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1 Introduction

Posterior distributions are useful for a broad range of tasks in machine learning ranging from model
selection to reinforcement learning. Given that modern machine learning models can have millions
of parameters, selecting an informative prior is typically infeasible, resulting in widespread use of
priors that avoid strong assumptions. For example, recent work on deep generative models (Kingma
& Welling, 2014; Rezende et al., 2014) commonly uses the standard Normal distribution for the prior
on the latent space. However, just because a prior is relatively flat does not mean it is uninformative.
The Jeffreys prior for the Bernoulli model serves as a well-known counter example: Jeffreys (1946)
showed that the arcsine distribution, despite its peaks near 0 and 1, is the truly objective prior (with
respect to Fisher information) and not the uniform distribution. This suggests that objective priors
such as the Jeffreys or the related Reference prior (Bernardo, 2005) are worthy of investigation for
high-dimensional, web-scale probabilistic models. However, the challenge is that these priors are
difficult to derive for all but the simplest models.

In this abstract, we describe how to learn an approximate Reference prior for any probabilistic model,
thereby broadening the potential use of objective priors. Our optimization framework is akin to
black-box (posterior) variational inference (Ranganath et al., 2014): we propose a parametric family
of distributions and perform derivation-free optimization to find the member of the family closest to
the true Reference prior. The proposed method learns a Reference prior for a given model independent
of any data source1. We demonstrate below that the proposed framework recovers the Jeffreys prior
better than existing numerical methods and show our method’s utility for a previously intractable
model, a Variational Autoencoder (Kingma & Welling, 2014) (VAE). In an interesting case study, we
see that the VAE’s reference prior differs markedly from the widely used standard Normal distribution.

2 Learning Reference Priors

A Reference prior (Bernardo, 2005; Berger et al., 2009) is a prior p∗(θ) on the model parameters θ that
maximizes the mutual information between θ and the dataD. We can write the mutual information as
the Kullback-Liebler divergence between the posterior and prior, averaged over the data distribution:

p∗(θ) = argmax
p(θ)

I (θ,D) = argmax
p(θ)

∫
D

p(D)KLD[p(θ |D) | | p(θ)]dD . (1)

where I (·, ·) denotes the mutual information and p(D) =
∫
θ

p(D|θ)p(θ)dθ is the marginal likelihood
(or model evidence). Reference priors are equal to the Jeffreys in one dimension, and like the Jeffreys,
are invariant to reparametrization because they maximize the mutual Information, which is itself
invariant. Solving the calculus of variations problem for p∗(θ) is intractable for most models and not
guaranteed to be a proper normalized distribution.

Inspired by recent advances in variational inference, we use similar ideas to optimize an approximate
prior—call it pλ (θ) with parameters λ—so that it is the distribution in the family closest to the
model’s Reference prior p∗(θ). Most crucially, we need an optimization objective, but Equation
1 is difficult to work with since it involves the intractable quantities p(D) and p(θ |D). We can
algebraically re-arrange the Reference prior definition to the following more tractable form:

p∗(θ) = argmax
p(θ)

Ep(θ)
[
K LD[p(D|θ) | | p(D)]

]
. (2)

1Except when the model is for a conditional distribution, i.e. p(y |x). In this case, x samples are required to
learn the variational Reference prior.
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Now we have the KLD between the model likelihood and evidence averaged over the prior, thus
ridding ourselves of the intractable posterior term. This form is the one we use for our variational
objective: λ∗ = argmaxλ Epλ (θ) K LD[p(D|θ) | | p(D)] = argmaxλ JRP(λ). λ∗ are the parameters
that make the variational family closest to the true Reference prior.

Deriving a Lowerbound. Equation 2, however, still contains the difficult term p(D), and thus
we need to derive a tractable lowerbound on the mutual information. Firstly, re-writing JRP
as EpλEp(D |θ)[log p(D|θ)] − EpλEp(D |θ)[log p(D)], we see the second term is the intractable
one. To cope, we use the following variational Rényi bound (Li & Turner, 2016) (VR) on the
marginal likelihood: log p(D) ≤ 1

1−α logEpλ (θ)

[
p(D|θ)1−α

]
for α < 0. To circumvent numerical

difficulties, we use Li & Turner (2016)’s VR-max Monte Carlo estimator corresponding to α → −∞:
logEpλ (θ)

[
p(D|θ)∞

]
≈ maxs log p(D|θ̂s) where s indexes samples θ̂s ∼ pλ (θ). Combing the

VR-max term with the first yields a tractable lowerbound on JRP:

JRP(λ) ≥ J LB
RP (λ) = EpλEp(D |θ)[log p(D|θ) −max

s
log p(D|θ̂s)]. (3)

This is the final objective that we can maximize to learn variational Reference priors (VRPs). J LB
RP (λ)

can be interpreted intuitively as follows: it calculates the data’s log-likelihood under the model (i.e.
parameter setting) that generated this data and under several samples from the prior. We then optimize
to increase the difference in the log probabilities, forcing the prior to place most of its mass on
parameters that generate identifiable datasets—or in other words, datasets that have high probability
under only their true generative model.

