Published as a conference paper at ICLR 2017

ZONEOUT: REGULARIZING RNNS BY RANDOMLY
PRESERVING HIDDEN ACTIVATIONS

David Krueger!-*, Tegan Maharaj>*, Janos Kramar?>

Mohammad Pezeshki' Nicolas Ballas', Nan Rosemary Ke?, Anirudh Goyal'
Yoshua Bengio!’, Aaron Courville'*, Christopher Pal?

L MILA, Université de Montréal, firstname.lastname@umontreal .ca.
2 Ecole Polytechnique de Montréal, firstname.lastname@polymtl.ca.
* Equal contributions. TCIFAR Senior Fellow. *CIFAR Fellow.

ABSTRACT

We propose zoneout, a novel method for regularizing RNNs. At each timestep,
zoneout stochastically forces some hidden units to maintain their previous values.
Like dropout, zoneout uses random noise to train a pseudo-ensemble, improving
generalization. But by preserving instead of dropping hidden units, gradient
information and state information are more readily propagated through time, as
in feedforward stochastic depth networks. We perform an empirical investigation
of various RNN regularizers, and find that zoneout gives significant performance
improvements across tasks. We achieve competitive results with relatively simple
models in character- and word-level language modelling on the Penn Treebank
and Text8 datasets, and combining with recurrent batch normalization (Cooijmans
et al.| 2016)) yields state-of-the-art results on permuted sequential MNIST.

1 INTRODUCTION

Regularizing neural nets can significantly improve performance, as indicated by the widespread use
of early stopping, and success of regularization methods such as dropout and its recurrent variants
(Hinton et al.| [2012; |Srivastava et al., 2014} Zaremba et al., 2014} Gal, 2015). In this paper, we
address the issue of regularization in recurrent neural networks (RNNs) with a novel method called
zoneout.

RNNSs sequentially construct fixed-length representations of arbitrary-length sequences by folding
new observations into their hidden state using an input-dependent transition operator. The repeated
application of the same transition operator at the different time steps of the sequence, however, can
make the dynamics of an RNN sensitive to minor perturbations in the hidden state; the transition
dynamics can magnify components of these perturbations exponentially. Zoneout aims to improve
RNNs’ robustness to perturbations in the hidden state in order to regularize transition dynamics.

Like dropout, zoneout injects noise during training. But instead of setting some units’ activations to
0 as in dropout, zoneout randomly replaces some units’ activations with their activations from the
previous timestep. As in dropout, we use the expectation of the random noise at test time. This results
in a simple regularization approach which can be applied through time for any RNN architecture, and
can be conceptually extended to any model whose state varies over time.

Compared with dropout, zoneout is appealing because it preserves information flow forwards and
backwards through the network. This helps combat the vanishing gradient problem (Hochreiter, |1991;
Bengio et al., [1994), as we observe experimentally.

We also empirically evaluate zoneout on classification using the permuted sequential MNIST
dataset, and on language modelling using the Penn Treebank and Text8 datasets, demonstrat-
ing competitive or state of the art performance across tasks. In particular, we show that zo-
neout performs competitively with other proposed regularization methods for RNNs, includ-
ing recently-proposed dropout variants. Code for replicating all experiments can be found at:
http://github.com/teganmaharaj/zoneout

Published as a conference paper at ICLR 2017

2 RELATED WORK

2.1 RELATIONSHIP TO DROPOUT

Zoneout can be seen as a selective application of dropout to some of the nodes in a modified
computational graph, as shown in Figure[I} In zoneout, instead of dropping out (being set to 0),
units zone out and are set to their previous value (h; = h;_1). Zoneout, like dropout, can be viewed
as a way to train a pseudo-ensemble (Bachman et al., [2014), injecting noise using a stochastic
“identity-mask” rather than a zero-mask. We conjecture that identity-masking is more appropriate for
RNNG, since it makes it easier for the network to preserve information from previous timesteps going
forward, and facilitates, rather than hinders, the flow of gradient information going backward, as we
demonstrate experimentally.

