

000 001 002 003 004 005 006 007 008 009 010 011 IMAGE-TO-BRAIN SIGNAL GENERATION FOR VISUAL 012 PROSTHESIS WITH CLIP GUIDED MULTIMODAL DIF- 013 FUSION MODELS 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031

Anonymous authors

Paper under double-blind review

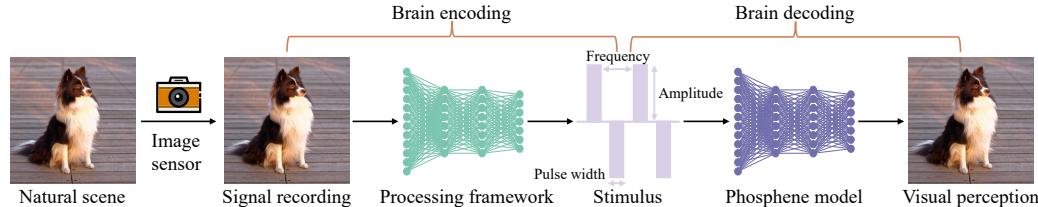
ABSTRACT

Visual prostheses hold great promise for restoring vision in blind individuals. While researchers have successfully utilized M/EEG signals to evoke visual perceptions during the brain decoding stage of visual prostheses, the complementary process of converting images into M/EEG signals in the brain encoding stage remains largely unexplored, hindering the formation of a complete functional pipeline. In this work, we present, to our knowledge, the first image-to-brain signal framework that generates M/EEG from images by leveraging denoising diffusion probabilistic models enhanced with cross-attention mechanisms. Specifically, the proposed framework comprises two key components: a pretrained CLIP visual encoder that extracts rich semantic representations from input images, and a cross-attention enhanced U-Net diffusion model that reconstructs brain signals through iterative denoising. Unlike conventional generative models that rely on simple concatenation for conditioning, our cross-attention modules capture the complex interplay between visual features and brain signal representations, enabling fine-grained alignment during generation. We evaluate the framework on two multimodal benchmark datasets and demonstrate that it generates biologically plausible brain signals. We also present visualizations of M/EEG topographies across all subjects in both datasets, providing intuitive demonstrations of intra-subject and inter-subject variations in brain signals.

1 INTRODUCTION

Visual prostheses are advanced medical devices designed to restore partial vision for individuals with severe visual impairments or blindness, often caused by conditions such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD) (Zrenner, 2013; Busskamp & Roska, 2011). These devices use an image sensor to capture external visual scenes and a processing framework to predict stimuli for an implanted electrode array (Humayun et al., 2012; Goetz & Palanker, 2016; Soltan et al., 2018) (we call this process brain encoding). The electrode array stimulates ganglion cells with the predicted stimuli, evoking visual perception (a pattern of localized light flashes, ‘visual percept’, or ‘phosphene’) in the retina (van der Grinten et al., 2024; Blom et al., 2010; Berry et al., 2017; Sahel et al., 2021; Granley et al., 2023) (this process is also referred to as brain decoding (Benchetrit et al., 2023)). The framework of visual prostheses is illustrated in Figure 1.

In the past few years, brain decoding has made significant progress (Lin et al., 2022b; Scotti et al., 2023; Wang et al., 2024b; Li et al., 2024). Specifically, Mind-Reader (Lin et al., 2022b), Mind-Eye (Scotti et al., 2023), and MindBridge (Wang et al., 2024b) utilize the high spatial resolution of functional magnetic resonance imaging (fMRI) to generate phosphenes. However, due to the high cost and low temporal resolution of fMRI limiting their applications in brain-computer interfaces (BCIs), Li et al. (Li et al., 2024) not only leverage the high temporal resolution of electroencephalography (EEG) signals to evoke visual percepts, but also demonstrate the versatility of their work on magnetoencephalography (MEG) signals. More importantly, these studies (Lin et al., 2022b; Scotti et al., 2023; Wang et al., 2024b; Li et al., 2024) utilize multimodal datasets (Allen et al., 2022; Gifford et al., 2022) that include not only brain signals but also image data. Therefore, when training models, whether brain signals or image data are required, corresponding supervised signals can be provided to validate the model’s output.



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Figure 1: The framework of the visual prostheses. Visual prostheses utilize an image sensor to capture natural scenes. A processing framework takes the recorded signals as input and predicts the stimuli for the retinal prosthesis. A phosphene model receives stimulation from the implanted prosthesis and evokes visual perception (or 'phosphene'). The performance of the framework is evaluated by comparing the similarity between the original image and the visual perception.

Compared to brain decoding, brain encoding has progressed slowly. For example, in his two papers (Granley et al., 2022; 2023), Granley uses the MNIST dataset (Deng, 2012) and the COCO dataset (Lin et al., 2014), both of which only contain image data. He takes the original images as supervised signals to find suitable predicted stimuli but does not use real stimuli as supervised signals to validate the accuracy of the predicted stimuli. Consequently, the limited biological resemblance of predicted stimuli confines the vision restoration effect of visual prostheses to rudimentary levels (Montazeri et al., 2019). To address this problem, Wang *et al.* (Wang et al., 2024a) use primary visual cortex (V1) responses as labels to find suitable predicted stimuli for better visual perception in the cortex. However, Wang *et al.* still do not use real stimuli as labels to evaluate the biological similarity of the predicted stimuli.

To address the aforementioned issues, we propose an innovative image-to-brain framework that for the first time achieves the conversion of images to M/EEG signals. We employ a denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) enhanced with cross-attention mechanisms. This framework consists of two core components: a CLIP visual encoder and a cross-attention enhanced U-Net diffusion model. The CLIP visual encoder extracts rich semantic representations from input images using pre-trained Vision Transformer (ViT-L/14) (Radford et al., 2021). The U-Net diffusion model reconstructs brain signals through iterative denoising, while cross-attention mechanisms enable fine-grained alignment between visual features and brain signal representations during the generation process. To validate our method's effectiveness, we conduct experiments on two multimodal datasets (THINGS-EEG2 and THINGS-MEG) containing both brain signals and image data. With these datasets, we can directly learn the mapping from images to brain signals using the ground truth brain responses as supervision signals.

Our main contributions are summarized as follows.

- We propose the first image-to-brain signal (M/EEG) framework based on diffusion models that achieves conversion from images to brain signals, advancing the technical foundation for visual prostheses.
- We introduce cross-attention enhanced U-Net architecture that enables fine-grained alignment between visual features and brain signal representations during the denoising process.
- We validate our method through comprehensive experiments and plot M/EEG topographies for each subject on both datasets to intuitively demonstrate the intra-subject variations and inter-subject variations of M/EEG signals.

2 RELATED WORKS

Visual Prostheses: Visual prostheses are a promising treatment option for people living with incurable blindness (Ayton et al., 2020). The visual prostheses framework consists of two steps: The first step is brain encoding, which uses an image sensor to record natural scenes, then employs a processing framework to predict stimuli (Humayun et al., 2012; Goetz & Palanker, 2016; Soltan et al., 2018). The second step is brain decoding, which inputs the predicted stimuli into a phosphene model to evoke visual percepts (Berry et al., 2017; Sahel et al., 2021).

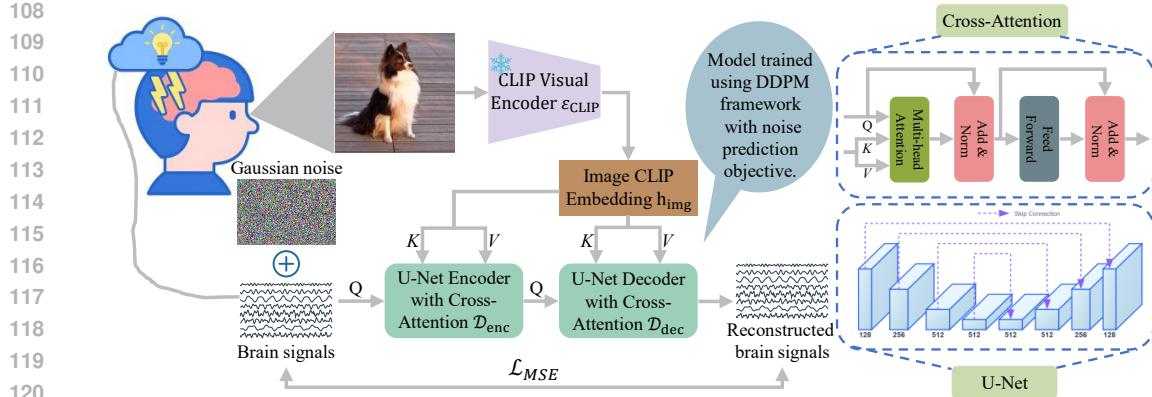


Figure 2: Overall architecture of our image-to-brain framework. The framework consists of a CLIP visual encoder that extracts semantic representations from input images, and a cross-attention enhanced U-Net diffusion model with encoder-decoder structure that reconstructs brain signals (EEG, MEG) using the Denoising Diffusion Probabilistic Model (DDPM) framework. The cross-attention mechanisms capture the complex interplay between visual features and brain signal representations during the generation process. The model is trained using MSE loss between the predicted and ground truth brain signals.