Black-Box, Gradient-BasedOptimization. Wecan rid ourselves of the need for analytical tractability
by using Monte Carlo approximations of the nested expectations in Equation 3. Moreover, we can
perform fully gradient-based optimization by drawing these samples via a differentiable non-centered
parametrization (DNCP) (the so-called ‘reparametrization trick’) (Kingma & Welling, 2014). When
dealing with discrete data or parameters, we use the Concrete distribution (Maddison et al., 2017), a
differentiable relaxation of the discrete distribution.

Implicit Priors. A crucial detail to note about Equation 3 is that we do not need to evaluate the
prior’s density. Rather, we need only to draw samples from it. This allows us to use black-box
functional samplers as the variational family (Goodfellow et al., 2014; Ranganath et al., 2016), i.e.
θ̂ = f (λ, ε̂ ) where ε ∼ p0 where f is some arbitrary differentiable function, such as a neural network,
and p0 is a fixed noise distribution. However, if our end goal is posterior inference, evaluation of pλ
needs to be done somehow—possibly by nonparametric density estimation techniques.

3 Experiments

Recovering Jeffreys Priors. Webegin experimental evaluation by optimizingJ LB
RP (λ) (Equation 3) to

recover the Jeffreys prior for three simple models: the Bernoulli mean parameter, p∗(p) ∝ Beta(.5, .5),
the Gaussian scale parameter, p∗(σ) ∝ 1/σ, and the Poisson rate parameter, p∗(λ) = 1/

√
λ. We use

two types of variational approximations: an implicit prior (i.e. a linear model functional sampler) and
a parametric density over the appropriate support space. We compare our variational approximations
against three baselines: Berger et al. (2009)’s brute force algorithm for computing Reference priors,
Lafferty & Wasserman (2001)’s MCMC algorithm for Reference priors, and a uniform distribution,
which we chose as the naive baseline. Note that the brute force and MCMC algorithms require
numerical integration and thus scale poorly to multiple dimensions.

Subfigures (a)-(c) of Figure 1 show the variational distributions plotted against the true Jeffreys prior
(red) and values computed by Berger et al.’s algorithm (Berger et al., 2009) (black). We see that
indeed both the samples drawn from the linear model (blue) and the learned parametric distributions
(green) exhibit the same qualitative characteristics as the true Reference/Jeffreys priors.

We next quantify the gap in the approximations via a Kolmogorov-Smirnov two-sample test (KST)
under the null hypothesis H0 : p = q where p is the true Jeffreys prior and q is an approximation. The
KST computes the distance (KSD) between the distributions as KSD(p, q) = supx | F̂p (x) − F̂q (x) |
where F̂p (x) is the empirical CDF. Subfigures (d)-(f) of Figure 1 show the KSD between samples from
the true Jeffreys prior and the various approximation techniques as sample size increases. The red line
denotes the threshold at which the null hypothesis (that the distributions are equal) is rejected. The
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(a) Bernoulli: Densities (b) Gaussian Scale: Densities (c) Poisson: Densities

(d) Bernoulli: KS Test (e) Gaussian Scale: KS Test (f) Poisson: KS Test

Figure 1: Optimizing Equation 3 to recover known Reference priors. Subfigures (a)-(c) show the
learned density functions; Subfigures (d)-(f) show the Kolmogorov-Smirnov distance from the true
distribution.

Figure 2: The Variational Autoencoder’s Reference Prior.
We learned a VRP for a VAE with a two-dimensional latent
space (in order to visualize the prior). A one-hidden-layer
NN sampler was used as the implicit prior. The plot to the
left shows 25,000 samples from the prior. The contours are
generated via kernel density estimation. We see the prior is
overdispersed with two strong modes at opposite ends of the
space.

VRPs are competitive to superior for all models and are the only techniques that remain statistically
indistinguishable from the true Reference prior as the sample size increases.

Case Study: VRP for the VAE. Lastly, we demonstrate learning a VRP for an intractable, neural-
network-based model: a Variational Autoencoder (Kingma &Welling, 2014). Figure 2 shows samples
from the VAE’s VRP, using a one-hidden-layer neural network as an implicit prior. We see that
the VRP is drastically different than the standard Normal that is typically used as the prior over
the latent variables: the VRP is multimodal and has a much larger variance. Yet, the difference
is intuitive: placing most prior mass at opposite sides of the latent space encourages the VAE to
space it’s latent representations with as much distance as possible, ensuring they are as identifiable
w.r.t. the model likelihood, the VAE decoder, as possible. Interestingly, recent work by Hoffman &
Johnson (2016) suggests that VAEs can be improved by multimodal priors: "[T]he [VAE’s] individual
encoding distributions q(zi |xi) do not have significant overlap. . . .then perhaps we should investigate
multimodal priors that can meet q(z) halfway." This suggests using multimodal, dispersed priors
encourages flexibility and objectivity in the posterior distribution.

In conclusion, variational methods provide a potentially interesting avenue for the development of
reference priors for broader classes of problems than have been traditionally explored. In this abstract
we have outlined a general framework for learning such variational reference priors suggesting a
number of potentially interesting directions for further exploration.
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