Figure 1: Zoneout as a special case of dropout; hy is the unit A’s hidden activation for the next time

step (if not zoned out). Zoneout can be seen as applying dropout on the hidden state delta, hy — hy_1.
When this update is dropped out (represented by the dashed line), h; becomes h;_.

2.2 DROPOUT IN RNNs

Initially successful applications of dropout in RNNs (Pham et al. 2013 |Zaremba et al., 2014)) only
applied dropout to feed-forward connections (“up the stack™), and not recurrent connections (“forward
through time”), but several recent works (Semeniuta et al., |2016; Moon et al., [2015; |Gall, [2015)
propose methods that are not limited in this way. Bayer et al.| (2013) successfully apply fast dropout
(Wang & Manning} [2013)), a deterministic approximation of dropout, to RNNss.

Semeniuta et al.| (2016)) apply recurrent dropout to the updates to LSTM memory cells (or GRU
states), i.e. they drop out the input/update gate in LSTM/GRU. Like zoneout, their approach prevents
the loss of long-term memories built up in the states/cells of GRUs/LSTMS, but zoneout does this
by preserving units’ activations exactly. This difference is most salient when zoning out the hidden
states (not the memory cells) of an LSTM, for which there is no analogue in recurrent dropout.
Whereas saturated output gates or output nonlinearities would cause recurrent dropout to suffer from
vanishing gradients (Bengio et al.,[1994), zoned-out units still propagate gradients effectively in this
situation. Furthermore, while the recurrent dropout method is specific to LSTMs and GRUs, zoneout
generalizes to any model that sequentially builds distributed representations of its input, including
vanilla RNNs.

Also motivated by preventing memory loss, Moon et al.[(2015) propose rnnDrop. This technique
amounts to using the same dropout mask at every timestep, which the authors show results in improved
performance on speech recognition in their experiments. Semeniuta et al.|(2016) show, however, that
past states’ influence vanishes exponentially as a function of dropout probability when taking the
expectation at test time in rnnDrop; this is problematic for tasks involving longer-term dependencies.

Gall| (2015) propose another technique which uses the same mask at each timestep. Motivated by
variational inference, they drop out the rows of weight matrices in the input and output embeddings
and LSTM gates, instead of dropping units’ activations. The proposed variational RNN technique
achieves single-model state-of-the-art test perplexity of 73.4 on word-level language modelling of
Penn Treebank.

2.3 RELATIONSHIP TO STOCHASTIC DEPTH

Zoneout can also be viewed as a per-unit version of stochastic depth (Huang et al.,[2016), which
randomly drops entire layers of feed-forward residual networks (ResNets (He et al., 2015)). This is

Published as a conference paper at ICLR 2017

equivalent to zoning out all of the units of a layer at the same time. In a typical RNN, there is a new
input at each timestep, causing issues for a naive implementation of stochastic depth. Zoning out an
entire layer in an RNN means the input at the corresponding timestep is completely ignored, whereas
zoning out individual units allows the RNN to take each element of its input sequence into account.
We also found that using residual connections in recurrent nets led to instability, presumably due
to the parameter sharing in RNNs. Concurrent with our work, Singh et al.| (2016) propose zoneout
for ResNets, calling it SkipForward. In their experiments, zoneout is outperformed by stochastic
depth, dropout, and their proposed Swapout technique, which randomly drops either or both of the
identity or residual connections. Unlike Singh et al.[(2016), we apply zoneout to RNNs, and find it
outperforms stochastic depth and recurrent dropout.

2.4 SELECTIVELY UPDATING HIDDEN UNITS

Like zoneout, clockwork RNNs (Koutnik et al.| [2014)) and hierarchical RNNs (Hihi & Bengiol
1996) update only some units’ activations at every timestep, but their updates are periodic, whereas
zoneout’s are stochastic. Inspired by clockwork RNNs, we experimented with zoneout variants that
target different update rates or schedules for different units, but did not find any performance benefit.
Hierarchical multiscale LSTMs (Chung et al.,|2016) learn update probabilities for different units
using the straight-through estimator (Bengio et al.,|2013}; |Courbariaux et al.,|2015)), and combined
with recently-proposed Layer Normalization (Ba et al.,|2016)), achieve competitive results on a variety
of tasks. As the authors note, their method can be interpreted as an input-dependent form of adaptive
zoneout.

