 0.1 72.4 ± 0.1

Table 6: Document categorization results for the 20 Newsgroups and Yahoo Answers datasets, with
the results averaged over 5 trials. For the Yahoo dataset, we train on sub-sampled training sets and
report results on the full test set.

We present document classification results in Table 6. We provide a comparison between the base
Hierarchical Attention Networks (Hatt), and FAN-hatt, explained in Section 4.5, with and without
relation loss supervision. The supervised (semantic) focused attention supervision results in an
improvement over both the unsupervised case and the baseline, particularly when the training data
per category is small (top two rows). This advantage diminishes, however, when the training volume
is dramatically increased, suggesting that in the latter case a baseline network is able to perform
equally well. In addition, the qualitative distributions of word importance factors (see appendix for
an exact definition) in Figure 2 suggest that focused semantic attention encourages more diversity in
attention weight learning, which in turn leads to better document classification performance.

6 CONCLUSION

Our Focused Attention Network is versatile, and allows the user to direct the learning of attention
weights in the manner they choose. The application of the FAN module allows multiple informative
entities in the data source to contribute to the learned feature representation, abstracting diverse aspects
of the data. In multiple experiments we have demonstrated the benefit of learning relations between
distinct objects for computer vision tasks, and between lexical categories (words) for document
classification tasks. It not only boosts performance in object detection, scene categorization and
document classification, but also leads to state-of-the-art performance in a relationship proposal task.
In the future we envision its use as a component for deep learning architectures where supervised
control of relationship weights is desired, since it is adaptable, modular, and end-to-end trainable in
conjunction with a task specific loss.
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Appendix

A FURTHER EXPERIMENTAL DETAILS

A.1 DATASETS

VOC07: is part of the PASCAL VOC detection dataset (Everingham et al., 2010). It consists of 5k
images for training and 5k for testing. We used the full training/test split in our experiments.
MSCOCO: consists of 80 object categories (Lin et al., 2014). Within the 35k validation images of
the COCO2014 detection benchmark, a selected 5k subset named “minival” is commonly used when
reporting test time performance, for ablation studies (Hu et al., 2018). We used the 30k validation
images for training and the 5k “minival” images for testing. We define this split as “minicoco”.
Visual Genome: is a large scale relationship understanding benchmark (Krishna et al., 2017),
consisting of 150 object categories and human annotated relationship labels between objects. We
used 70k images for training and 30K for testing, as in the scene graph literature (Zellers et al., 2018;
Xu et al., 2017).
MIT67: is a scene categorization benchmark which consists of 67 scene categories, with each
category having 80 training images and 20 test images (Quattoni & Torralba, 2009). We used the full
training/testing split in our experiments.
20 Newsgroups: is a document classification dataset consisting of text documents from 20 categories
(Joachims, 1996), with 11314 training ones and 7532 test ones. We used the full training/testing split
in our experiments.
Yahoo Answers: is a topic classification dataset consisting of 10 categories and is organized from
the Yahoo! Answers Comprehensive Questions and Answers version 1.0 dataset. Each class contains
140,000 training samples and 6,000 testing samples. In our experiments, we evaluate on the full test
set but sub-sample the training set during training. First, we randomly sample 5,000 training samples
per category within the 140,000 and refer to this configuration as “Yahoo-mini”. Next we randomly
sample 70,000 training samples per category within the 140,000 and refer to this configuration as
“Yahoo-half”. We report full test set results using the above different training sets.

A.2 RELATIONSHIP RECALL METRIC

We evaluate the learned relationships using a recall metric defined as Rrel =
C(rel|topK)

C(rel) . Here
C(rel) stands for the number of unique ground truth relations in a given image and C(rel|topK)
stands for the number of unique matched ground truth relations in the top-K ranked relation weight
list. In the calculation of C(rel|topK), we only consider a match when both bounding boxes in a
given relationship pair have overlaps of more than 0.5, with the corresponding ground truth boxes
in a ground truth relationship pair. Therefore, Rrel measures how well the top-K ranked relation
weights capture the ground truth labeled relationships.

A.3 WORD IMPORTANCE FACTOR

The word importance factor models the contribution of a given word to its sentence level repre-
sentation. In Hierarchical Attention Networks (Yang et al., 2016), the word-to-sentence attention
module directly models the word importance given a learned sentence representation. Whereas it
is different from the FAN module, which models word-to-word attention, the resultant attention
weights can be comparable at the sentence level. To this end, we define the word importance factor as
βi =

∑
j ω̃

ji, because it represents the contribution of the i-th word in the final aggregation result
WaggF. A visualization of the distribution of learned word importance factors, for Hierarchical
Attention Networks and Focused Attention Networks, is provided in Figure 2 in the main text and
Figure 6 in this appendix.

