
Workshop track - ICLR 2018

WEIGHTLESS: LOSSY WEIGHT ENCODING
FOR DEEP NEURAL NETWORK COMPRESSION

Brandon Reagen, Udit Gupta, Robert Adolf
Michael M. Mitzenmacher, Alexander M. Rush, Gu-Yeon Wei, David Brooks
Harvard University

ABSTRACT

The large memory requirements of deep neural networks limit their deployment
and adoption on many devices. Model compression methods effectively reduce the
memory requirements of these models, usually through applying transformations
such as weight pruning or quantization. In this paper, we present a novel scheme for
lossy weight encoding which complements conventional compression techniques.
The encoding is based on the Bloomier filter, a probabilistic data structure that
can save space at the cost of introducing random errors. Leveraging the ability of
neural networks to tolerate these imperfections and by re-training around the errors,
the proposed technique, Weightless, can compress DNN weights by up to 496×
with the same model accuracy. This results in up to a 1.51× improvement over the
state-of-the-art.

1 INTRODUCTION

The continued success of deep neural networks (DNNs) comes with increasing demands on compute,
memory, and networking resources. Moreover, the correlation between model size and accuracy
suggests that tomorrow’s networks will only grow larger. This growth presents a challenge for
resource-constrained platforms such as mobile phones and wireless sensors. As new hardware now
enables executing DNN inferences on these devices (Apple, 2017; Qualcomm, 2017), a practical
issue that remains is reducing the burden of distributing the latest models especially in regions
of the world not using high-bandwidth networks. For instance, it is estimated that, globally, 800
million users will be using 2G networks by 2020 (GSMA, 2014), which can take up to 30 minutes
to download just 20MB of data. By contrast, today’s DNNs are on the order of tens to hundreds
of MBs, making them difficult to distribute. As more applications look to leverage DNNs, storage
capacity on resource-constrained devices presents another challenge. Thus, in order to support
state-of-the-art deep learning methods on edge devices, methods to reduce the size of DNN models
without sacrificing model accuracy are needed.

Model compression is a popular solution for this problem. A variety of compression algorithms have
been proposed in recent years and many exploit the intrinsic redundancy in model weights. Broadly
speaking, the majority of this work has focused on ways of simplifying or eliminating weight values
(e.g., through weight pruning and quantization), while comparatively little effort has been spent on
devising techniques for encoding and compressing.

In this paper we propose a novel lossy encoding method, Weightless, based on Bloomier filters,
a probabilistic data structure (Chazelle et al., 2004). Bloomier filters inexactly store a function
map, and by adjusting the filter parameters, we can elect to use less storage space at the cost of an
increasing chance of erroneous values. We use this data structure to compactly encode the weights of
a neural network, exploiting redundancy in the weights to tolerate some errors. In conjunction with
existing weight simplification techniques, namely pruning and clustering, our approach dramatically
reduces the memory and bandwidth requirements of DNNs for over the wire transmission and on-
device storage. Weightless demonstrates compression rates of up to 496× without loss of accuracy,
improving on the state of the art by up to 1.51×. Furthermore, we show that Weightless scales better
with increasing sparsity, which means more sophisticated pruning methods yield even more benefits.

This work demonstrates the efficacy of compressing DNNs with lossy encoding using probabilistic
data structures. Even after the same aggressive lossy simplification steps of weight pruning and

1

Workshop track - ICLR 2018

clustering (see Section 2), there is still sufficient extraneous information left in model weights to allow
an approximate encoding scheme to substantially reduce the memory footprint without loss of model
accuracy. Section 3 reviews Bloomier filters and details Weightless. State-of-the-art compression
results using Weightless are presented in Section 4. Finally, in Section 4.3 shows that Weightless
scales better as networks become more sparse compared to the previous best solution.

2 RELATED WORK

Our goal is to minimize the static memory footprint of a neural network without compromising
accuracy. Deep neural network weights exhibit ample redundancy, and a wide variety of techniques
have been proposed to exploit this attribute. We group these techniques into two categories: (1)
methods that modify the loss function or structure of a network to reduce free parameters and (2)
methods that compress a given network by removing unnecessary information.