In recent work, |[Ha et al.| (2016) use a hypernetwork to dynamically rescale the row-weights of a
primary LSTM network, achieving state-of-the-art 1.21 BPC on character-level Penn Treebank when
combined with layer normalization (Ba et al.,[2016) in a two-layer network. This scaling can be
viewed as an adaptive, differentiable version of the variational LSTM (Gal} 2015), and could similarly
be used to create an adaptive, differentiable version of zoneout. Very recent work conditions zoneout
probabilities on suprisal (a measure of the discrepancy between the predicted and actual state), and
sets a new state of the art on enwik8 (Rocki et al.| 2016).

3 ZONEOUT AND PRELIMINARIES

We now explain zoneout in full detail, and compare with other forms of dropout in RNNs. We start
by reviewing recurrent neural networks (RNNs).

3.1 RECURRENT NEURAL NETWORKS

Recurrent neural networks process data z1, 9, . . .,z sequentially, constructing a corresponding
sequence of representations, h1, ho, ..., hp. Each hidden state is trained (implicitly) to remember
and emphasize all task-relevant aspects of the preceding inputs, and to incorporate new inputs via
a transition operator, 7, which converts the present hidden state and input into a new hidden state:
ht = T (h¢—1,xt). Zoneout modifies these dynamics by mixing the original transition operator 7
with the identity operator (as opposed to the null operator used in dropout), according to a vector of
Bernoulli masks, d;:

Zoneout: T=doT+(1-d)ol Dropout: T=doT+(1—-d)®0

3.2 LONG SHORT-TERM MEMORY

In long short-term memory RNNs (LSTMs) (Hochreiter & Schmidhuber, |1997), the hidden state is
divided into memory cell ¢;, intended for internal long-term storage, and hidden state h;, used as a
transient representation of state at timestep ¢. In the most widely used formulation of an LSTM (Gers
et al.| [2000), ¢; and h; are computed via a set of four “gates”, including the forget gate, f;, which
directly connects c; to the memories of the previous timestep c;—1, via an element-wise multiplication.
Large values of the forget gate cause the cell to remember most (not all) of its previous value. The
other gates control the flow of information in (¢, g;) and out (o;) of the cell. Each gate has a weight
matrix and bias vector; for example the forget gate has Wz, W, ¢, and by. For brevity, we will write
these as W, Wp,, b.

Published as a conference paper at ICLR 2017

An LSTM is defined as follows:
ity fr,00 = o(Waxy + Wyhi—1 +b)
g = tanh(Wygzy + Wighi—1 + by)
a=fiOc1+iOg
hy = o4 © tanh(cy)

A naive application of dropout in LSTMs would zero-mask either or both of the memory cells and
hidden states, without changing the computation of the gates (i, f, 0, g). Dropping memory cells, for
example, changes the computation of ¢; as follows:

a=dO(ft ©®c—1+1i O gr)

Alternatives abound, however; masks can be applied to any subset of the gates, cells, and states.
Semeniuta et al.|(2016)), for instance, zero-mask the input gate:
ce=(fi ©cio1+di ©ig © gr)

When the input gate is masked like this, there is no additive contribution from the input or hidden
state, and the value of the memory cell simply decays according to the forget gate.

() (b)

Figure 2: (a) Zoneout, vs (b) the recurrent dropout strategy of (Semeniuta et al., 2016)) in an LSTM.
Dashed lines are zero-masked; in zoneout, the corresponding dotted lines are masked with the
corresponding opposite zero-mask. Rectangular nodes are embedding layers.

In zoneout, the values of the hidden state and memory cell randomly either maintain their previous
value or are updated as usual. This introduces stochastic identity connections between subsequent
time steps:

c=di Ocio1+(1—df) O (fi © ctm1 +1it © g)
htZd?th—l—F(l—d?)@(Ot®tanh(ft®ct—1 +it®gt))

We usually use different zoneout masks for cells and hiddens. We also experiment with a variant of
recurrent dropout that reuses the input dropout mask to zoneout the corresponding output gates:

a=(t®Oc-1+di Ot ©g)
hy = ((1 —di) ©® oy +dy © 0;-1) © tanh(cy)

The motivation for this variant is to prevent the network from being forced (by the output gate) to
expose a memory cell which has not been updated, and hence may contain misleading information.