In recent years, brain decoding has made significant progress by leveraging the powerful generative capabilities of diffusion models (Lin et al., 2022b; Scotti et al., 2023; Wang et al., 2024b; Li et al., 2024; Xu et al., 2023). In contrast, the development of brain encoding has progressed relatively slowly. Despite ongoing research efforts to improve the quality of predicted stimuli (Granley et al., 2022; 2023; Wang et al., 2024a), these studies fail to utilize real stimuli as supervised signals for evaluating the biological similarity of predicted stimuli, thereby limiting the vision restoration efficacy of visual prostheses to a low level (Montazeri et al., 2019).

To address the issues mentioned above, we use brain signals (M/EEG) from multimodal datasets (THINGS-EEG2, THINGS-MEG) as supervised signals to improve the biological similarity of predicted stimuli, thereby refining the image-to-brain framework.

EEG Signal Generation: Due to the difficulty in collecting EEG signals (Jiang et al., 2016) and the tremendous success of GANs in image generation (Goodfellow et al., 2016), researchers have turned their attention to using GANs to generate EEG signals for dataset augmentation (Hartmann et al., 2018; Luo et al., 2020). However, GANs are known to suffer from training instability (Arjovsky et al., 2017), which limits their effectiveness in generating reliable brain signals.

Given the limitations of GANs and the recent success of diffusion models in generating high-quality, diverse samples (Ho et al., 2020; Dhariwal & Nichol, 2021), we propose leveraging denoising diffusion probabilistic models for brain signal reconstruction. Since brain signals include not only EEG signals but also MEG signals, we develop a unified image-to-brain framework that can handle multiple brain signals while maintaining high biological similarity to ground truth responses.

3 METHODOLOGY

In this section, we present our novel image-to-brain framework, which leverages diffusion models enhanced with cross-attention mechanisms to generate brain signals from visual stimuli, as shown in Figure 2.

3.1 PROBLEM FORMULATION

Given an input image $\mathbf{x}_{\text{img}} \in \mathbb{R}^{C \times H \times W}$, our goal is to generate the corresponding brain signal $\mathbf{y}_{\text{brain}} \in \mathbb{R}^{N_c \times N_t}$, where N_c represents the number of brain signal channels and N_t denotes the temporal sampling points. Formally, we aim to learn a mapping function $f : \mathcal{X}_{\text{img}} \rightarrow \mathcal{Y}_{\text{brain}}$ that can generate brain responses from visual inputs.

162 3.2 ARCHITECTURE COMPONENTS
163164 Our framework consists of two main architectural components: a CLIP visual encoder and a cross-
165 attention enhanced U-Net diffusion model.166 We employ the Vision Transformer variant of CLIP (ViT-L/14) (Radford et al., 2021) as our visual
167 encoder $\mathcal{E}_{\text{CLIP}}$ to extract rich semantic representations from input images. The pre-trained CLIP
168 model provides robust visual features that have been learned through large-scale vision-language
169 contrastive training. The visual encoder maps the input image to a high-dimensional embedding:
170

171
$$\mathbf{h}_{\text{img}} = \mathcal{E}_{\text{CLIP}}(\mathbf{x}_{\text{img}}),$$

172 where \mathbf{h}_{img} serves as the conditional information for guiding the brain signal generation process.173 Our U-Net architecture ϵ_{θ} (Ronneberger et al., 2015) consists of an encoder-decoder structure with
174 cross-attention mechanisms:

175
$$\epsilon_{\theta}(\mathbf{y}_t, t, \mathbf{h}_{\text{img}}) = \mathcal{D}_{\text{dec}}(\mathcal{D}_{\text{enc}}(\mathbf{y}_t, t, \mathbf{h}_{\text{img}}), t, \mathbf{h}_{\text{img}}),$$

176 where \mathcal{D}_{enc} represents the U-Net encoder and \mathcal{D}_{dec} represents the U-Net decoder.
177178 3.3 CROSS-ATTENTION ENHANCED DIFFUSION MODEL
179180 3.3.1 DIFFUSION PROCESS
181182 Our diffusion model follows the Denoising Diffusion Probabilistic Model (DDPM) framework (Ho
183 et al., 2020). We define a forward diffusion process that gradually adds Gaussian noise to the target
184 brain signal:

185
$$q(\mathbf{y}_t | \mathbf{y}_{t-1}) = \mathcal{N}(\mathbf{y}_t; \sqrt{1 - \beta_t} \mathbf{y}_{t-1}, \beta_t \mathbf{I}),$$

186 where $\{\beta_t\}_{t=1}^T$ is a variance schedule with T time steps. The forward process can be expressed in
187 closed form:

188
$$q(\mathbf{y}_t | \mathbf{y}_0) = \mathcal{N}(\mathbf{y}_t; \sqrt{\bar{\alpha}_t} \mathbf{y}_0, (1 - \bar{\alpha}_t) \mathbf{I}),$$

189 where $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$.190 3.3.2 CROSS-ATTENTION MECHANISM
191192 The key innovation of our approach lies in the integration of cross-attention mechanisms within
193 the U-Net architecture. Unlike conventional generative models that use simple concatenation or
194 addition for conditioning, our cross-attention modules (Lin et al., 2022a) enable fine-grained align-
195 ment between visual features and brain signals. We modify the standard U-Net by incorporating
196 cross-attention blocks in both the encoder and decoder paths. These blocks capture the complex
197 interplay (Yang et al., 2024) between the brain signal representations and visual features during the
198 denoising process. For each cross-attention layer, given the intermediate brain signal representation
199 $\mathbf{H}_{\text{brain}}$ and visual embedding \mathbf{h}_{img} , the cross-attention is computed as:

200
$$\mathbf{Q} = \mathbf{H}_{\text{brain}} \mathbf{W}_Q,$$

201
$$\mathbf{K} = \mathbf{h}_{\text{img}} \mathbf{W}_K,$$

202
$$\mathbf{V} = \mathbf{h}_{\text{img}} \mathbf{W}_V,$$

203
$$\text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax} \left(\frac{\mathbf{Q} \mathbf{K}^T}{\sqrt{d_k}} \right) \mathbf{V},$$

204 where \mathbf{W}_Q , \mathbf{W}_K , and \mathbf{W}_V are projection matrices, and d_k is the dimension of the key vectors.
205206 3.4 TRAINING OBJECTIVE
207208 During training, our model learns to predict the noise ϵ that was added to the clean brain signal. The
209 training objective is:

210
$$\mathcal{L}_{\text{diffusion}} = \mathbb{E}_{t, \mathbf{y}_0, \epsilon} [\|\epsilon - \epsilon_{\theta}(\mathbf{y}_t, t, \mathbf{h}_{\text{img}})\|_2^2],$$

211 where ϵ_{θ} is our noise prediction network (the cross-attention U-Net), \mathbf{y}_t is the noisy brain signal at
212 time t , and \mathbf{h}_{img} is the visual embedding. This follows the standard DDPM training objective (Ho
213 et al., 2020), which corresponds to the Mean Squared Error (MSE) loss formulation:
214

215
$$\mathcal{L}_{\text{MSE}} = \|\epsilon - \epsilon_{\theta}(\mathbf{y}_t, t, \mathbf{h}_{\text{img}})\|_2^2.$$