The first class of methods aim to directly train a network with a small memory footprint by introducing
specialized structure or loss. Examples of specialized structure include low-rank, structured matrices
of Sindhwani et al. (2015) and randomly-tied weights of Chen et al. (2015). Examples of specialized
loss include teacher-student training for knowledge distillation (Bucila et al., 2006; Hinton et al.,
2015) and diversity-density penalties (Wang et al., 2017). These methods can achieve significant
space savings, but also typically require modification of the network structure and full retraining of
the parameters.

An alternative approach, which is the focus of this work, is to compress an existing, trained model.
This exploits the fact that most neural networks contain far more information than is necessary for
accurate inference (Denil et al., 2013). This extraneous information can be removed to save memory.
Much prior work has explored this opportunity, generally by applying a two-step process of first
simplifying weight matrices and then encoding them in a more compact form.

Simplification changes the number or characteristic of weight values to reduce the information needed
to represent them. For example, pruning by selectively zeroing weight values (LeCun et al., 1989;
Guo et al., 2016) can, in some cases, eliminate over 99% of the values without penalty. Similarly, most
models do not need many bits of information to represent each weight. Quantization collapses weights
to a smaller set of unique values, for instance via reduction to fixed-point binary representations
(Gupta et al., 2015) or clustering techniques (Gong et al., 2014).

Simplifying weight matrices can further enable the use of more compact encoding schemes, improving
compression. For example, two recent works Han et al. (2016); Choi et al. (2017) encode pruned and
quantized DNNs with sparse matrix representations. In both works, however, the encoding step is a
lossless transformation, applied on top of lossy simplification.

3 WEIGHTLESS

Weightless is a lossy encoding scheme based around Bloomier filters. We begin by describing what a
Bloomier filter is, how to construct one, and how to retrieve values from it. We then show how we
encode neural network weights using this data structure and propose a set of augmentations to make
it an effective compression strategy for deep neural networks.

3.1 THE BLOOMIER FILTER

A Bloomier filter generalizes the idea of a Bloom filter (Bloom, 1970), which are data structures
that answer queries about set membership. Given a subset S of a universe U , a Bloom filter answers
queries of the form, “Is v ∈ S?”. If v is in S, the answer is always yes; if v is not in S, there is
some probability of a false positive, which depends on the size of the filter, as size is proportional
to encoding strength. By allowing false positives, Bloom filters can dramatically reduce the space
needed to represent the set. A Bloomier filter (Chazelle et al., 2004) is a similar data structure but
instead encodes a function. For each v in a domain S, the function has an associated value f(v) in
the range R = [0, 2r). Given an input v, a Bloomier filter always returns f(v) when v is in S. When
v is not in S, the Bloomier filter returns a null value ⊥, except that some fraction of the time there is
a “false positive”, and the Bloomier filter returns an incorrect, non-null value in the range R.

2

Workshop track - ICLR 2018

0 0 1 0 0 0 0 0 00 0 11 0 100 00

X

H0
H1

W'l

H2

Wl

0

m

0 0 0 0 0 0 1 0 00 0 00 0 000 000
0 0 1 0 0 0 0 0 00 0 10 0 000 000

0 0 0 0 0 0 1 0 00 0 11 0 000 000

t MM
0 0 0 0 0 0 0 0 00 0 01 0 100 000

0

1
1

0
0
0

1
1

1

1
0

0
0
1

1
0 r

w'i,j

HM

Figure 1: Encoding with a Bloomier filter. W′ is an inexact reconstruction of W from a compressed
projection X. To retrieve the value w′i,j , we hash its location and exclusive-or the corresponding
entries of X together with a computed mask M . If the resulting value falls within the range [0, 2r), it
is used for w′i,j , otherwise, it is treated as a zero. The red path on the left shows a false positive due
to collisions in X and random M value.

Decoding Let S be the subset of values in U to store, with |S| = n. A Bloomier filter uses a
small number of hash functions (typically four), and a hash table X of m = cn cells for some
constant c (1.25 in this paper), each holding t > r bits. For hash functions H0, H1, H2, HM , let
H0,1,2(v)→ [0,m) and HM (v)→ [0, 2r), for any v ∈ U . The table X is set up such that for every
v ∈ S,

XH0(v) ⊕XH1(v) ⊕XH2(v) ⊕HM (v) = f(v).