4 EXPERIMENTS AND DISCUSSION

We evaluate zoneout’s performance on the following tasks: (1) Character-level language modelling
on the Penn Treebank corpus (Marcus et al. [1993); (2) Word-level language modelling on the
Penn Treebank corpus (Marcus et al., [1993); (3) Character-level language modelling on the Text8
corpus (Mahoney, 2011)); (4) Classification of hand-written digits on permuted sequential MNIST
(pMNIST) (Le et al,, [2015). We also investigate the gradient flow to past hidden states, using
pMNIST.

Published as a conference paper at ICLR 2017

4.1 PENN TREEBANK LANGUAGE MODELLING DATASET

The Penn Treebank language model corpus contains 1 million words. The model is trained to predict
the next word (evaluated on perplexity) or character (evaluated on BPC: bits per character) in a
sequence.

4.1.1 CHARACTER-LEVEL

For the character-level task, we train networks with one layer of 1000 hidden units. We train LSTMs
with a learning rate of 0.002 on overlapping sequences of 100 in batches of 32, optimize using Adam,
and clip gradients with threshold 1. These settings match those used in |[Cooijmans et al.| (2016).
We also train GRUs and tanh-RNNs with the same parameters as above, except sequences are non-
overlapping and we use learning rates of 0.001, and 0.0003 for GRUs and tanh-RNNs respectively.
Small values (0.1, 0.05) of zoneout significantly improve generalization performance for all three
models. Intriguingly, we find zoneout increases training time for GRU and tanh-RNN, but decreases
training time for LSTMs.

We focus our investigation on LSTM units, where the dynamics of zoning out states, cells, or both
provide interesting insight into zoneout’s behaviour. Figure [3]shows our exploration of zoneout in
LSTMs, for various zoneout probabilities of cells and/or hiddens. Zoneout on cells with probability
0.5 or zoneout on states with probability 0.05 both outperform the best-performing recurrent dropout
(p = 0.25). Combining z, = 0.5 and z;, = 0.05 leads to our best-performing model, which achieves
1.27 BPC, competitive with recent state-of-the-art set by (Ha et al., 2016). We compare zoneout
to recurrent dropout (for p € {0.05,0.2,0.25,0.5,0.7}), weight noise (¢ = 0.075), norm stabilizer
(8 = 50) (Krueger & Memisevic, 2015), and explore stochastic depth (Huang et al., 2016) in a
recurrent setting (analagous to zoning out an entire timestep). We also tried a shared-mask variant of
zoneout as used in pMNIST experiments, where the same mask is used for both cells and hiddens.
Neither stochastic depth or shared-mask zoneout performed as well as separate masks, sampled per
unit. Figure|3|shows the best performance achieved with each regularizer, as well as an unregularized
LSTM baseline. Results are reported in Table[I] and learning curves shown in Figure]

Low zoneout probabilities (0.05-0.25) also improve over baseline in GRUs and tanh-RNNs, reducing
BPC from 1.53 to 1.41 for GRU and 1.67 to 1.52 for tanh-RNN. Similarly, low zoneout probabilities
work best on the hidden states of LSTMs. For memory cells in LSTMs, however, higher probabilities
(around 0.5) work well, perhaps because large forget-gate values approximate the effect of cells
zoning out. We conjecture that best performance is achieved with zoneout LSTMs because of the
stability of having both state and cell. The probability that both will be zoned out is very low, but
having one or the other zoned out carries information from the previous timestep forward, while
having the other react 'normally’ to new information.

4.1.2 WORD-LEVEL

For the word-level task, we replicate settings from Zaremba et al.|(2014)’s best single-model perfor-
mance. This network has 2 layers of 1500 units, with weights initialized uniformly [-0.04, +0.04].
The model is trained for 14 epochs with learning rate 1, after which the learning rate is reduced by a
factor of 1.15 after each epoch. Gradient norms are clipped at 10.

