
Zero-shot Graph Reasoning via Retrieval Augmented Framework with
LLMs

Anonymous ACL submission

Abstract001

We propose a new, training-free method,002
Graph Reasoning via Retrieval Augmented003
Framework (GRRAF), that harnesses retrieval-004
augmented generation (RAG) alongside the005
code-generation capabilities of large language006
models (LLMs) to address a wide range of007
graph reasoning tasks. In GRRAF, the target008
graph is stored in a graph database, and the009
LLM is prompted to generate executable code010
queries that retrieve the necessary information.011
This approach circumvents the limitations of012
existing methods that require extensive finetun-013
ing or depend on predefined algorithms, and014
it incorporates an error feedback loop with a015
time-out mechanism to ensure both correctness016
and efficiency. Experimental evaluations on017
the GraphInstruct dataset reveal that GRRAF018
achieves 100% accuracy on most graph reason-019
ing tasks, including cycle detection, bipartite020
graph checks, shortest path computation, and021
maximum flow, while maintaining consistent022
token costs regardless of graph sizes. Imperfect023
but still very high performance is observed on024
subgraph matching. Notably, GRRAF scales025
effectively to large graphs with up to 10,000026
nodes.027

1 Introduction028

Graph reasoning plays a pivotal role in modeling029

and understanding complex systems across numer-030

ous domains (Wu et al., 2020). Graphs naturally031

represent entities and their interrelations in areas032

such as social networks, transportation systems,033

biological networks, and communication infras-034

tructures. Graph reasoning tasks like determin-035

ing connectivity, detecting cycles, and finding the036

shortest path are not only central to theoretical com-037

puter science but also have practical implications038

in network optimization, anomaly detection, deci-039

sion support systems, etc (Scarselli et al., 2008).040

However, addressing these tasks requires a deep un-041

derstanding of graph topology combined with pre-042

Figure 1: A schematic representation of the GRRAF
concept. When a user asks a graph reasoning question,
the LLM generates code to query the target graph stored
in a graph database, retrieves the answer, and presents
it as the response. An error feedback loop is integrated
into GRRAF to prompt the LLM to refine the code
whenever execution or time-out errors occur.