216 3.5 TEST STAGE
217218 During testing, we start with pure Gaussian noise $\mathbf{y}_T \sim \mathcal{N}(0, \mathbf{I})$ and iteratively denoise it using our
219 noise prediction network ϵ_θ . Given an input image, we first extract visual features:

220
$$\mathbf{h}_{\text{img}} = \mathcal{E}_{\text{CLIP}}(\mathbf{x}_{\text{img}}).$$

221

222 Then, for each time step $t = T, T-1, \dots, 1$, we perform the denoising step using the noise predic-
223 tion network ϵ_θ with the image embeddings as conditioning:

224
$$\mathbf{y}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{y}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(\mathbf{y}_t, t, \mathbf{h}_{\text{img}}) \right) + \sigma_t \mathbf{z},$$

225
226

227 where $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$, σ_t is the noise variance at step t . The final output \mathbf{y}_0 represents the generated
228 brain signal corresponding to the input image.
229230 4 EXPERIMENT
231232 4.1 DATASETS AND PREPROCESSING
233234 **THINGS-EEG2 Dataset:** We conduct our experiments on the THINGS-EEG2 dataset (Gifford
235 et al., 2022), which represents one of the largest and most diverse EEG-image paired datasets cur-
236 rently available. This dataset employs a rapid serial visual presentation (RSVP) paradigm and con-
237 tains EEG recordings from ten participants. The training set comprises 1,654 concepts \times 10 images
238 \times 4 repetitions, while the test set includes 200 concepts \times 1 image \times 80 repetitions. Each image is
239 presented for 100 ms followed by a 100 ms blank screen, with a stimulus onset asynchrony (SOA)
240 of 200 ms. The data were recorded using 63 electrode channels at a sampling rate of 1000 Hz with
241 bandpass filtering at [0.1, 100] Hz.242 **THINGS-MEG Dataset:** We also evaluate our framework on the THINGS-MEG dataset (Hebart
243 et al., 2023) containing four participants and paired MEG recordings with corresponding visual
244 stimuli. This dataset offers better spatial resolution and more stable responses with a longer SOA of
245 1500 ± 200 ms, including a 500-ms stimulus followed by a jitter blank screen. The training stage
246 includes 1,854 concepts \times 12 images \times 1 repetition, while the test stage includes 200 concepts \times 1
247 image \times 12 repetitions. The data were recorded using 271 channels and filtered to [0.1, 100] Hz.248 For preprocessing of both datasets, we follow the same data processing methodology as described
249 in (Song et al., 2025).
250251 4.2 EXPERIMENT DETAILS
252253 We implement our method with PyTorch in Python 3.10 on four NVIDIA V100S GPUs. We use
254 AdamW optimizer with a learning rate of 1e-4 and weight decay of 1e-5 for all experiments. We
255 conduct training for 50 epochs. For the THINGS-EEG2 dataset, we set the batch size to 16, while
256 for the THINGS-MEG dataset, we use a batch size of 4 due to memory constraints and the higher
257 dimensional nature of MEG data.258 During training, we use the complete framework shown in Figure 2 with paired image-brain signal
259 data. For testing, we perform image-to-brain signal conversion by first extracting image embeddings
260 via the CLIP visual encoder, then using these embeddings as conditioning information to guide
261 the noise prediction network ϵ_θ through iterative denoising from Gaussian noise to generate brain
262 signals.263 Our diffusion model employs a UNet2DConditionModel from the Hugging Face diffusers li-
264 brary (von Platen et al., 2022) with dataset-specific configurations. For EEG signals, we use a
265 sample size of (63, 250) with 63 channels and 250 temporal sampling points. For MEG signals,
266 we configure the model with a sample size of (271, 200) with 271 channels and 200 temporal
267 sampling points. Both models use 1 input and output channel, 4 downsampling and upsampling
268 blocks with channel dimensions of (128, 256, 512, 512). The downsampling path consists of: two
269 DownBlock2D layers followed by two CrossAttnDownBlock2D layers, while the upsampling path
includes: two CrossAttnUpBlock2D layers followed by two UpBlock2D layers. Cross-attention

270 mechanisms are specifically integrated in the deeper layers to enable fine-grained alignment be-
 271 tween visual features and brain signal representations. The cross-attention dimension is set to 768 to
 272 match the CLIP embedding dimension. We use the ViT-L/14 variant of CLIP as our visual encoder
 273 to extract rich semantic representations from input images.

275 **4.3 PERFORMANCE EVALUATION**

277 **Table 1: Within-subject performance (MSE and PCC) on THINGS-EEG2 Dataset**

Evaluation Metrics	Subject										Average
	1	2	3	4	5	6	7	8	9	10	
MSE	0.178	0.212	0.189	0.225	0.269	0.247	0.213	0.200	0.204	0.234	0.217
PCC	0.228	0.191	0.216	0.173	0.139	0.159	0.186	0.231	0.140	0.213	0.188

283 **Table 2: Cross-subject MSE results on THINGS-EEG2 Dataset**

Train Subject	Test Subject										Source Stats
	1	2	3	4	5	6	7	8	9	10	
1	0.204	0.191	0.202	0.195	0.193	0.192	0.193	0.193	0.195	0.195	0.195 0.005
2	0.216	0.217	0.220	0.218	0.213	0.221	0.215	0.213	0.220	0.217	0.217 0.003
3	0.206	0.220		0.216	0.203	0.204	0.215	0.210	0.205	0.209	0.210 0.006
4	0.231	0.241	0.229		0.229	0.230	0.233	0.230	0.224	0.237	0.232 0.005
5	0.285	0.296	0.279	0.288		0.279	0.289	0.280	0.278	0.288	0.284 0.006
6	0.270	0.280	0.266	0.275	0.263		0.270	0.265	0.259	0.270	0.268 0.007
7	0.224	0.240	0.229	0.230	0.226	0.224		0.227	0.217	0.233	0.228 0.007
8	0.217	0.225	0.217	0.225	0.214	0.209	0.219		0.215	0.221	0.218 0.005
9	0.224	0.235	0.223	0.228	0.222	0.216	0.221	0.225		0.230	0.225 0.006
10	0.243	0.253	0.239	0.253	0.244	0.242	0.251	0.245	0.244		0.246 0.005
Target Mean	0.235	0.244	0.232	0.237	0.224	0.223	0.234	0.227	0.219	0.233	0.231
Target Std	0.025	0.027	0.025	0.026	0.021	0.022	0.026	0.021	0.019	0.025	0.024

297 **Table 3: Cross-subject PCC results on THINGS-EEG2 Dataset**

Train Subject	Test Subject										Source Stats
	1	2	3	4	5	6	7	8	9	10	
1	0.145	0.132	0.152	0.128	0.106	0.161	0.151	0.084	0.163	0.136	0.025
2	0.107		0.078	0.141	0.088	0.096	0.099	0.125	0.072	0.122	0.103 0.024
3	0.115	0.096		0.120	0.125	0.086	0.070	0.096	0.053	0.134	0.099 0.027
4	0.112	0.121	0.095		0.110	0.087	0.113	0.125	0.094	0.108	0.107 0.012
5	0.079	0.087	0.082	0.105		0.080	0.071	0.111	0.058	0.090	0.084 0.017
6	0.066	0.077	0.059	0.098	0.091		0.078	0.106	0.078	0.098	0.083 0.016
7	0.123	0.099	0.051	0.134	0.091	0.086		0.106	0.108	0.094	0.099 0.024
8	0.110	0.129	0.089	0.142	0.137	0.131	0.119		0.076	0.125	0.117 0.023
9	0.067	0.081	0.038	0.107	0.071	0.074	0.101	0.069		0.070	0.075 0.020
10	0.140	0.146	0.140	0.132	0.122	0.119	0.112	0.132	0.077		0.124 0.021
Target Mean	0.107	0.109	0.085	0.126	0.107	0.098	0.106	0.113	0.078	0.111	0.104
Target Std	0.026	0.026	0.035	0.018	0.023	0.018	0.027	0.023	0.016	0.028	0.024

311 **Table 4: Within-subject performance (MSE and PCC) on THINGS-MEG Dataset**

Evaluation Metrics	Subject				Average
	1	2	3	4	
MSE	0.607	0.856	0.964	0.623	0.763
PCC	0.128	0.198	0.061	0.099	0.122

317 We evaluate our framework using two metrics: Mean Squared Error (MSE) and Pearson Correlation
 318 Coefficient (PCC) between predicted and ground truth brain signals. Lower MSE values and higher
 319 PCC values indicate better performance.