With no dropout on the non-recurrent connections (i.e. zoneout as the only regularization), we do not
achieve competitive results. We did not perform any search over models, and conjecture that the large
model size requires regularization of the feed-forward connections. Adding zoneout (z, = 0.25 and
zp, = 0.025) on the recurrent connections to the model optimized for dropout on the non-recurrent
connections however, we are able to improve test perplexity from 78.4 to 77.4. We report the best
performance achieved with a given technique in Table|T]

! These metrics are deterministic functions of negative log-likelihood (NLL). Specifically, perplexity is
exponentiated NLL, and BPC (entropy) is NLL divided by the natural logarithm of 2.

Published as a conference paper at ICLR 2017

22 — Zh=0.5] ~— Unregularized LSTM
— Zc=05 2.2y — Zoneout 1
Zh = 0.05 @—@ Stochastic depth
o—e V-V Recurrent dropout
v =0. 1 .
20 Zc =0.05 2.0 A—4a Norm stabilizer
s &4 Zc=0.5,Zh=05 ") << Weight noise
< <—< Zc =0.05,Zh = 0.05 T
Kl S
18 Zc = 0.5,Zh = 0.05 K]
e} 2
5 2
1.6
14 E-E-E R
1 é 1 fe 21 26 T 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86
Epoch Epoch

Figure 3: Validation BPC (bits per character) on Character-level Penn Treebank, for different
probabilities of zoneout on cells z. and hidden states z;, (left), and comparison of an unregularized
LSTM, zoneout z. = 0.5, z;, = 0.05, stochastic depth zoneout z = 0.05, recurrent dropout p = 0.25,
norm stabilizer 5 = 50, and weight noise ¢ = 0.075 (right).

T T T T T 3.0 T T T T T T T
“““ Unregularized LSTM (training) «+Unregularized LSTM (training)
3.0 — Unregularized LSTM (validation) |] — Unregularized LSTM (validation)
Recurrent dropout (training) 2.5 Recurrent dropout (training) §
g, Recurrent dropout (validation) g | Recurrent dropout (validation)
g7 Zoneout (tral_nmg) j : Zoneout (training)
S Zoneout (validation) § 20 Zoneout (validation) 1
2 20) — |\
) g |\
B] e o 1.51 e ‘ *]
1.0f e N A EC ACtHe O N A
L L L L L L 107 L L L L L L L]
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40
Epochs Epochs

Figure 4: Training and validation bits-per-character (BPC) comparing LSTM regularization methods
on character-level Penn Treebank (left) and Text8. (right)

4.2 TEXTS

Enwik8 is a corpus made from the first 10° bytes of Wikipedia dumped on Mar. 3, 2006. TextS8 is a
"clean text" version of this corpus; with html tags removed, numbers spelled out, symbols converted
to spaces, all lower-cased. Both datasets were created and are hosted by [Mahoney| (201 1)).

We use a single-layer network of 2000 units, initialized orthogonally, with batch size 128, learning
rate 0.001, and sequence length 180. We optimize with Adam (Kingma & Bal, [2014), clip gradients to
a maximum norm of 1 (Pascanu et al.,[2012)), and use early stopping, again matching the settings of
Cooijmans et al] (2016). Results are reported in Table [T} and Figure] shows training and validation
learning curves for zoneout (z, = 0.5,z = 0.05) compared to an unregularized LSTM and to
recurrent dropout.

4.3 PERMUTED SEQUENTIAL MNIST

In sequential MNIST, pixels of an image representing a number [0-9] are presented one at a time,
left to right, top to bottom. The task is to classify the number shown in the image. In pMNIST , the
pixels are presented in a (fixed) random order.

We compare recurrent dropout and zoneout to an unregularized LSTM baseline. All models have a
single layer of 100 units, and are trained for 150 epochs using RMSProp (Tieleman & Hinton| 2012)
with a decay rate of 0.5 for the moving average of gradient norms. The learning rate is set to 0.001
and the gradients are clipped to a maximum norm of 1 (Pascanu et al.,|[2012).