cise computational procedures, underscoring the 043

critical challenge of developing efficient graph rea- 044

soning methods in contemporary machine learning 045

research (Zhao et al., 2024). 046

Large language models (LLMs) have demon- 047

strated an impressive capacity for multi-step reason- 048

ing, which enables them to interpret complex graph- 049

related questions expressed in natural language and 050

generate human-readable responses (Guo et al., 051

2023). Several recent studies have leveraged LLMs 052

to tackle graph reasoning problems by converting 053

graph structures into textual representations or la- 054

tent embeddings through graph neural networks 055

(GNNs), thereby exploiting the powerful natural 056

language reasoning capabilities of LLMs (Perozzi 057

et al., 2024; Guo et al., 2023; Zhang, 2023; Wang 058

et al., 2024a; Fatemi et al., 2024; Skianis et al., 059

2024; Lin et al., 2024). However, even when ad- 060

vanced prompting techniques are employed, these 061

1



methods tend to perform poorly on fundamental062

graph reasoning tasks, such as evaluating connec-063

tivity or identifying the shortest path, with average064

accuracies ranging from 20% to 60%. Alternative065

approaches that achieve higher accuracy typically066

either require extensive finetuning—which results067

in poor performance on out-of-domain questions068

(Chen et al., 2024; Zhang, 2023)—or rely on pre-069

defined algorithms as input, thereby limiting their070

ability to address unseen tasks (Hu et al., 2024).071

To address these limitations, we introduce a072

training-free and zero-shot method, the Graph Rea-073

soning via Retrieval Augmented Framework (GR-074

RAF), that leverages retrieval-augmented gener-075

ation (RAG) (Lewis et al., 2020) alongside the076

code-writing capabilities of large language mod-077

els. In GRRAF, the target graph is stored in a078

graph database, and the LLM is prompted to gen-079

erate appropriate queries, written as code, that ex-080

tract the desired answer by retrieving relevant in-081

formation from the database. This strategy har-082

nesses the LLM’s robust reasoning ability and its083

proficiency in generating executable code, thereby084

achieving high accuracy on a range of graph reason-085

ing tasks without requiring additional finetuning086

or predefined algorithms. In addition, we incor-087

porate an error feedback loop combined with a088

time-out mechanism to ensure that the LLM pro-089

duces correct queries in a time-efficient manner.090

Furthermore, since accurate code reliably yields091

the correct answer regardless of the graph’s size,092

GRRAF can easily scale for polynomial problems093

to accommodate larger graphs without a drop in094

accuracy. In GRRAF, we use Neo4j, an interactive095

graph database, and NetworkX, a Python library096

for graphs. GRRAF accepts the target graph as097

either plain text or data already stored in Neo4j,098

specified in the prompt by the graph file name. In099

the former case, the prompt must specify if Neo4j100

or NetworkX is to be used. The LLM then must ei-101

ther create code to insert the graph specified in the102

prompt to Neo4j or to a NetworkX graph object.103

GRRAF offers a fully automated, end-to-end104

framework for handling graph-reasoning problems105

written entirely in text. By leveraging the world106

knowledge encoded in LLMs, it generates cor-107

rect code and returns accurate answers automat-108

ically for a wide range of graph-reasoning tasks109

expressed as natural-language questions. In addi-110

tion, GRRAF establishes a foundation for future111

work on real-world structured relational-inference112

problems—ranging from knowledge-graph com-113

pletion to molecular analysis—that are naturally 114

represented as graph-structured data. An LLM user 115

could potentially accomplish the same by directly 116

prompting the LLM to create Python or Neo4j 117

queries for the task on hand. Our approach of- 118

fers the benefits of graph reading and loading, the 119

execution of the code with the error-feedback loop, 120

and the fallback approach. 121

Experimental results demonstrate that GRRAF 122

achieves 100% accuracy on many graph reasoning 123

tasks, outperforming state-of-the-art benchmarks. 124

Moreover, GRRAF is applicable to large graphs 125

containing up to 10,000 nodes, maintaining 100% 126

accuracy with no increase in token cost. Although 127

GRRAF only achieves 86.5% accuracy on sub- 128

graph matching, it still outperforms other state- 129

of-the-art methods. Our contributions are listed 130

below. 131

• Novel Graph Reasoning Approach: This 132

work introduces a new method that leverages 133

RAG to address graph reasoning tasks, such 134

as connectivity analyses, cycle detection, and 135

shortest path computations. It represents the 136

first application of RAG in the domain of 137

graph reasoning. 138

• Error Feedback Loop Innovation: The pa- 139

per introduces the integration of a time out 140

mechanism within an error feedback loop, 141

along with the dynamic refreshing of a prompt 142

to guide the LLM to produce more efficient 143

code. This mechanism enhances robustness 144

and efficiency of the generated query by pre- 145

venting an infinite loop. 146

• Scalable State-of-the-Art Performance: 147

The proposed method achieves state-of-the-art 148

accuracy and demonstrates exceptional scal- 149

ability, being the first to handle large graphs 150

effectively without significant degradation in 151

accuracy or substantial cost increases. 152

All implementations and datasets are available in 153

https://github.com/Anonymous-Author980/ 154

zero_shot_GRRAF/tree/main. 155

2 Related Works 156

2.1 Graph RAG 157

There exist numerous prior works that employ 158

graph data within RAG frameworks to enhance 159

the capabilities of LLMs, a paradigm often referred 160

2

https://github.com/Anonymous-Author980/zero_shot_GRRAF/tree/main
https://github.com/Anonymous-Author980/zero_shot_GRRAF/tree/main
https://github.com/Anonymous-Author980/zero_shot_GRRAF/tree/main