320 **Within-subject Performance:** Tables 1 and 4 present the within-subject results, where models
 321 are trained and tested on data from the same subject. For the THINGS-EEG2 dataset, our method
 322 achieves an average MSE of 0.217 and PCC of 0.188 across 10 subjects. The performance varies
 323 across subjects, with Subject 1 achieving the best MSE (0.178) and Subject 8 showing the highest

324 **Table 5: Cross-subject results on THINGS-MEG Dataset**
325 (a) Cross-subject MSE results on THINGS-MEG
326 Dataset

Train Subject	Test Subject				Source Stats	
	1	2	3	4	Mean	Std
1	0.932	1.134	0.635	0.900	0.252	
2	0.690	1.155	0.701	0.849	0.264	
3	0.726	1.007	0.725	0.819	0.163	
4	0.697	0.987	1.173	0.952	0.241	
Target Mean	0.704	0.975	1.154	0.687	0.880	
Target Std	0.018	0.038	0.020	0.041	0.206	

327 (b) Cross-subject PCC results on THINGS-MEG
328 Dataset

Train Subject	Test Subject				Source Stats	
	1	2	3	4	Mean	Std
1	0.080	0.038	0.069	0.062	0.021	
2	0.088		0.075	0.051	0.071	0.019
3	0.055	0.071		0.045	0.057	0.013
4	0.027	0.033	0.020		0.027	0.007
Target Mean	0.057	0.061	0.044	0.055	0.054	
Target Std	0.031	0.024	0.028	0.012	0.024	

334
335 PCC (0.231). For the THINGS-MEG dataset with 4 subjects, we obtain an average MSE of 0.763
336 and PCC of 0.122. Among all subjects, Subject 1 achieves the lowest MSE of 0.607, while Subject
337 2 obtains the highest PCC of 0.198.

338 **Cross-subject Generalization:** From Tables 2 and 5a, we observe that the cross-subject MSE aver-
339 ages (0.231 for EEG, 0.880 for MEG) are higher than the within-subject averages (0.217 for EEG,
340 0.763 for MEG), confirming the performance degradation in cross-subject scenarios. Examining
341 cross-subject PCC results in Tables 3 and 5b, we observe a significant decrease in cross-subject
342 PCC values compared to the within-subject PCC results presented in Tables 1 and 4. These perfor-
343 mance degradations align with our findings in Section 4.4 and Appendix A.3, which demonstrate
344 that during object recognition tasks, brain signals from different subjects exhibit substantial varia-
345 tions in spatial extent and amplitude magnitudes, even when response locations remain relatively
346 consistent. These inter-subject (cross-subject) variations pose significant challenges for developing
347 models that can generalize effectively across individuals.

348 4.4 VISUALIZATION ANALYSIS

349 I have plotted the topography for all subjects in both the THINGS-EEG2 and THINGS-MEG
350 datasets, as detailed in Figures 3, 4, 6, 7, 8, and 9 (See Appendix A.3 for Figures 6, 7, 8, and
353 9).

354 Examining Figures 3 and 4, we observe that the temporal evolution of training, test, and generated
355 topographies for both EEG and MEG signals aligns with the bottom-up hierarchy of the visual
356 system, where visual stimuli are processed sequentially by V1, V2, V4 in the occipital cortex, and the
357 inferotemporal cortex in the temporal cortex along the ventral stream for object recognition (Song
358 et al., 2023).

359 However, examining the difference topographies, we observe discernible differences between training
360 and test brain signals, which consequently impact the model’s generalization performance. This
361 observation reflects the inherent difficulty in brain signal acquisition and the presence of consider-
362 able noise in the recordings, which poses challenges for robust brain signal modeling (Schalk et al.,
363 2004; Keil et al., 2014; Gonzalez-Moreno et al., 2014).

364 Cross-subject comparisons of training and test topographies across different subjects reveal that
365 while the response locations remain roughly consistent (primarily in the occipital and temporal cor-
366 tex regions), the spatial extent and amplitude magnitudes exhibit substantial variations. This phe-
367 nomenon demonstrates the significant cross-subject variability inherent in brain signal acquisition,
368 where individual differences in brain anatomy, skull thickness, and electrode placement (for EEG)
369 contribute to significant variations in recorded neural responses (Lotte et al., 2018; Huang et al.,
370 2016; Liu et al., 2020; Chaumon et al., 2021).

372 4.5 CROSS-MODAL STRATEGY COMPARISON

373 In this section, we conduct extensive experiments to evaluate the effectiveness of different cross-
374 modal learning strategies for integrating brain signal representations with visual features, as shown
375 in Figure 5. We compare three approaches: simple addition (Addition), feature concatenation (Con-
376 catenation), and cross-attention mechanism (Cross-Attention). We evaluate performance using two
377 metrics: Mean Squared Error (MSE) and Pearson Correlation Coefficient (PCC).

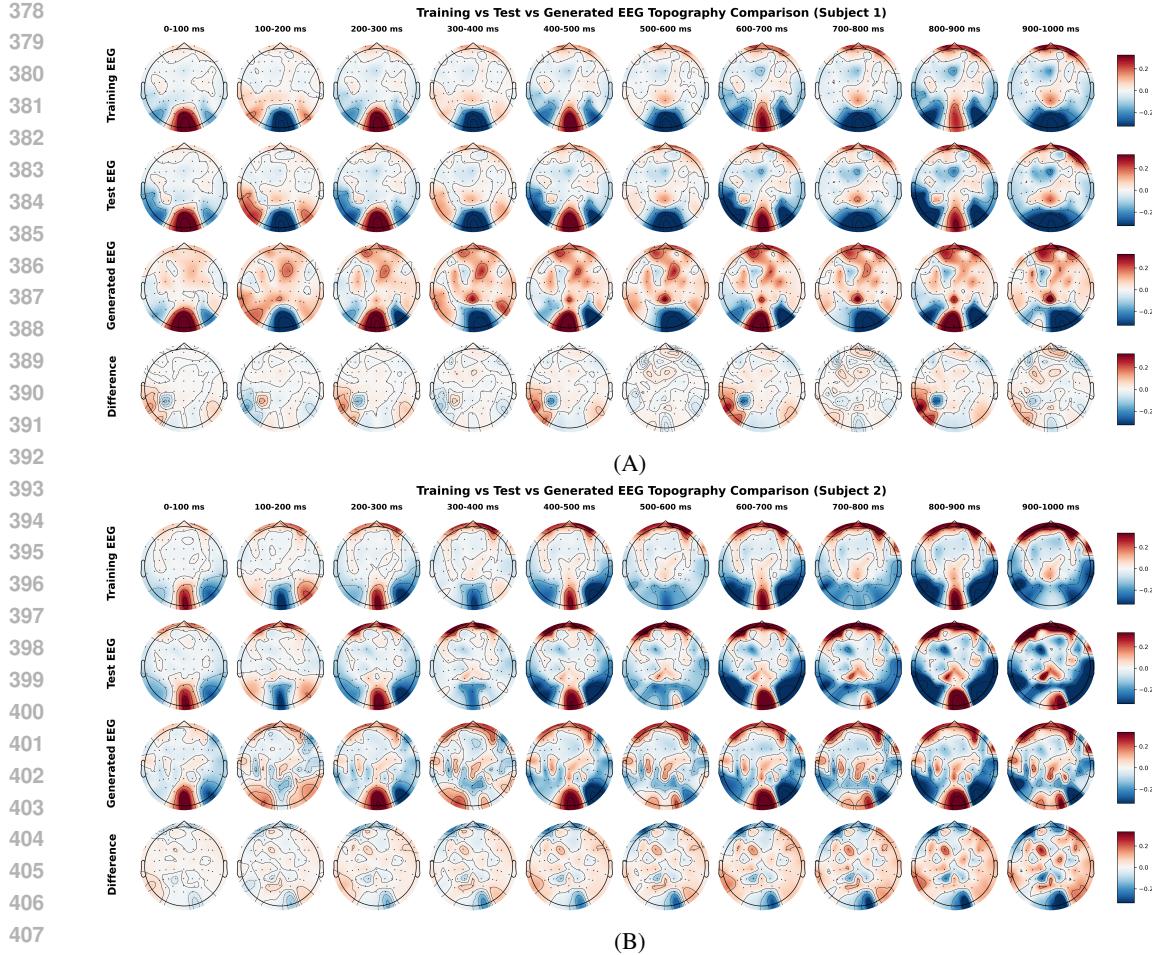


Figure 3: Topography visualization for subject 1 and subject 2 from THINGS-EEG2 datasets. Topography visualizations for other subjects are provided in Appendix A.3. EEG topography comparison illustrating: (1) Training topographies at 100ms intervals, derived from averaging all training trials from a single subject; (2) Test topographies at 100ms intervals, derived from averaging all test trials from the same subject; (3) Generated EEG signals created by processing test images through the CLIP visual encoder to extract image embeddings, which are then fed into the trained U-Net decoder to produce corresponding EEG signals, with generated EEG topographies at 100ms intervals derived by averaging all generated EEG signals from the subject; (4) Difference topographies at 100ms intervals, calculated by subtracting the averaged test EEG signals from the averaged training EEG signals at each time point.