Published as a conference paper at ICLR 2017

As shown in Figure [5|and Table 2] zoneout gives a significant performance boost compared to the
LSTM baseline and outperforms recurrent dropout (Semeniuta et al., 2016)), although recurrent batch
normalization (Cooijmans et al.,|2016) outperforms all three. However, by adding zoneout to the
recurrent batch normalized LSTM, we achieve state of the art performance. For this setting, the
zoneout mask is shared between cells and states, and the recurrent dropout probability and zoneout
probabilities are both set to 0.15.

Table 1: Validation and test results of different models on the three language modelling tasks. Results
are reported for the best-performing settings. Performance on Char-PTB and Text8 is measured in bits-
per-character (BPC); Word-PTB is measured in perplexity. For Char-PTB and Text8 all models are
1-layer unless otherwise noted; for Word-PTB all models are 2-layer. Results above the line are from
our own implementation and experiments. Models below the line are: NR-dropout (non-recurrent
dropout), V-Dropout (variational dropout), RBN (recurrent batchnorm), H-LSTM+LN (HyperLSTM
+ LayerNorm), 3-HM-LSTM+LN (3-layer Hierarchical Multiscale LSTM + LayerNorm).

Char-PTB Word-PTB Text8
Model Valid Test Valid Test Valid Test
Unregularized LSTM 1466 1.356 120.7 1145 1396 1.408
Weight noise 1.507 1.344 - - 1.356 1.367
Norm stabilizer 1.459 1.352 - - 1.382 1.398
Stochastic depth 1432 1.343 - - 1.337 1.343
Recurrent dropout 1.396 1.286 91.6 87.0 1.386 1.401
Zoneout 1.362 1.252 81.4 774 1.331 1.336
NR-dropout (Zaremba et al.,[2014) - - 82.2 78.4 - -
V-dropout (Gal, 2015) — — — 73.4 — —
RBN (Cooijmans et al.,|2016) - 1.32 - - - 1.36
H-LSTM + LN (Ha et al., 2016) 1.281 1.250 - - - -
3-HM-LSTM + LN (Chung et al.;[2016) - 1.24 - - - 1.29

Table 2: Error rates on the pMNIST digit classification task. Zoneout outperforms recurrent dropout,
and sets state of the art when combined with recurrent batch normalization.

Model Valid Test
Unregularized LSTM 0.092 0.102
Recurrent dropout p = 0.5 0.083 0.075
Zoneout z, = z, = 0.15 0.063 0.069

Recurrent batchnorm - 0.046
Recurrent batchnorm & Zoneout z. = z;, = 0.15 0.045 0.041

Vanilla LSTM (Train)
—Vanilla LSTM (Validation)

0.8l Zoneout z. = 0.15, z, = 0.15 (Train)
Zoneout z. = 0.15, z, = 0.15 (Validation)
Recurrent dropout z = 0.15 (Train)
Recurrent dropout z = 0.15 (Validation)

0.6f

Error Rate

)
oafl

0.2 \'L

0.0 H H H H
0 20 40 60 80 100 120 140 160

Epochs

Figure 5: Training and validation error rates for an unregularized LSTM, recurrent dropout, and
zoneout on the task of permuted sequential MNIST digit classification.

Published as a conference paper at ICLR 2017

4.4 GRADIENT FLOW

We investigate the hypothesis that identity connections introduced by zoneout facilitate gradient
flow to earlier timesteps. Vanishing gradients are a perennial issue in RNNs. As effective as
many techniques are for mitigating vanishing gradients (notably the LSTM architecture Hochreiter
& Schmidhuber| (1997)), we can always imagine a longer sequence to train on, or a longer-term
dependence we want to capture.

We compare gradient flow in an unregularized LSTM to zoning out (stochastic identity-mapping)
and dropping out (stochastic zero-mapping) the recurrent connections after one epoch of training on
pMNIST. We compute the average gradient norms || gTL, || of loss L with respect to cell activations ¢,
at each timestep ¢, and for each method, normalize the average gradient norms by the sum of average
gradient norms for all timesteps.