Figure 2: GRRAF workflow. The retrieval component represents the interaction with the graph database through
code, while the generation component involves prompting an LLM to produce the output.

to as GraphRAG (Peng et al., 2024). These ap-161

proaches retrieve graph elements containing rela-162

tional knowledge relevant to a given query from a163

pre-constructed graph database (Edge et al., 2024).164

Several studies have contributed to the develop-165

ment of open-source knowledge graph datasets for166

GraphRAG (Auer et al., 2007; Suchanek et al.,167

2007; Vrandečić and Krötzsch, 2014; Sap et al.,168

2019; Liu and Singh, 2004; Bollacker et al., 2008).169

Building on these datasets, many methods opt to170

convert graphs to other easily retrievable forms,171

such as text (Li et al., 2023; Huang et al., 2023; Yu172

et al., 2023; Edge et al., 2024; Dehghan et al., 2024)173

or vectors (He et al., 2024; Sarmah et al., 2024),174

to improve the efficiency of query operations on175

graph databases. To further enhance the quality of176

retrieved data, several approaches optimize the re-177

trieval process within GraphRAG by refining the re-178

triever component (Delile et al., 2024; Zhang et al.,179

2022a; Kim et al., 2023; Wold et al., 2023; Jiang180

et al., 2023; Mavromatis and Karypis, 2024), opti-181

mizing the retrieval paradigm (Wang et al., 2024b;182

Sun et al., 2024c; Lin et al., 2019), and editing a183

user query or the retrieved information (Jin et al.,184

2024; LUO et al., 2024; Ma et al., 2025; Sun et al.,185

2024a; Taunk et al., 2023; Yasunaga et al., 2021).186

Furthermore, many methods enhance the answer187

generation process of GraphRAG to ensure that188

the LLM fully utilizes the retrieved graph data to189

generate the correct answer (Dong et al., 2023;190

Mavromatis and Karypis, 2022; Jiang et al., 2024;191

Sun et al., 2024b; Zhang et al., 2022b; Zhu et al.,192

2024; Wen et al., 2024; Shu et al., 2022; Baek193

et al., 2023). However, these methods focus exclu-194

sively on knowledge graphs and cannot be directly195

applied to solve graph reasoning questions. In con- 196

trast, GRRAF is the first method to employ RAG 197

for addressing graph reasoning questions on pure 198

graphs. 199

2.2 Graph Reasoning 200

Recent work has explored the use of LLMs to ad- 201

dress graph reasoning problems. Several meth- 202

ods rely solely on prompt engineering techniques 203

to enhance LLM reasoning capabilities on graphs 204

(Liu and Wu, 2023; Guo et al., 2023; Wang et al., 205

2024a; Zhang et al., 2024; Fatemi et al., 2024; Wu 206

et al., 2024; Tang et al., 2025; Skianis et al., 2024; 207

Lin et al., 2024). Building on them, Perozzi et al. 208

(2024) integrate a trained graph neural network 209

(Scarselli et al., 2008) with an LLM to improve 210

its performance on graph reasoning tasks by en- 211

coding each graph into a token provided as input 212

to the LLM. Meanwhile, Zhang (2023) and Chen 213

et al. (2024) finetune an LLM with instructions 214

tailored to graph reasoning tasks to boost perfor- 215

mance. In another approach, Hu et al. (2024) pro- 216

pose a multi-agent solution for graph reasoning 217

problems by assigning an LLM agent to each node 218

and enabling communication among agents based 219

on a predefined algorithm. In contrast, GRRAF em- 220

ploys RAG to address graph reasoning problems 221

without extensive prompt engineering. This ap- 222

proach is training-free and thus unsupervised and 223

does not depend on any predefined algorithm. Fur- 224

thermore, unlike previous methods, the LLM in 225

GRRAF does not receive the entire graph as input; 226

consequently, the token usage remains independent 227

of graph size, thereby enabling efficient scalability 228

to very large graphs. 229

3



Figure 3: An illustrative example demonstrating the
application of GRRAF to solve a shortest path question
by using NetworkX. Graph G in text is stored as an
NetworkX object by code.