A.4 SUPERVISION TARGETS T

We consider different possibilities for supervision targets T , as defined in Section 3.2.

Vision tasks. In our paper we focused attention between objects from different categories, and we
refer to this as different category focused supervision. We now consider the case that attention
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between different object instances is focused. That is, as long as object proposal a and object proposal
b are different object instances in an image, we consider a possible relationship between them and
assign tab = T [a, b] = 1. We refer to this as different instance focused supervision. We provide a
visual example of the above mentioned supervision targets in Figure 4.

Different Category Different Instance

Figure 4: The visualization of supervision targets for vision tasks. The blue box indicates a fixed
reference object a and the orange boxes indicate the objects b that have ground truth relationship with
a, for which we assign T [a, b] = 1. Left: different category supervision. Note that the sheep in the
blue box is not related to the other sheep in the image. Right: different instance supervision. The
sheep in the blue box now has a relationship to other sheep (in yellow boxes).

In Table 7, we provide object detection results on VOC07 when training the FAN model using
different supervision targets.

VOC07 varying T Diff Instance Diff Category
avg mAP (%) 47.6 ± 0.1 48.2 ± 0.2
mAP@0.5 (%) 79.5 ± 0.2 79.9 ± 0.2

Table 7: Detection results on the VOC07 dataset when varying supervision targets, where we show
maen accuracies over 3 runs.

Language Tasks. In our paper we focused attention between word categories according to English
grammar. Here we consider additional ways of supervising the word-to-word relationships. In differ-
ent category supervision, we consider a word pair (a, b) to have a valid ground truth relationship
when a and b belongs to different lexical categories. In same category supervision, we consider a
word pair (a, b) to have a valid ground truth relationship when a and b belong to the same lexical
categories. In different word supervision, we consider a word pair (a, b) to have a valid ground truth
relationship when a and b are different words. We provide a comparison of using the aforementioned
supervision targets on the 20News dataset, in Table 8, with the supervision constraints becoming
stricter from the leftmost column to the rightmost column.

20news varying T Diff Word Same Category Diff Category Semantic
Accuracy (%) 64.7 ± 0.2 64.9 ± 0.2 65.1 ± 0.1 65.6 ± 0.2

Table 8: Document categorization results for the 20 Newsgroups dataset when varying the supervision
target, where we show mean accuracies over 5 runs.

A.5 CONVERGENCE OF CENTER-MASS

We provide additional results illustrating the convergence of center-massM training in Table 9. The
center mass is a element wise multiplication between the post softmax attention weight matrix W̃
and the ground truth label matrix T , defined asM = W̃ � T ∈ [0, 1]. More details are in Section
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COCOM Training Testing

un-sup Hu et al. (2018) 0.020 0.013
sup-obj 0.747 0.459

Table 9: We compare center-mass values for the FAN-minicoco network between training and testing.
The values reported are evaluated on the minicoco train/test set.

3.2 of the main article. Applying the FAN-minicoco network described in Section 5 of the main
article, “sup-obj” stands for focusing the attention using the ground truth label constructed following
Section 3.2 in the main article, and “un-sup” stands for the unfocused case of removing the relation
loss during training, which is similar to Hu et al. (2018). The converged center-mass value for the
supervised case is much higher than that for the unsupervised case. Empirically this suggests that our
relation loss, which is designed to increase the center-mass during learning, is effective. Furthermore,
the gap between the training center-mass and the testing one is reasonable for the supervised case,
i.e., we do not appear to be suffering from over-fitting. We have observed the same general trends for
the other tasks as well.

B NETWORK TRAINING DETAILS
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Figure 5: The input/output dimension details related to Figure 3 of the main article. The dimensions
shown are for the case of a batch size of 1. Left: We add a detection branch to the backbone. Middle:
We add a scene recognition branch to the backbone. Right: We insert the Focused Attention Module
into a Hierarchical Attention Network.

Vision Tasks Unless stated otherwise, all the vision task networks are based on a ResNet101 (He
et al., 2016) structure trained with a batch size of 2 (images), using a learning rate of 5e− 4 which is
decreased to 5e− 5 after 5 epochs, with 8 epochs in total for the each training session. SGD with a
momentum optimizer is applied with the momentum set as 0.9. The number of RPN proposals is
fixed at Nobj = 300. Thus the attention weight matrixW has a dimension of 300× 300 for a single
image. Further details regarding input/output dimensions of the intermediate layers can be found in
Figure 5 (left and middle).