Hence, to find the value of f(v), hash v four times, perform three table lookups, and exclusive-or
together the four values. Like the Bloom filter, querying a Bloomier filter runs in O(1) time. For
u /∈ S, the result, XH0(u)⊕XH1(u)⊕XH2(u)⊕HM (u), will be uniform over all t-bit values. If this
result is not in [0, 2r), then ⊥ is returned and if it happens to land in [0, 2r), a false positive occurs
and a result is (incorrectly) returned. An incorrect value is therefore returned with probability 2r−t.

Encoding Constructing a Bloomier filter involves finding values for X such that the relationship
above holds for all values in S. All published approaches involve searching for configurations with
randomized algorithms. In their paper introducing Bloomier filters, Chazelle et al. (2004) give a
greedy algorithm which takes O(n log n) time and produces a table of size dcnet bits with high
probability. Charles & Chellapilla (2008) provide two slightly better constructions. First, they
give a method with identical space requirements but runs in O(n) time. They also show a separate
O(n log n)-time algorithm for producing a smaller table with c closer to 1. Using a more sophisticated
algorithm for construction should allow for a more compact table and, by extension, improve the
overall compression rate. However, we leave this for future work and use the method of (Chazelle
et al., 2004) for simplicity.

While construction can be expensive, it is a one-time cost. The absolute runtime is small compared to
the time it takes to train a deep neural network. We see this as a small worthwhile overhead given the
savings offered and in contrast to the days it can take to fully train a network.

3.2 APPROXIMATE WEIGHT ENCODING WITH BLOOMIER FILTERS

We propose using the Bloomier filter to compactly store weights in a neural network. The function
f encodes the mapping between indices of nonzero weights to their corresponding values. Given a
weight matrix W, define the domain S to be the set of indices {i, j | wi,j 6= 0}. Likewise, the range

3

Workshop track - ICLR 2018

⇥104

Accuracy

False Positives

Figure 2: There is an exponential relationship between t and the number of false positives (red) as
well as the measured model accuracy with the incurred errors (blue).

R is [−2a−1, 2a−1) − {0} for a such that all values of W fall within the interval. Due to weight
value clustering (see below) this range is remapped to [0, 2r) and encodes the cluster indices. A null
response from the filter means the weight has a value of zero.

Once f is encoded in a filter, an approximation W′ of the original weight matrix is reconstructed by
querying it with all indices. The original nonzero elements of W are preserved in the approximation,
as are most of the zero elements. A small subset of zero-valued weights in W′ will take on nonzero
values as a result of random collisions in X, possibly changing the model’s output. Figure 1 illustrates
the operation of this scheme: An original nonzero is correctly recalled from the filter on the right and
a false positive is created by an erroneous match on the left (red).

Complementing Bloomier filters with simplification Because the space used by a Bloomier filter
is O(nt), they are especially useful under two conditions: (1) The stored function is sparse (small
n, with respect to |U |) and (2) It has a restricted range of output values (small r, since t > r). To
improve overall compression, we pair approximate encoding with weight transformations.

Pruning networks to enforce sparsity (condition 1) has been studied extensively (Hassibi & Stork,
1993; LeCun et al., 1989). In this paper, we consider two different pruning techniques: (i) magnitude
threshold plus retraining and (ii) dynamic network surgery (DNS) (Guo et al., 2016). Magnitude
pruning with retraining as straightforward to use and offers good results. DNS is a recently proposed
technique that prunes the network during training. We were able to acquire two sets of models,
LeNet-300-100 and LeNet5, that were pruned using DNS and include them in our evaluation; as
no reference was published for VGG-16 only magnitude pruning is used. Regardless of how it is
accomplished, improving sparsity will reduce the overall encoding size linearly with the number of
non-zeros with no effect on the false positive rate (which depends only on r and t). The reason for
using two methods is to demonstrate the benefits of Weightless as networks increase in sparsity, the
DNS networks are notably more sparse than the same networks using magnitude pruning.