Task Node Size # of
Test
Graphs

Cycle Detection [2, 100] 400
Connectivity [2, 100] 400
Bipartite Graph Check [2, 100] 400
Topological Sort [2, 50] 400
Shortest Path [2, 100] 400
Maximum Triangle Sum [2, 25] 400
Maximum Flow [2, 50] 400
Subgraph Matching [2, 30] 400
Indegree Calculation [2, 50] 400
Outdegree Calculation [2, 50] 400

Table 1: The detailed information of GraphInstruct
dataset and two additional tasks (indegree calculation
and outdegree calculation). The subgraph matching task
is to verify if there exists a subgraph in G that is isomor-
phic to a given graph G′.

3 Method230

In this section, we explain how GRRAF integrates231

RAG to address graph reasoning questions and re-232

trieve accurate answers. The entire workflow of233

GRRAF is demonstrated in Figure 2. A graph rea-234

soning question, denoted as Q, consists of two com-235

ponents: a graph G and a user prompt P . The graph236

G represents the target graph associated with Q and237

is stored either in Neo4j or as a NetworkX graph238

object (code written by an LLM and executed by239

an agent). The prompt P contains a graph-specific240

question regarding G (e.g., “Does node 2 connect241

to node 5?” or “What is the shortest path from node242

5 to node 8?”). To enhance code generation by the243

language model, we initially input P into the LLM, 244

requesting it to refine the prompt, clarify the format, 245

and eliminate redundant information. The resulting 246

refined prompt is denoted as P ′. Then, the LLM 247

is prompted to generate a generic code template 248

C that addresses P ′ without incorporating graph- 249

specific details. For example, if P ′ states “Find the 250

shortest path from node 3 to node 5,” the template 251

C encapsulates a generic shortest path algorithm 252

that does not include the specific node identifiers. 253

Additionally, we extract the schema S (compris- 254

ing of node properties and edge properties) from 255

the graph database using a hard-coded procedure. 256

This schema ensures that the LLM-generated code 257

utilizes correct variable names. 258

Subsequently, we provide P ′, C, and S to the 259

LLM and instruct it to generate the final code C ′ 260

that produces an answer A corresponding to P ′. 261

An error feedback loop is incorporated into this 262

process. If an error arises during the execution of 263

C ′, the error message, along with C ′, is supplied 264

back to the LLM, prompting it to produce a revised 265

version of the code. To promote the generation of 266

time-efficient code, given that multiple algorithms 267

with varying time complexities may be applicable, 268

we integrate a time-out mechanism within the error 269

feedback loop. Specifically, a time limit t is im- 270

posed on the execution of C ′. If the execution time 271

exceeds t, the process is halted, and the LLM is 272

asked to modify C ′ so that it runs faster. If the feed- 273

back loop iterates more than n times, the system 274

reverts to using the original question Q as a prompt 275

to directly obtain the answer A from the LLM. This 276

forced exit is designed to prevent perpetual itera- 277

tions when addressing computationally intractable 278

NP-hard problems (e.g., substructure matching on 279

large graphs), where no modification of C ′ can 280

reduce the execution time below the threshold t. 281

In the final step, the answer A is provided to 282

the LLM to generate a reader-friendly natural lan- 283

guage response A0 that addresses the graph reason- 284

ing question Q. An example of solving a graph 285

reasoning question with GRRAF is demonstrated 286

in Figure 3. 287

4 Computational Assessment 288

4.1 Dataset and Benchmark 289

We conduct experiments on GraphInstruct (Chen 290

et al., 2024), a dataset that comprises of nine graph 291

reasoning tasks with varying complexities. Due to 292

its diversity in graph reasoning tasks and its prior 293

4



Figure 4: Performance of GRRAF and benchmark models across all ten graph reasoning tasks. Missing data are
indicated as “NA” in the plot. The available-case mean refers to the average accuracy of each method calculated
using only the tasks where complete data is available (excluding maximum flow, subgraph matching, indegree
calculation, and outdegree calculation). The all-case mean refers to the average accuracy across all tasks, treating
’NA’ as 0.