Figure[6|shows that zoneout propagates gradient information to early timesteps much more effectively
than dropout on the recurrent connections, and even more effectively than an unregularized LSTM.
The same effect was observed for hidden states h;.

0.014 || == Dropout
=—— Zoneout
0.012}| == Unregularized LSTM

0.010

o o
o o
s 38
S &

average gradient norm

0.004

0.002

0.000,

0 100 200 300 400 500 600 700
timestep

Figure 6: Normalized }_ || g—é || of loss L with respect to cell activations c¢; at each timestep ¢ for
zoneout (z. = 0.5), dropout (2. = 0.5), and an unregularized LSTM on one epoch of pMNIST

5 CONCLUSION

We have introduced zoneout, a novel and simple regularizer for RNNs, which stochastically preserves
hidden units’ activations. Zoneout improves performance across tasks, outperforming many alterna-
tive regularizers to achieve results competitive with state of the art on the Penn Treebank and Text8
datasets, and state of the art results on pMNIST. While searching over zoneout probabilites allows
us to tune zoneout to each task, low zoneout probabilities (0.05 - 0.2) on states reliably improve
performance of existing models.

We perform no hyperparameter search to achieve these results, simply using settings from the previous
state of the art. Results on pMNIST and word-level Penn Treebank suggest that Zoneout works
well in combination with other regularizers, such as recurrent batch normalization, and dropout
on feedforward/embedding layers. We conjecture that the benefits of zoneout arise from two main
factors: (1) Introducing stochasticity makes the network more robust to changes in the hidden state;
(2) The identity connections improve the flow of information forward and backward through the
network.

ACKNOWLEDGMENTS

We are grateful to Hugo Larochelle, Jan Chorowski, and students at MILA, especially Caglar
Giilgehre, Marcin Moczulski, Chiheb Trabelsi, and Christopher Beckham, for helpful feedback
and discussions. We thank the developers of Theano (Theano Development Team) 2016), Fuel,
and Blocks (van Merriénboer et al., 2015). We acknowledge the computing resources provided by
ComputeCanada and CalculQuebec. We also thank IBM and Samsung for their support. We would
also like to acknowledge the work of Pranav Shyam on learning RNN hierarchies. This research was
developed with funding from the Defense Advanced Research Projects Agency (DARPA) and the Air

Published as a conference paper at ICLR 2017

Force Research Laboratory (AFRL). The views, opinions and/or findings expressed are those of the
authors and should not be interpreted as representing the official views or policies of the Department
of Defense or the U.S. Government.

REFERENCES

Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR, abs/1607.06450,
2016. URL http://arxiv.org/abs/1607.06450.

Philip Bachman, Ouais Alsharif, and Doina Precup. Learning with pseudo-ensembles. In Advances
in Neural Information Processing Systems, pp. 3365-3373, 2014.

J. Bayer, C. Osendorfer, D. Korhammer, N. Chen, S. Urban, and P. van der Smagt. On Fast Dropout
and its Applicability to Recurrent Networks. ArXiv e-prints, November 2013.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157-166, 1994.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013. URL
http://arxiv.org/abs/1308.3432.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural networks.
CoRR, abs/1609.01704, 2016. URL http://arxiv.org/abs/1609.01704.

Tim Cooijmans, Nicolas Ballas, César Laurent, Caglar Gulcehre, and Aaron Courville. Recurrent
batch normalization. arXiv preprint arXiv:1603.09025, 2016.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In NIPS, pp. 3123-3131, 2015.

Yarin Gal. A Theoretically Grounded Application of Dropout in Recurrent Neural Networks. ArXiv
e-prints, December 2015.

Felix A. Gers, Jiirgen Schmidhuber, and Fred A. Cummins. Learning to forget: Continual prediction
with LSTM. Neural Computation, 12(10):2451-2471, 2000.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. CoRR, abs/1609.09106, 2016. URL
http://arxiv.org/abs/1609.09106.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

Salah El Hihi and Yoshua Bengio. Hierarchical recurrent neural networks for long-term dependencies.
In Advances in Neural Information Processing Systems. 1996.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Master’s thesis, Institut fur
Informatik, Technische Universitat, Munchen, 1991.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep networks with
stochastic depth. arXiv preprint arXiv:1603.09382, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork rnn. arXiv
preprint arXiv:1402.3511, 2014.