EEG MSE Results and MEG MSE Results present the average MSE results for the THINGS-EEG2 and THINGS-MEG datasets, respectively. Our cross-attention approach achieves the lowest average MSE on both datasets (0.217 for EEG and 0.763 for MEG), demonstrating superior performance compared to concatenation (0.228 for EEG and 0.808 for MEG) and addition (0.227 for EEG and 0.811 for MEG) methods.

EEG PCC Results and MEG PCC Results present the average results on the THINGS-EEG2 and THINGS-MEG datasets, respectively, with all values reported as Pearson Correlation Coefficient (PCC). The cross-attention mechanism achieves the highest average PCC on both datasets (0.188 for EEG and 0.122 for MEG), outperforming both concatenation (0.180 for EEG and 0.109 for MEG) and addition (0.172 for EEG and 0.118 for MEG) methods. The consistent advantage of cross-attention across both datasets and across different evaluation metrics indicates that explicitly capturing the complex interplay between brain signals and visual features leads to better performance in cross-modal learning tasks.

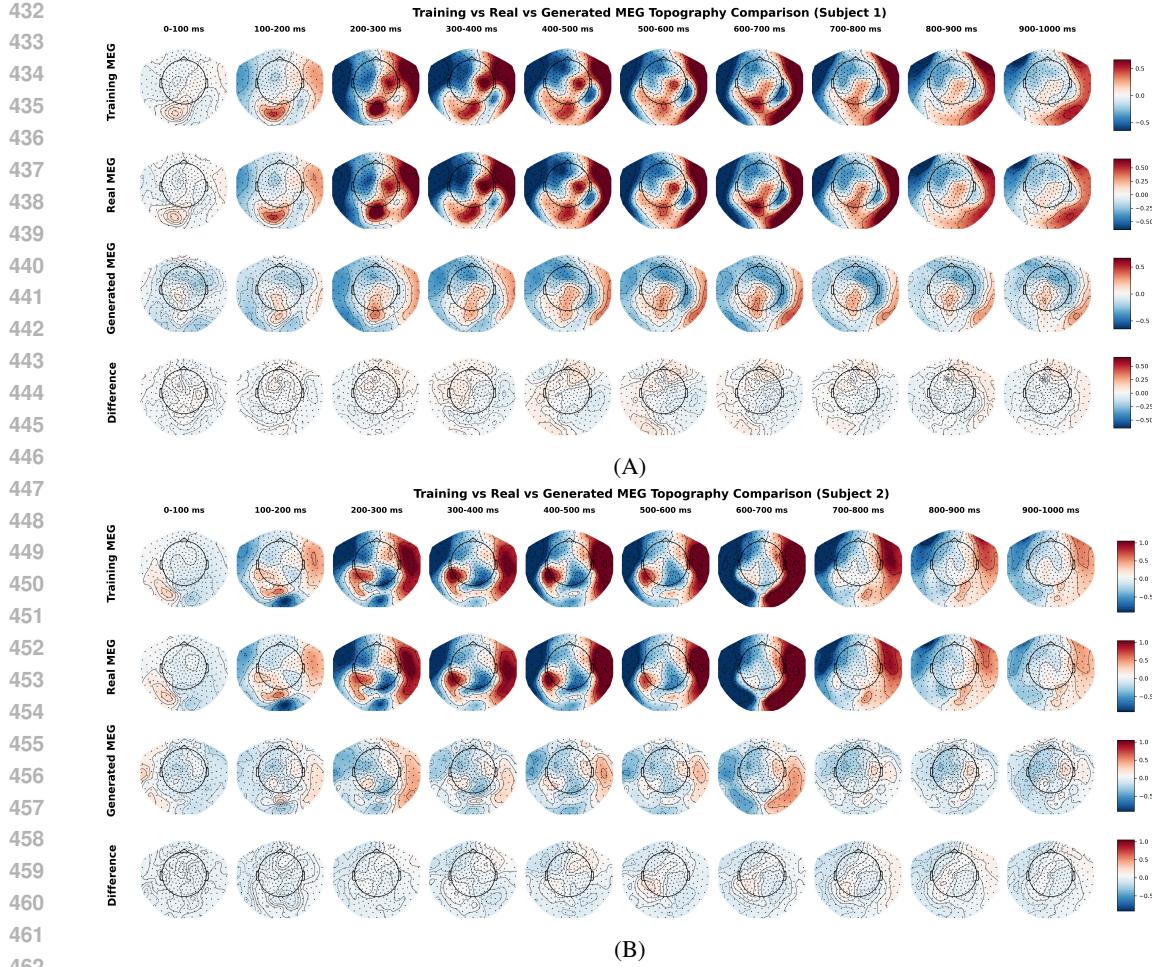


Figure 4: Topography visualization for subject 1 and subject 2 from THINGS-MEG datasets. MEG topography comparison following the same visualization approach as Figure 3.

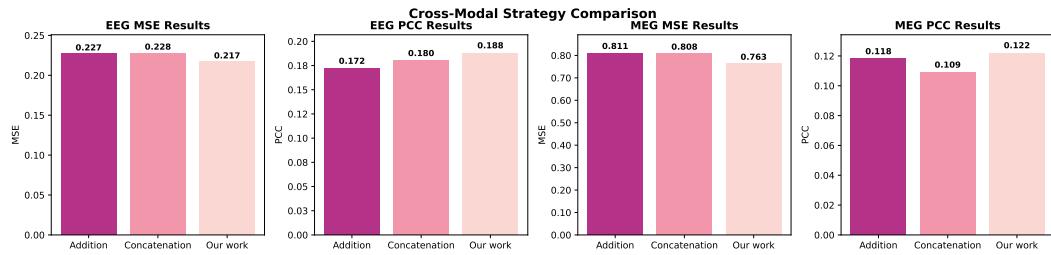


Figure 5: Cross-modal strategy comparison. Full results can be found in Appendix A.2.

5 CONCLUSION

In conclusion, we present the first image-to-brain framework (we call image-to-brain process as brain encoding). This framework uses diffusion models to complete the brain signal reconstruction task and uses cross-attention to achieve alignment between the two modalities of images and brain signals. We conduct experiments on both THINGS-EEG2 and THINGS-MEG datasets, demonstrating the compatibility of our framework with both EEG and MEG signals. Meanwhile, we also plot topographies of EEG and MEG signals, allowing us to more intuitively observe the conditions of these two datasets.

486 REFERENCES
487

488 Emily J Allen, Ghislain St-Yves, Yihan Wu, Jesse L Breedlove, Jacob S Prince, Logan T Dowdle,
489 Matthias Nau, Brad Caron, Franco Pestilli, Ian Charest, et al. A massive 7T fMRI dataset to
490 bridge cognitive neuroscience and artificial intelligence. *Nature neuroscience*, 25(1):116–126,
491 2022.

492 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
493 In *International conference on machine learning*, pp. 214–223. PMLR, 2017.
494

495 Lauren N Ayton, Nick Barnes, Gislin Dagnelie, Takashi Fujikado, Georges Goetz, Ralf Hornig,
496 Bryan W Jones, Mahiul MK Muqit, Daniel L Rathbun, Katarina Stingl, et al. An update on
497 retinal prostheses. *Clinical Neurophysiology*, 131(6):1383–1398, 2020.