use in evaluating state-of-the-art methods (Chen294

et al., 2024; Hu et al., 2024), we select this dataset295

for our evaluation. However, the task of finding296

a Hamilton path lacks publicly available ground297

truth labels and generating such labels through298

code is infeasible due to the NP-hard nature of299

the problem; consequently, we exclude this task300

from our experiments. Accordingly, we assess the301

performance of GRRAF on the following eight302

tasks: cycle detection, connectivity, bipartite graph303

check, topological sort, shortest path, maximum304

triangle sum, maximum flow, and subgraph match-305

ing. Details of these tasks are provided in Table 1.306

Moreover, to achieve a more robust performance307

evaluation, we augment the test dataset with two308

additional simple tasks—indegree calculation and309

outdegree calculation (as shown in Table 1)—to fa-310

cilitate a comprehensive evaluation of GRRAF and311

the state-of-the-art benchmarks. Each task has 400312

question–graph pairs, each with a single correct313

answer. We measure a method’s performance on314

one task by its accuracy—that is, the proportion of315

questions answered correctly out of the total (400).316

GRRAF, i.e., its LLM, generates code which is317

either correct or not. This is the reason why most318

accuracies are going to be 100%. For tasks with319

less than 100% accuracy, GRRAF yields correct320

code but the underlying problems are NP-hard and321

for some test graphs the execution times out. One322

can argue that the output code is correct and thus323

appropriate credit should be given, but on the other324

hand, a more efficient algorithm and code can be325

potentially produced. Sometimes the generated 326

code does not handle edge cases correctly, yet other 327

times the code or algorithms are incorrect (they 328

solve only some test graphs by coincidence). 329

We compare the performance of GRRAF against 330

two state-of-the-art benchmarks: GraphWiz (Chen 331

et al., 2024) and GAR (Hu et al., 2024). Graph- 332

Wiz is trained on 17,158 questions and 72,785 333

answers, complete with reasoning paths, from 334

the training set of GraphInstruct. Since no sin- 335

gle version of GraphWiz consistently outperforms 336

the others across all tasks, we include three ver- 337

sions in our comparisons: GraphWiz (Mistral-7B), 338

GraphWiz-DPO (LLaMA 2-7B), and GraphWiz- 339

DPO (LLaMA 2-13B). GAR is a training-free 340

multi-agent framework that relies on a predefined 341

library of distributed algorithms created by humans. 342

As a result, it is incapable of solving unseen graph 343

reasoning tasks that require algorithms not present 344

in its library. Therefore, some results from GAR 345

are missing in the subsequent comparisons because 346

of its limitation. 347

4.2 Experiments 348

We conduct experiments using GRRAF with a time 349

limit of t = 5 minutes and a maximum error 350

feedback loop iteration of n = 3. The backbone 351

LLM is GPT-4o. These parameter choices are jus- 352

tified by the sensitivity analysis in Appendix A. 353

For the graph querying code, we evaluate two ap- 354

proaches: Cypher, a query language for Neo4j, and 355

NetworkX, a Python library for graphs, which we 356

5



denote as GRRAFC and GRRAFN , respectively.357

We deal with graph plain text, and thus can be con-358

verted into either Neo4j data or NetworkX objects.359

Figure 4 demonstrates that GARRFN outper-360

forms all benchmark methods, achieving 100% ac-361

curacy on most graph reasoning tasks. GARRFC362

exhibits comparable or superior performance rela-363

tive to other benchmarks on the majority of tasks,364

except for topological sort and subgraph match-365

ing. Although GraphWiz outperforms GARRFC366

in topological sort and subgraph matching, its in-367

adequate performance on indegree calculation and368

outdegree calculation suggests that it struggles with369

even simple out-of-domain graph reasoning tasks.370

Furthermore, due to its inherent limitations, GAR371

is inapplicable to out-of-domain tasks such as max-372

imum flow, subgraph matching, indegree calcula-373