Reducing r (condition 2) amounts to restricting the range of the stored function or minimizing the
number of bits required to represent weight values. Though many solutions to discretize weights
exist (e.g., limited binary precision and advanced quantization techniques Choi et al. (2017)), we use
k-means clustering. After clustering the weight values, the k centroids are saved into an auxiliary
table and the elements of W are replaced with indices into this table. This style of indirect encoding
is especially well-suited to Bloomier filters, as these indices represent a small, contiguous set of
integers. Another benefit of using Bloomier filters is that k does not have to be a power of 2. When
decoding Bloomier filters, the result of the XORs can be checked with an inequality, rather than a
bitmask. This allows Bloomier filters to use k exactly, reducing the false positive rate by a factor of
1− k

2r . In other methods, like that of Han et al. (2016), there is no benefit, as any k not equal to a
power of two strictly wastes space.

Tuning the t hyperparameter The use of Bloomier filters introduces an additional hyperparameter
t, the number of bits per cell in the Bloomier filter. t trades off the Bloomier filter’s size and the false
positive rate which, in turn, effects model accuracy. While t needs to be tuned, we find it far easier to
reason about than other DNN hyperparameters. Because we encode k clusters, t must be greater than

4

Workshop track - ICLR 2018

Layer 0

Frozen Weights

Manipulated Weights

Prune and
retrain

Cluster Encode with
Bloomier filter

Freeze and
retrain

Layer 1

Prune and
retrain

Cluster Encode with
Bloomier filter

Freeze and
retrain

Simplification Lossy Weight Encoding

Figure 3: Weightless operates layer-by-layer, alternating between simplification and lossy encoding.
Once a Bloomier filter is constructed for a weight matrix, that layer is frozen and the subsequent
layers are briefly retrained (only a few epochs are needed).

dlog2 ke, and each additional t bit reduces the number of false positives by a factor of 2. This limits
the number of reasonable values for t: when t is too low the networks experience substantial accuracy
loss, but also do not benefit from high values of t because they have enough implicit resilience to
handle low error rates (see Figure 2). Experimentally we find that t typically falls in the range of 6 to
9 for our models.

Retraining to mitigate the effects of false positives We encode each layer’s weights sequentially.
Because the weights are fixed, the Bloomier filter’s false positives are deterministic. This allows
for the retraining of deeper network layers to compensate for errors. It is important to note that
encoded layers are not retrained. The randomness of the Bloomier filter would sacrifice all benefits of
mitigating the effects of errors. If the encoded layer was retrained, a new encoding would have to be
constructed (because S changes) and the indices of weights that result in false positives would differ
after every iteration of retraining. Instead, we find retraining all subsequent layers to be effective,
typically allowing us to reduce t by one or two bits. The process of retraining around faults is
relatively cheap, requiring a handful of epochs to converge. The entire optimization pipeline is shown
in Figure 3.

Compressing Bloomier filters When sending weight matrices over a network or saving them to
disk, it is not necessary to retain the ability to access weight values as they are being sent, so it is
advantageous to add another layer of compression for transmission. We use arithmetic coding, an
entropy-optimal stream code which exploits the distribution of values in the table (MacKay, 2005).
Because the nonzero entries in a Bloomier filter are, by design, uniformly distributed values in [1, 2t),
improvements from this stage largely come from the prevalence of zero entries.

4 EXPERIMENTS

We evaluate Weightless on three deep neural networks commonly used to study compression: LeNet-
300-100, LeNet5 (LeCun et al., 1998), and VGG-16 (Simonyan & Zisserman, 2015). The LeNet
networks use MNIST (Lecun & Cortes) and VGG-16 uses ImageNet (Russakovsky et al., 2015). The
networks are trained and tested in Keras (Chollet, 2017). The Bloomier filter was implemented in
house and uses a Mersenne Twister pseudorandom number generator for uniform hash functions. To
reduce the cost of constructing the filters for VGG-16, we shard the non-zero weights into ten separate
filters, which are built in parallel to reduce construction time. Sharding does not significantly affect
compression or false positive rate as long as the number of shards is small (Broder & Mitzenmacher,
2004).

We focus on applying Weightless to the largest layers in each model, as shown in Table 1. This
corresponds to the first two fully-connected layers of LeNet-300-100 and VGG-16. For LeNet5, the
second convolutional layer and the first fully-connected layer are the largest. These layers account
for 99.6%, 99.7%, and 86% of the weights in LeNet5, LeNet-300-100, and VGG-16, respectively.

5

Workshop track - ICLR 2018

Table 1: Baseline. Summary of error, baseline parameters (sparsity and number of clusters), and
Weightless’ hyperparameter (t) setting used for each layer. *VGG-16 in MB (size) and top-1 (error).