498 Yohann Benchirrit, Hubert Banville, and Jean-Rémi King. Brain decoding: toward real-time recon-
499 struction of visual perception. *arXiv preprint arXiv:2310.19812*, 2023.
500

501 Michael H Berry, Amy Holt, Joshua Levitz, Johannes Broichhagen, Benjamin M Gaub, Meike Visel,
502 Cherise Stanley, Krishan Aghi, Yang Joon Kim, Kevin Cao, et al. Restoration of patterned vision
503 with an engineered photoactivatable G protein-coupled receptor. *Nature communications*, 8(1):
504 1862, 2017.

505

506 JD Blom, M Catani, et al. Disorders of visual perception. *Journal of Neurology, Neurosurgery &*
507 *Psychiatry*, 81(11):1280–1287, 2010.

508 Volker Busskamp and Botond Roska. Optogenetic approaches to restoring visual function in retinitis
509 pigmentosa. *Current opinion in neurobiology*, 21(6):942–946, 2011.
510

511 Maximilien Chaumon, Aina Puce, and Nathalie George. Statistical power: implications for planning
512 meg studies. *NeuroImage*, 233:117894, 2021.

513

514 Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
515 web]. *IEEE signal processing magazine*, 29(6):141–142, 2012.

516 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
517 *in neural information processing systems*, 34:8780–8794, 2021.
518

519 Alessandro T Gifford, Kshitij Dwivedi, Gemma Roig, and Radoslaw M Cichy. A large and rich
520 EEG dataset for modeling human visual object recognition. *NeuroImage*, 264:119754, 2022.
521

522 GA Goetz and Daniel V Palanker. Electronic approaches to restoration of sight. *Reports on Progress*
523 *in Physics*, 79(9):096701, 2016.

524 Alicia Gonzalez-Moreno, Sara Aurtenetxe, Maria-Eugenia Lopez-Garcia, Francisco del Pozo, Fer-
525 nando Maestu, and Angel Nevado. Signal-to-noise ratio of the meg signal after preprocessing.
526 *Journal of neuroscience methods*, 222:56–61, 2014.
527

528 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
529 MIT Press, 2016.
530

531 Jacob Granley, Lucas Relic, and Michael Beyeler. Hybrid neural autoencoders for stimulus encoding
532 in visual and other sensory neuroprostheses. *Advances in Neural Information Processing Systems*,
533 35:22671–22685, 2022.

534 Jacob Granley, Tristan Fauvel, Matthew Chalk, and Michael Beyeler. Human-in-the-loop optimiza-
535 tion for deep stimulus encoding in visual prostheses. *Advances in neural information processing*
536 *systems*, 36:79376–79398, 2023.
537

538 Kay Gregor Hartmann, Robin Tibor Schirrmeister, and Tonio Ball. EEG-GAN: Generative adversar-
539 ial networks for electroencephalographic (EEG) brain signals. *arXiv preprint arXiv:1806.01875*,
2018.

540 Martin N Hebart, Oliver Contier, Lina Teichmann, Adam H Rockter, Charles Y Zheng, Alexis Kid-
 541 der, Anna Corriveau, Maryam Vaziri-Pashkam, and Chris I Baker. THINGS-data, a multimodal
 542 collection of large-scale datasets for investigating object representations in human brain and be-
 543 havior. *Elife*, 12:e82580, 2023.

544

545 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 546 *neural information processing systems*, 33:6840–6851, 2020.

547

548 Yu Huang, Lucas C Parra, and Stefan Haufe. The new york head—a precise standardized volume
 549 conductor model for eeg source localization and tes targeting. *NeuroImage*, 140:150–162, 2016.

550

551 Mark S Humayun, Jessy D Dorn, Lyndon Da Cruz, Gislin Dagnelie, José-Alain Sahel, Paulo E
 552 Stanga, Artur V Cideciyan, Jacque L Duncan, Dean Elliott, Eugene Filley, et al. Interim results
 553 from the international trial of Second Sight’s visual prosthesis. *Ophthalmology*, 119(4):779–788,
 2012.

554

555 Yizhang Jiang, Zhaohong Deng, Fu-Lai Chung, Guanjin Wang, Pengjiang Qian, Kup-Sze Choi, and
 556 Shitong Wang. Recognition of epileptic EEG signals using a novel multiview TSK fuzzy system.
 557 *IEEE Transactions on Fuzzy Systems*, 25(1):3–20, 2016.

558

559 Andreas Keil, Stefan Debener, Gabriele Gratton, Markus Junghöfer, Emily S Kappenman, Steven J
 560 Luck, Phan Luu, Gregory A Miller, and Cindy M Yee. Committee report: publication guidelines
 561 and recommendations for studies using electroencephalography and magnetoencephalography.
Psychophysiology, 51(1):1–21, 2014.

562

563 Dongyang Li, Chen Wei, Shiying Li, Jiachen Zou, Haoyang Qin, and Quanying Liu. Visual decoding
 564 and reconstruction via eeg embeddings with guided diffusion. *arXiv preprint arXiv:2403.07721*,
 565 2024.

566

567 Hezheng Lin, Xing Cheng, Xiangyu Wu, and Dong Shen. Cat: Cross attention in vision transformer.
 568 In *2022 IEEE international conference on multimedia and expo (ICME)*, pp. 1–6. IEEE, 2022a.

569

570 Sikun Lin, Thomas Sprague, and Ambuj K Singh. Mind reader: Reconstructing complex images
 571 from brain activities. *Advances in Neural Information Processing Systems*, 35:29624–29636,
 2022b.

572

573 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 574 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer*
 575 *vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6–12, 2014, pro-*
576 ceedings, part v 13, pp. 740–755. Springer, 2014.

577

578 Shihao Liu, Tianyou Yu, Zebin Huang, and Hengfeng Ye. Cross-subject meg transfer learning
 579 by riemannian manifold and feature subspace alignment. In *2020 International Symposium on*
Autonomous Systems (ISAS), pp. 12–16. IEEE, 2020.

580

581 Fabien Lotte, Laurent Bougrain, Andrzej Cichocki, Maureen Clerc, Marco Congedo, Alain Rak-
 582 tomanony, and Florian Yger. A review of classification algorithms for eeg-based brain–computer
 583 interfaces: a 10 year update. *Journal of neural engineering*, 15(3):031005, 2018.

584

585 Tian-jian Luo, Yachao Fan, Lifei Chen, Gongde Guo, and Changle Zhou. EEG signal reconstruction
 586 using a generative adversarial network with wasserstein distance and temporal-spatial-frequency
 loss. *Frontiers in neuroinformatics*, 14:15, 2020.

587

588 Leila Montazeri, Nizar El Zarif, Stuart Trenholm, and Mohamad Sawan. Optogenetic stimulation
 589 for restoring vision to patients suffering from retinal degenerative diseases: current strategies and
 590 future directions. *IEEE transactions on biomedical circuits and systems*, 13(6):1792–1807, 2019.

591

592 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 593 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 594 models from natural language supervision. In *International conference on machine learning*, pp.
 595 8748–8763. PMLR, 2021.

594 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
 595 cal image segmentation. In *International Conference on Medical image computing and computer-*
 596 *assisted intervention*, pp. 234–241. Springer, 2015.

597

598 José-Alain Sahel, Elise Boulanger-Scemama, Chloé Pagot, Angelo Arleo, Francesco Galluppi,
 599 Joseph N Martel, Simona Degli Esposti, Alexandre Delaux, Jean-Baptiste de Saint Aubert, Car-
 600oline de Montleau, et al. Partial recovery of visual function in a blind patient after optogenetic
 601 therapy. *Nature medicine*, 27(7):1223–1229, 2021.

602

603 Gerwin Schalk, Dennis J McFarland, Thilo Hinterberger, Niels Birbaumer, and Jonathan R Wol-
 604 paw. Bci2000: a general-purpose brain-computer interface (bci) system. *IEEE Transactions on*
 605 *biomedical engineering*, 51(6):1034–1043, 2004.

606

607 Paul Scotti, Atmadeep Banerjee, Jimmie Goode, Stepan Shabalin, Alex Nguyen, Aidan Dempster,
 608 Nathalie Verlinde, Elad Yundler, David Weisberg, Kenneth Norman, et al. Reconstructing the
 609 mind’s eye: fmri-to-image with contrastive learning and diffusion priors. *Advances in Neural*
 610 *Information Processing Systems*, 36:24705–24728, 2023.