tion, and outdegree calculation. Consequently, con-374

sidering both performance and generalization abil-375

ity, GARRFC and GARRFN are better for address-376

ing graph reasoning tasks than the other benchmark377

models. The example code generated by GARRFN378

for each graph reasoning task is presented in Ap-379

pendix B.380

Subgraph matching is NP-complete, and the381

code produced by GARRFN has exponential time382

complexity. For graphs of 20 nodes, executing that383

code can take over a day—exceeding the time limit384

t. Based on Section 3, in such cases GARRDN385

falls back to using the original question Q as a386

prompt to obtain the answer A directly from the387

LLM, which may yield incorrect results. GRRAFC388

likewise falls short of 100% accuracy on cycle de-389

tection and bipartite-graph checking, since Cypher390

queries execute more slowly than NetworkX. For391

the maximum-flow task, GRRAFC produces code392

that overlooks certain edge cases. And for topo-393

logical sorting and subgraph matching, it generates394

code that only succeeds on some graphs by chance.395

Across the ten tasks, solving a single graph rea-396

soning question requires GRRAFN to use an av-397

erage of 767 input tokens and 124 output tokens,398

while GRRAFC uses 796 input tokens and 201 out-399

put tokens. In comparison, GraphWiz (Mistral-7B)400

consumes an average of 1,046 input tokens and401

126 output tokens per question, whereas GraphWiz-402

DPO (LLaMA 2-7B) requires 1,046 input tokens403

and 290 output tokens on average, and GraphWiz-404

DPO (LLaMA 2-13B) uses 1,046 input tokens and405

301 output tokens per question. Notably, GAR406

demands more resources, averaging 8,095 input to-407

kens and 5,987 output tokens for each graph reason-408

Figure 5: Accuracy of each method on the shortest path
task across graphs of differenct sizes (number of nodes).

ing question. Thus, comparing to other benchmark 409

methods, GRRAFN and GRRAFC achieve high 410

accuracy in graph reasoning tasks while utilizing 411

fewer token resources. 412

Since the largest graph in GraphInstruct (Chen 413

et al., 2024) comprises of only 100 nodes, which 414

remains insufficient for real-world graph reason- 415

ing scenarios (Hu et al., 2024), we further evaluate 416

the best-performing method, GRRAFN , on large- 417

scale graphs. Following the approach of Hu et al. 418

(2024), we assess GRRAFN on the shortest path 419

task using larger graphs with 20 test samples for 420

each graph size. Whereas their work scales graphs 421

to 1,000 nodes, we extend this evaluation by scal- 422

ing graphs to 10,000 nodes to thoroughly assess 423

the performance of GRRAFN . According to Fig- 424

ure 5, GRRAFN achieves 100% accuracy across 425

all graph sizes, demonstrating its exceptional scal- 426

ability. GAR attains 100% accuracy on graphs 427

with 100, 200, and 500 nodes, but its accuracy de- 428

creases to 90% on graphs with 1,000 nodes. Due to 429

token limitations, GAR is unable to address ques- 430

tions on graphs with 2,000 nodes or more. In con- 431

trast, all three versions of GraphWiz perform poorly 432

on large graphs, achieving only 5-10% accuracy 433

on graphs with 100 nodes and failing entirely on 434

graphs with 200 nodes. The token limits of their 435

base model prevent them from processing graphs 436

larger than 200 nodes. 437

We also record the variation in token cost re- 438

quired to solve a single graph reasoning question 439

as the graph size increases on the shortest path task. 440

As illustrated in Figure 6, the number of tokens 441

used by GRRAFN remains constant regardless of 442

the graph size. As detailed in Section 3, GRRAF in- 443

teracts with the graph solely via the graph database 444

through code execution; thus, the graph description 445

(nodes, edges, weights) is not directly input to the 446

LLM, and the token cost remains unaffected by 447

increases in graph size. In contrast, the token cost 448

6



Figure 6: Average token cost for solving a graph rea-
soning problem across graphs of varying sizes on the
shortest path task.