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1609.01704
http://arxiv.org/abs/1609.09106

Published as a conference paper at ICLR 2017

David Krueger and Roland Memisevic. Regularizing rnns by stabilizing activations. arXiv preprint
arXiv:1511.08400, 2015.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent networks of
rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Matt Mahoney. About the test data, 2011. URL http://mattmahoney.net/dc/textdata.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313-330, 1993.

Taesup Moon, Heeyoul Choi, Hoshik Lee, and Inchul Song. Rnndrop: A novel dropout for rnns in
asr. Automatic Speech Recognition and Understanding (ASRU), 2015.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding gradient problem.
CoRR, abs/1211.5063, 2012. URL http://arxiv.org/abs/1211.5063.

V. Pham, T. Bluche, C. Kermorvant, and J. Louradour. Dropout improves Recurrent Neural Networks
for Handwriting Recognition. ArXiv e-prints, November 2013.

Kamil Rocki, Tomasz Kornuta, and Tegan Maharaj. Surprisal-driven zoneout. CoRR, abs/1610.07675,
2016. URL http://arxiv.org/abs/1610.07675.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. Recurrent dropout without memory loss.
arXiv preprint arXiv:1603.05118, 2016.

S. Singh, D. Hoiem, and D. Forsyth. Swapout: Learning an ensemble of deep architectures. ArXiv
e-prints, May 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929-1958, 2014.

Theano Development Team. Theano: A Python framework for fast computation of mathematical
expressions. arXiv e-prints, abs/1605.02688, May 2016.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4:2, 2012.

Bart van Merriénboer, Dzmitry Bahdanau, Vincent Dumoulin, Dmitriy Serdyuk, David Warde-Farley,
Jan Chorowski, and Yoshua Bengio. Blocks and fuel: Frameworks for deep learning. CoRR,
abs/1506.00619, 2015.

Sida Wang and Christopher Manning. Fast dropout training. In Proceedings of the 30th International
Conference on Machine Learning, pp. 118-126, 2013.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329, 2014.

10

http://mattmahoney.net/dc/textdata
http://arxiv.org/abs/1211.5063
http://arxiv.org/abs/1610.07675

Published as a conference paper at ICLR 2017

6 APPENDIX

6.1 STATIC IDENTITY CONNECTIONS EXPERIMENT

This experiment was suggested by AnonReviewer2 during the ICLR review process with the goal
of disentangling the effects zoneout has (1) through noise injection in the training process and (2)
through identity connections. Based on these results, we observe that noise injection is essential for
obtaining the regularization benefits of zoneout.

In this experiment, one zoneout mask is sampled at the beginning of training, and used for all
examples. This means the identity connections introduced are static across training examples (but
still different for each timestep). Using static identity connections resulted in slightly lower training
(but not validation) error than zoneout, but worse performance than an unregularized LSTM on both
train and validation sets, as shown in Figure

2.24 — Vanilla LSTM (validation)
Vanilla LSTM (training)
2.0F Zoneout (validation)
Zoneout (training) H
1.8l — Static identity connections (validation) ||
Static identity connections (training)

BPC

IISXW
N

1.4+
1.2F
1.0r

0.8

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101
Epoch

Figure 7: Training and validation curves for an LSTM with static identity connections compared

to zoneout (both Z. = 0.5 and Z;, = 0.05) and compared to a vanilla LSTM, showing that static
identity connections fail to capture the benefits of zoneout.

11

	Introduction
	Related work
	Relationship to dropout
	Dropout in RNNs
	Relationship to Stochastic Depth
	Selectively updating hidden units

	Zoneout and preliminaries
	Recurrent Neural Networks
	Long short-term memory

	Experiments and Discussion
	Penn Treebank Language Modelling Dataset
	Character-level
	Word-level

	Text8
	Permuted sequential MNIST
	Gradient flow

	Conclusion
	Appendix
	Static identity connections experiment