Model Baseline
Pruning Method Error % Layer Size (KB) Nonzero % Clusters t

LeNet-300-100
Magnitude 1.76 FC-0 919 5.0 9 8

FC-1 117 5.0 9 9

DNS 2.03 FC-0 919 1.8 9 9
FC-1 117 1.8 10 8

LeNet5
Magnitude 0.98 CNN-1 36 7.0 9 8

FC-0 2304 5.5 9 7

DNS 0.96 CNN-1 98 3.1 10 8
FC-0 1564 0.73 10 8

VGG-16* Magnitude 35.9 FC-0 392 2.99 4 6
FC-1 64 4.16 4 8

(The DNS version is slightly different than magnitude pruning, however the trend is the same.) While
other layers could be compressed, they offer diminishing returns.

Compression baseline The results below present both the absolute compression ratio and the im-
provements Weightless achieves relative to Deep Compression (Han et al., 2016), which represents
the current state-of-the-art. The absolute compression ratio is with respect the original standard
32-bit weight size of the models. This baseline is commonly used to report results in publications
and, while larger than many models used in practice, it provides the complete picture for readers to
draw their own conclusions. For comparison to a more aggressive baseline, we reimplemented Deep
Compression in Keras. Deep Compression implements a lossless optimization pipeline where pruned
and clustered weights are encoded using compressed sparse row encoding (CSR) and then compresses
CSR encoding tables with Huffman coding. The compression achieved by Deep Compression we use
as a baseline is notably better than the original publication (e.g., VGG-16 FC-0 went from 91× to
119×).

Error baseline Because Weightless performs lossy compression, it is important to bound the impact
of the loss. We establish this bound as the error of the trained network after the simplification steps
(i.e., post pruning and clustering). In doing so, the test errors from compressing with Weightless and
Deep Compression are the same (shown as Baseline Error % in Table 1). Weightless is sometimes
slightly better due to training fluctuations, but never worse. While Weightless does provide a tradeoff
between compression and model accuracy, we do not consider it here. Instead, we feel the strongest
case for this method is to compare against a lossless technique with iso-accuracy and note compression
ratio will only improve in any use case where degradation in model accuracy is tolerable.

4.1 SPARSE WEIGHT ENCODING

Given a simplified baseline model, we first evaluate the how well Bloomier filters encode sparse
weights. Results for Bloomier encoding are presented in Table 2, and show that the filters work
exceptionally well. In the extreme case, the large fully connected layer in LeNet5 is compressed
by 445×. With encoding alone and demonstrates a 1.99× improvement over CSR, the alternative
encoding strategy used in Deep Compression.

Recall that the size of a Bloomier filter is proportional to mt, and so sparsity and clustering determine
how compact they can be. Our results suggest that sparsity is more important than the number of
clusters for reducing the encoding filter size. This can be seen by comparing each LeNet models’
magnitude pruning results to those of dynamic network surgery—while DNS needs additional clusters,
the increased sparsity results in a substantial size reduction. We suspect this is due to the ability of
DNNs to tolerate a high false positive rate. The t value used here is already on the exponential part
of the false positive curve (see Figure 2). At this point, even if k could be reduced, it is unlikely t
can be since the additional encoding strength saved by reducing k does little to protect against the

6

Workshop track - ICLR 2018

Table 2: Lossy encoding. Weight matrices encoded using Bloomier filters (Weightless) are smaller
than those encoded with CSR (Deep Compression), without loss of accuracy. In addition, Weightless
tends to do relatively better on larger models and when using more advanced pruning algorithms. The
Improvement column shows Bloomier filters are up to 1.99× more efficient than CSR.