Method Execution Error Time-out

GRRAFN 2.2% 5.4%
GRRAFC 4.9% 9.1%

Table 2: Percentage of graph reasoning questions over
10 tasks triggering error feedback loop due to execution
errors or time-outs for each method.

for GraphWiz increases linearly with graph size be-449

cause it must pass the information of each node and450

edge to the LLM. The token cost for GAR is con-451

siderably higher than that for GRRAFN and grows452

nearly exponentially with graph size. This is due453

to GAR’s design, where each node is assigned an454

LLM agent, and each agent communicates with ev-455

ery adjacent agent in each iteration (Hu et al., 2024).456

As the number of nodes increases, so do the number457

of agents, the number of adjacent agents per node458

(i.e., edges), and the number of iterations required459

to obtain an answer, all of which contribute to a460

significant rise in token cost. Therefore, compared461

to other benchmarks, GRRAFN can readily scale462

to very large graphs (up to 10,000 nodes) without463

compromising performance and increasing token464

cost.465

To evaluate the effectiveness of the error feed-466

back loop, we quantify the total percentage of ques-467

tions that activate this loop, as reported in Table 2.468

In general, GRRAFC triggers the error feedback469

loop more frequently than GRRAFN . For both vari-470

ants, the loop is activated due to time-outs more471

often than due to execution errors, underscoring472

the importance of time efficiency in graph reason-473

ing tasks. Overall, the backbone LLM generates474

correct code queries in most instances, and the in-475

tegration of an error feedback loop with a time-out476

mechanism further enhances code accuracy and 477

efficiency. 478

5 Conclusion 479

In this work, we introduced GRRAF, a novel frame- 480

work that integrates RAG with the code-writing 481

prowess of LLMs to address graph reasoning ques- 482

tions. Our approach, which operates without addi- 483

tional training or reliance on predefined algorithms, 484

leverages a graph database to store target graphs 485

and employs an error feedback loop with a time-out 486

mechanism to ensure the generation of correct and 487

efficient code queries. Comprehensive experiments 488

on the GraphInstruct dataset and two extra tasks 489

(indegree and outdegree) demonstrate that GRRAF 490

outperforms existing state-of-the-art benchmarks, 491

achieving 100% accuracy on a majority of graph 492

reasoning tasks while effectively scaling to graphs 493

containing up to 10,000 nodes without incurring 494

extra token costs. These findings underscore the 495

potential of combining retrieval-based techniques 496

with LLM-driven code generation for solving com- 497

plex graph reasoning problems. Future work could 498

explore extending this framework to dynamic graph 499

scenarios and additional reasoning tasks, further 500

enhancing its applicability and robustness. 501

6 Limitations 502

Although GRRAFN attains 100% accuracy on all 503

polynomial-time graph reasoning tasks, it nev- 504

ertheless struggles to solve NP-complete prob- 505

lems—such as subgraph matching—both accu- 506

rately and efficiently. Moreover, the inferior per- 507

formance of GRRAFC relative to GRRAFN indi- 508

cates that our framework currently generates lower- 509

quality Cypher queries than the equivalent Python 510

code. These two issues constitute the primary limi- 511

tations of our method. 512

References 513

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens 514
Lehmann, Richard Cyganiak, and Zachary Ives. 2007. 515
Dbpedia: A nucleus for a web of open data. In 516
International Semantic Web Conference, pages 722– 517
735. 518

Jinheon Baek, Soyeong Jeong, Minki Kang, Jong Park, 519
and Sung Hwang. 2023. Knowledge-augmented lan- 520
guage model verification. In Proceedings of the 2023 521
Conference on Empirical Methods in Natural Lan- 522
guage Processing, pages 1720–1736. 523