611

612 Ahmed Soltan, John Martin Barrett, Pleun Maaskant, Niall Armstrong, Walid Al-Atabany, Lionel
 613 Chaudet, Mark Neil, Evelyne Sernagor, and Patrick Degenaar. A head mounted device stimulator
 614 for optogenetic retinal prosthesis. *Journal of neural engineering*, 15(6):065002, 2018.

615

616 Yonghao Song, Bingchuan Liu, Xiang Li, Nanlin Shi, Yijun Wang, and Xiaorong Gao. Decoding
 617 natural images from eeg for object recognition. *arXiv preprint arXiv:2308.13234*, 2023.

618

619 Yonghao Song, Yijun Wang, Huiguang He, and Xiaorong Gao. Recognizing natural images from eeg
 620 with language-guided contrastive learning. *IEEE Transactions on Neural Networks and Learning*
 621 *Systems*, 2025.

622

623 Maureen van der Grinten, Jaap de Ruyter van Steveninck, Antonio Lozano, Laura Pijnacker, Bodo
 624 Rueckauer, Pieter Roelfsema, Marcel van Gerven, Richard van Wezel, Umut Güçlü, and Yağmur
 625 Güçlütürk. Towards biologically plausible phosphene simulation for the differentiable optimiza-
 626 tion of visual cortical prostheses. *Elife*, 13:e85812, 2024.

627

628 Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Ra-
 629 sul, Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and
 630 Thomas Wolf. Diffusers: State-of-the-art diffusion models. [https://github.com/](https://github.com/huggingface/diffusers)
 631 huggingface/diffusers, 2022.

632

633 Chuanqing Wang, Di Wu, Chaoming Fang, Jie Yang, and Mohamad Sawan. Exploring effective
 634 stimulus encoding via vision system modeling for visual prostheses. In *The Twelfth International*
 635 *Conference on Learning Representations (ICLR)*, Vienna, Austria, May 2024a. URL <https://openreview.net/forum?id=cKAUvMePUN>.

636

637 Shizun Wang, Songhua Liu, Zhenxiong Tan, and Xinchao Wang. Mindbridge: A cross-subject
 638 brain decoding framework. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 639 *Pattern Recognition*, pp. 11333–11342, 2024b.

640

641 Xingqian Xu, Zhangyang Wang, Gong Zhang, Kai Wang, and Humphrey Shi. Versatile diffusion:
 642 Text, images and variations all in one diffusion model. In *Proceedings of the IEEE/CVF Interna-*
 643 *tional Conference on Computer Vision*, pp. 7754–7765, 2023.

644

645 Lingxiao Yang, Ru-Yuan Zhang, Yanchen Wang, and Xiaohua Xie. MMA: Multi-Modal Adapter
 646 for Vision-Language Models. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 647 *and Pattern Recognition*, pp. 23826–23837, 2024.

648

649 Eberhart Zrenner. Fighting blindness with microelectronics. *Science translational medicine*, 5(210):
 650 210ps16–210ps16, 2013.

648 **A APPENDIX**
649650 **A.1 USE OF LARGE LANGUAGE MODELS**
651652 In the process of completing this paper, we use large language models (LLMs) for polishing the
653 writing aspects of the paper. The conception and implementation of the ideas in this paper, the
654 design of experiments, the selection of paper content, and other innovative aspects do not involve
655 the use of LLMs.656 **A.2 DETAILED CROSS-MODAL STRATEGY COMPARISON**
657659 **Table 6: Detailed Cross-Modal Strategy Comparison (MSE) on THINGS-EEG2 Dataset**

Methods	Subject										Average
	1	2	3	4	5	6	7	8	9	10	
Addition	0.188	0.221	0.206	0.242	0.288	0.238	0.230	0.213	0.212	0.235	0.227
Concatenation	0.193	0.233	0.209	0.235	0.277	0.223	0.237	0.226	0.211	0.237	0.228
Cross-Attention (Our work)	0.178	0.212	0.189	0.225	0.269	0.247	0.213	0.200	0.204	0.234	0.217

664 **Table 7: Detailed Cross-Modal Strategy Comparison (PCC) on THINGS-EEG2 Dataset**

Methods	Subject										Average
	1	2	3	4	5	6	7	8	9	10	
Addition	0.208	0.157	0.186	0.172	0.121	0.126	0.170	0.246	0.123	0.211	0.172
Concatenation	0.211	0.203	0.199	0.167	0.133	0.134	0.199	0.254	0.115	0.182	0.180
Cross-Attention (Our work)	0.228	0.191	0.216	0.173	0.139	0.159	0.186	0.231	0.140	0.213	0.188

671 **Table 8: Detailed Cross-Modal Strategy Comparison (MSE) on THINGS-MEG Dataset**

Methods	Subject				Average
	1	2	3	4	
Addition	0.622	0.870	1.124	0.628	0.811
Concatenation	0.599	0.880	1.107	0.645	0.808
Cross-Attention (Our work)	0.607	0.856	0.964	0.623	0.763

672 **Table 9: Detailed Cross-Modal Strategy Comparison (PCC) on THINGS-MEG Dataset**

Methods	Subject				Average
	1	2	3	4	
Addition	0.142	0.135	0.097	0.099	0.118
Concatenation	0.162	0.125	0.094	0.053	0.109
Cross-Attention (Our work)	0.128	0.198	0.061	0.099	0.122

673 Tables 6, 7, 8, and 9 provide detailed results corresponding to the content shown in Figure 5.
674675 **A.3 ADDITIONAL TOPOGRAPHY VISUALIZATION**676 This section provides supplementary materials to Section 4.4 presented in the main text, displaying
677 the remaining subjects' EEG and MEG topographies from the THINGS-EEG2 and THINGS-MEG
678 datasets. These topographies enhance our understanding of the spatial distribution and amplitude
679 variations in neural responses, providing intuitive evidence for the challenges in brain signal model-
680 ing.681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