Language Task For the document classification task, the network structure is based on a Hierar-
chical Attention Network (Yang et al., 2016). For all experiments, the batch size is set to be 256

12



Under review as a conference paper at ICLR 2020

(documents), and the word embedding dimension is set to 100. The maximum number of words in a
sentence is set to be Nw = 30, and the maximum number of sentences in a document is set to be
Ns = 15. Therefore, the word level Focused Attention Network’s attention weight matrixW has a
dimension of 30× 30, for a single sentence. The output dimension for Bi-LSTMs is set to be 100,
and the attention dimension in attention models is also set to be 100. The Adam optimizer (Kingma
& Ba, 2015) is applied with an initial learning rate of 1e− 3. The network is trained end-to-end with
categorization loss and relation loss for 15 epochs. Further details regarding input/output dimensions
of intermediate layers can be found in Figure 5 (right).

C SCALING OF LOSS TERMS

We applied a balancing factor λ to properly weight the relation loss when training in conjunction
with the main objective loss.

Detection and relation proposal We applied
L = Ldet + λLrel, λ = 0.01 (6)

where Ldet is defined in (Ren et al., 2015), which is a combination of RPN losses and detection head
losses.

Scene categorization The benefit of focused attention comes from a pretrained detection model
and the scene task itself does not optimize the relation loss.

Document Classification For language tasks, we applied
L = Lcls + λLrel, λ = 0.1 (7)

where Lcls is a standard cross entropy loss for the classification task.

D IMPLEMENTATION DETAILS

We ran multiple trials (3-5) of our experiments and reported error bars in our results, and observed
that the numbers are relatively stable and are reproducible. Furthermore, we plan to release our code
upon acceptance of this article. Given that all our datasets are publicly available this will allow other
researchers to both reproduce our experiments and use our Focused Attention Network module for
their own research.

D.1 VISION TASKS

We implemented the center-mass cross entropy loss as well as the Focused Attention Module using
MxNet. For the Faster R-CNN backbone, we adopted the source code from Relation Networks (Hu
et al., 2018).

Scene Categorization. In order to maintain the learned relationship weights from the pre-trained
module, which helps encode object co-occurrence context in the aggregation result, we fix the
parameters in the convolution backbone, RPN layer and Focused Attention Network module, but
make all other layers trainable. Fixed layers are shaded in grey in Figure 3 (bottom middle).

D.2 LANGUAGE TASKS

We implemented the Hierarchical Attention Networks according to Yang et al. (2016) in Keras
with a TensorFlow backend. The word-to-word Focused Attention Network module as well as the
center-mass cross entropy loss, are also implemented in the same Keras based framework.

D.3 RUNTIME AND MACHINE CONFIGURATION

All our experiments are carried out on a linux machine with 2 Titan XP GPUs, an Intel Core i9 CPU
and 64GBs of RAM. The Figures and Tables referred to in the following text are those in the main
article.
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• Figure 4, Relationship Proposal. For a typical run of Visual Genome Focused Attention
Network training, it takes 55 hours for 8 epochs using the above machine configuration.
• Table 1 Object, Detection. For a typical run of VOC07 Focused Attention Network training,

it takes 4 hours when training for 8 epochs. For a typical run on minicoco , it takes 26 hours
using the same setup.
• Table 2, Scene Categorization. For a typical run of the MIT67 dataset, it takes 2 hours

when training for 8 epochs.
• Table 3, Document Classification. For a typical run of the 20 Newsgroup dataset, it takes

30 minutes for 15 epochs.

We also determined that when compared with unsupervised cases of the above experiments, the use
of the Focused Attention Network module does not add any noticeable run time overhead.

E ADDITIONAL VISUALIZATIONS

Word Importance in a Sentence In Figure 6, we provide additional visualizations of the word
importance factor in a sentence (defined in Section 4.5 of the main article), using the same format as
that used in Figure 2 in the main article.
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Figure 6: Additional visualization of the word importance factor in a sentence. See Section 3.2 and
the caption of Figure 2 of the main article for an explanation.

Visual Relationships We now provide additional qualitative visualizations showing typical rela-
tionship weights learned by our method. In Figure 7, we visualize the predicted relationship on
images from the MIT67 dataset, using a pre-trained Focused Attention Network on the minicoco
dataset, referred to as FAN-minicoco, as discussed in Section 5.1 of the main article. We compare this
with the corresponding unsupervised case, which is similar to Relation Networks (Hu et al., 2018).
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Relation Networks Hu et al. (2018) Focused Attention Networks

Figure 7: The visualization of relationships recovered on additional images of the MIT67 dataset.
See the caption of Figure 1 of the main article for an explanation.
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