Model Pruning Method Layer Compression Factor (Size KB)
CSR Weightless Improvement

LeNet-300-100
Magnitude FC-0 40.1× (22.9) 40.6× (20.1) 1.01×

FC-1 46.9× (2.50) 56.1× (2.09) 1.20×

DNS FC-0 112 × (8.22) 152 × (6.04) 1.36×
FC-1 99.0× (1.18) 174 × (0.67) 1.75×

LeNet5
Magnitude CNN-1 40.7× (0.89) 46.2× (0.78) 1.14×

FC-0 46.6× (46.6) 66.6× (34.6) 1.43×

DNS CNN-1 80.6× (1.21) 97.8× (1.00) 1.21×
FC-0 224× (6.99) 445× (3.52) 1.99×

VGG-16 Magnitude FC-0 81.8× (4790) 142 × (2750) 1.74×
FC-1 71.2× (900) 74.6× (860) 1.05×

doubling of false positives when in this range. For VGG-16 FC-0, there are more false positives in
the reconstructed weight matrix than there are non-zero weights originally; using t = 6 results in
over 6.2 million false positives while after simplification there are only 3.07 million weights. Before
recovered with retraining, Bloomier filter encoding increased the top-1 error by 2.0 percentage points.
This is why we see Bloomier filters work so well here–most applications cannot function with this
level of approximation, nor do they have an analogous retrain mechanism to mitigate the errors’
effects.

Table 3: Network compression. Encoded weights can be compressed further for transmission or
storage. Below are the results of applying arithmetic coding to Bloomier filters and Huffman coding
to CSR. The Improvement column shows Weightless offers up to a 1.51× improvement over Deep
Compression.

Model Pruning Method Layer Compression Factor (Size KB)
Huffman Weightless Improvement

LeNet-300-100
Magnitude FC-0 59.1× (15.6) 60.1× (15.3) 1.02×

FC-1 56.0× (2.09) 64.3× (1.82) 1.15×

DNS FC-0 153× (5.98) 174× (5.27) 1.13×
FC-1 129× (0.91) 195× (0.60) 1.51×

LeNet5
Magnitude CNN-1 42.8× (0.84) 51.6× (0.70) 1.21×

FC-0 59.1× (39.0) 74.2× (31.1) 1.25×

DNS CNN-1 89.5× (1.09) 114.4× (0.86) 1.28×
FC-0 333× (4.70) 496× (3.16) 1.49×

VGG-16 Magnitude FC-0 119× (3280) 157× (2500) 1.31×
FC-1 88.4× (720) 85.8× (740) 0.97×

4.2 COMPRESSING WEIGHT ENCODINGS

For sending a model over a network, an additional stage of compression can be used to optimize for
size. Han et al. (2016) propose using Huffman coding for their, and we use arithmetic coding, as
described in Section 3.2. The results in Table 3 show that while Deep Compression gets relatively
more benefit from a final compression stage, Weightless remains a substantially better scheme overall.
Prior work by Mitzenmacher (2002) on regular Bloom filters has shown that they can be optimized

7

Workshop track - ICLR 2018

Weightless

Deep Compression

>3x

Figure 4: Weightless exploits sparsity more effectively than Deep Compression. By setting pruning
thresholds to produce specific nonzero ratios, we can quantify sparsity scaling. There is no loss of
accuracy at any point in this plot.

for better post-compression size. We believe a similar method could be used on Bloomier filters, but
we leave this for future work.

4.3 SCALING WITH SPARSITY

Recent work continues to demonstrate better ways to extract sparsity from DNNs (Guo et al., 2016;
Ullrich et al., 2017; Narang et al., 2017), so it is useful to quantify how different encoding techniques
scale with increasing sparsity. As a proxy for improved pruning techniques, we set the threshold for
magnitude pruning to produce varying ratios of nonzero values for LeNet5 FC-0. We then perform
retraining and clustering as usual and compare encoding with Weightless and Deep Compression (all
without loss of accuracy). Figure 4 shows that as sparsity increases, Weightless delivers far better
compression ratios. Because the false positive rate of Bloomier filters is controlled independent of
the number of nonzero entries and addresses are hashed not stored, Weightless tends to scale very
well with sparsity. On the other hand, as the total number of entries in CSR decreases, the magnitude
of every index grows slightly, offsetting some of the benefits.

5 CONCLUSION

This paper demonstrates a novel lossy encoding scheme, called Weightless, for compressing sparse
weights in deep neural networks. The lossy property of Weightless stems from its use of the Bloomier
filter, a probabilistic data structure for approximately encoding functions. By first simplifying a
model with weight pruning and clustering, we transform its weights to best align with the properties
of the Bloomier filter to maximize compression. Combined, Weightless achieves compression of up
to 496×, improving the previous state-of-the-art by 1.51×.