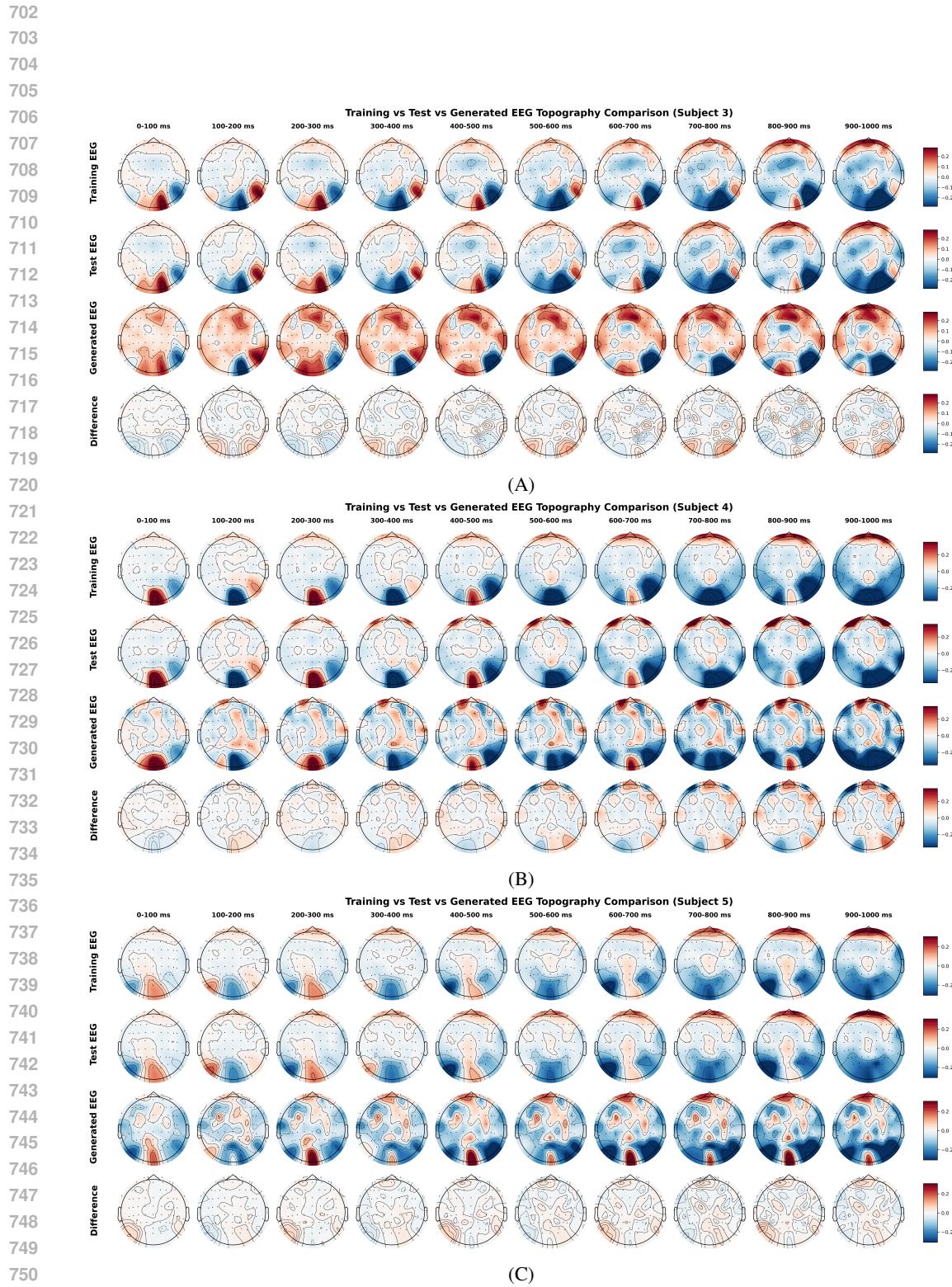


Figure 6: EEG Topography Comparison (Part 1)

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

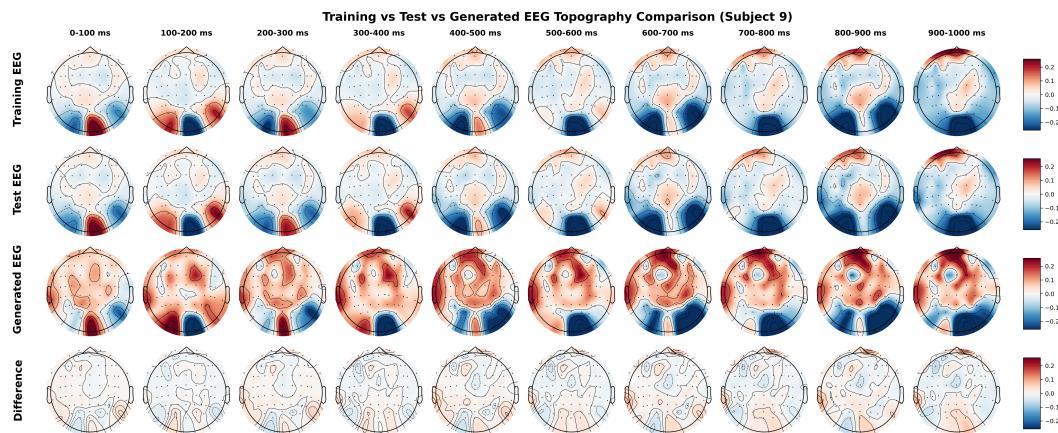
832

833

834

835

836



(G)

837

838

839

840

841

842

843

844

845

846

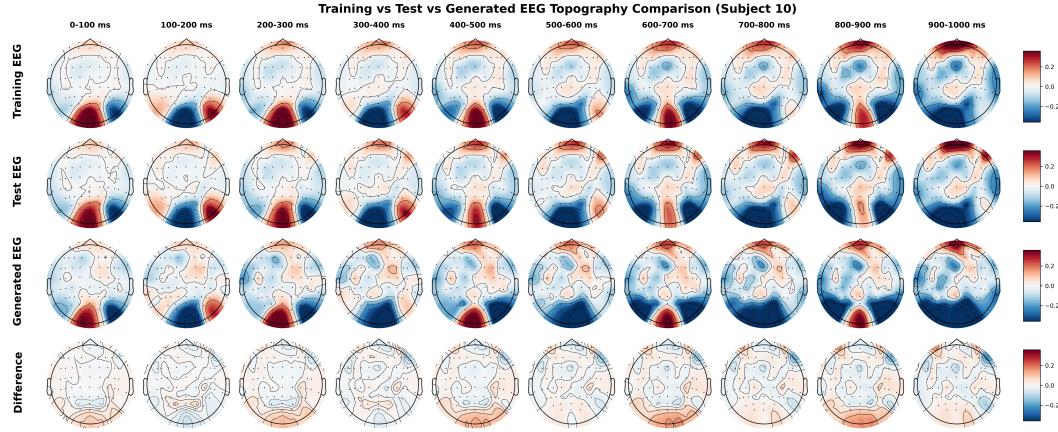
847

848

849

850

851



(H)

852

853

854

855

856

857

858

859

860

861

862

863

Figure 8: EEG Topography Comparison (Part 3)

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

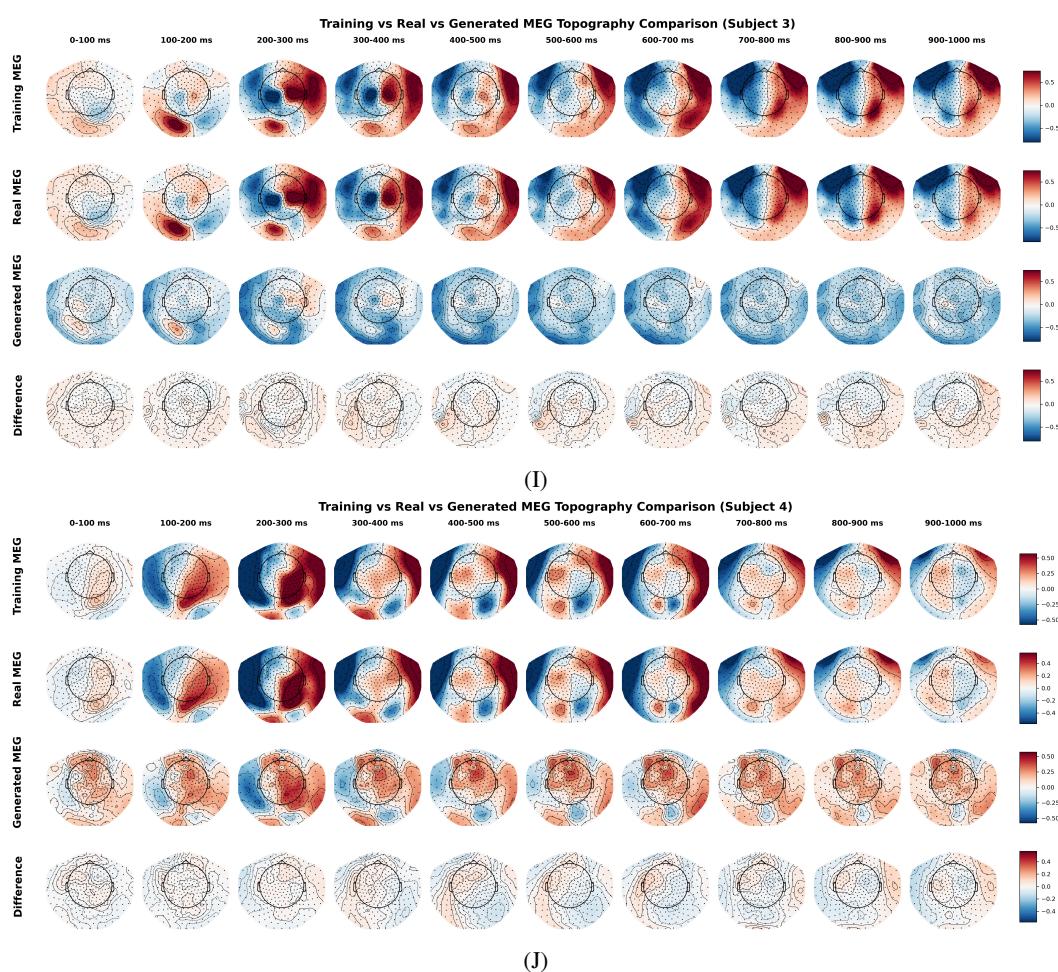


Figure 9: MEG Topography Comparison