We also see avenues for continuing this line of research. First, as better mechanisms for pruning
model weights are discovered, end-to-end compression with Weightless will improve commensurately.
Second, the theory community has already developed more advanced—albeit more complicated—
construction algorithms for Bloomier filters, which promise asymptotically better space utilization
compared to the method used in this paper. Finally, by demonstrating the opportunity for using lossy
encoding schemes for model compression, we hope we have opened the door for more research on
encoding algorithms and novel uses of probabilistic data structures.

6 ACKNOWLEDGEMENTS

This work was partially supported by C-FAR, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and DARPA. This research was, in part,
funded by the U.S. Government under the DARPA CRAFT and PERFECT programs (Contract #:
HR0011-13- C-0022). Intel Corporation also provided support. Brandon Reagen acknowledges
support from the Siebel Scholarship.

8

Workshop track - ICLR 2018

REFERENCES

Apple. The future is here: iphone x. https://www.apple.com/newsroom/2017/09/
the-future-is-here-iphone-x/, 2017.

Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of
the ACM, 13(7):422–426, 1970.

Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters: A survey. In
Internet Mathematics, 2004.

Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings
of KDD, 2006.

Denis Charles and Kumar Chellapilla. Bloomier filters: A second look. In European Symposium on
Algorithms, 2008.

Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. The Bloomier filter: an efficient
data structure for static support lookup tables. In Proceedings of the fifteenth annual ACM-SIAM
symposium on Discrete algorithms, 2004.

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Q Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. In Proceedings of the 32nd International Conference on
Machine Learning, 2015.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Towards the limit of network quantization. In
5th International Conference on Learning Representations, 2017.

François Chollet. Keras. https://github.com/fchollet/keras, 2017.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando de Freitas. Predicting
parameters in deep learning. In Advances in Neural Information Processing Systems 26, 2013.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir D. Bourdev. Compressing deep convolutional
networks using vector quantization. arXiv, 1412.6115, 2014. URL http://arxiv.org/abs/
1412.6115.

GSMA. Half of the world’s population connected to the mobile internet by 2020, according to
new gsma figures. https://www.gsma.com/newsroom/press-release/, Novemeber
2014.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient DNNs. In
Advances in Neural Information Processing Systems 29, 2016.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In Proceedings of the 32nd International Conference on Machine
Learning, 2015.

Song Han, Huizi Mao, and Bill Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. In 4th International Conference on Learning
Representations, 2016.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in Neural Information Processing Systems 6, 1993.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv:1503.0253, 2015.

Yann Lecun and Corinna Cortes. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems 2, 1989.

9

https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
https://github.com/fchollet/keras
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
https://www.gsma.com/newsroom/press-release/

Workshop track - ICLR 2018

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 1998.

David J.C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University
Press, fourth printing edition, 2005.

Michael Mitzenmacher. Compressed bloom filters. Transactions on Networks, 10(5), 2002.

Sharan Narang, Greg Diamos, Shubho Sengupta, and Erich Elsen†. Exploring sparsity in recurrent
neural networks. In 5th International Conference on Learning Representations, 2017.

Qualcomm. Snapdragon neural processing engine now available on qualcomm devel-
oper network. https://www.qualcomm.com/news/releases/2017/07/25/
snapdragon-neural-processing-engine-now-available-qualcomm-developer,
2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In 3rd International Conference on Learning Representations, 2015.

Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. Structured transforms for small-footprint deep
learning. In Advances in Neural Information Processing Systems 29, 2015.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compression.
In 5th International Conference on Learning Representations, 2017.

Shengjie Wang, Haoran Cai, Jeff Bilmes, and William Noble. Training compressed fully-connected
networks with a density-diversity penalty. In 5th International Conference on Learning Represen-
tations, 2017.

10

https://www.qualcomm.com/news/releases/2017/07/25/snapdragon-neural-processing-engine-now-available-qualcomm-developer
https://www.qualcomm.com/news/releases/2017/07/25/snapdragon-neural-processing-engine-now-available-qualcomm-developer

	Introduction
	Related Work
	Weightless
	The Bloomier filter
	Approximate weight encoding with Bloomier filters

	Experiments
	Sparse Weight Encoding
	Compressing Weight Encodings
	Scaling with Sparsity

	Conclusion
	Acknowledgements