7

https://dl.acm.org/doi/10.5555/1785162.1785216
https://doi.org/10.18653/v1/2023.emnlp-main.107
https://doi.org/10.18653/v1/2023.emnlp-main.107
https://doi.org/10.18653/v1/2023.emnlp-main.107


Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim524
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-525
ratively created graph database for structuring human526
knowledge. In Proceedings of the 2008 ACM SIG-527
MOD International Conference on Management of528
Data, pages 1247–1250.529

Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li. 2024.530
Graphwiz: An instruction-following language model531
for graph computational problems. In Proceedings532
of the 30th ACM SIGKDD Conference on Knowledge533
Discovery and Data Mining, pages 353–364.534

Mohammad Dehghan, Mohammad Alomrani, Sunyam535
Bagga, David Alfonso-Hermelo, Khalil Bibi, Ab-536
bas Ghaddar, Yingxue Zhang, Xiaoguang Li, Jianye537
Hao, Qun Liu, Jimmy Lin, Boxing Chen, Prasanna538
Parthasarathi, Mahdi Biparva, and Mehdi Reza-539
gholizadeh. 2024. EWEK-QA : Enhanced web and540
efficient knowledge graph retrieval for citation-based541
question answering systems. In Proceedings of the542
62nd Annual Meeting of the Association for Compu-543
tational Linguistics (Volume 1: Long Papers), pages544
14169–14187.545

Julien Delile, Srayanta Mukherjee, Anton Van Pamel,546
and Leonid Zhukov. 2024. Graph-based retriever547
captures the long tail of biomedical knowledge. In548
ICML’24 Workshop ML for Life and Material Sci-549
ence: From Theory to Industry Applications.550

Junnan Dong, Qinggang Zhang, Xiao Huang, Keyu551
Duan, Qiaoyu Tan, and Zhimeng Jiang. 2023.552
Hierarchy-aware multi-hop question answering over553
knowledge graphs. In Proceedings of the ACM web554
conference 2023, pages 2519–2527.555

Darren Edge, Ha Trinh, Newman Cheng, Joshua556
Bradley, Alex Chao, Apurva Mody, Steven Truitt,557
and Jonathan Larson. 2024. From local to global: A558
graph RAG approach to query-focused summariza-559
tion. arXiv preprint arXiv:2404.16130.560

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi.561
2024. Talk like a graph: Encoding graphs for large562
language models. In The Twelfth International Con-563
ference on Learning Representations.564

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi565
He, and Shi Han. 2023. GPT4Graph: Can large566
language models understand graph structured data?567
an empirical evaluation and benchmarking. In arXiv568
preprint arXiv:2305.15066.569

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla,570
Thomas Laurent, Yann LeCun, Xavier Bresson, and571
Bryan Hooi. 2024. G-retriever: Retrieval-augmented572
generation for textual graph understanding and ques-573
tion answering. In The Thirty-eighth Annual Confer-574
ence on Neural Information Processing Systems.575

Yuwei Hu, Runlin Lei, Xinyi Huang, Zhewei Wei, and576
Yongchao Liu. 2024. Scalable and accurate graph577
reasoning with LLM-based multi-agents. In arXiv578
preprint arXiv:2410.05130.579

Yongfeng Huang, Yanyang Li, Yichong Xu, Lin Zhang, 580
Ruyi Gan, Jiaxing Zhang, and Liwei Wang. 2023. 581
MVP-Tuning: Multi-view knowledge retrieval with 582
prompt tuning for commonsense reasoning. In Pro- 583
ceedings of the 61st Annual Meeting of the Associa- 584
tion for Computational Linguistics (Volume 1: Long 585
Papers), pages 13417–13432. 586

Boran Jiang, Yuqi Wang, Yi Luo, Dawei He, Peng 587
Cheng, and Liangcai Gao. 2024. Reasoning on effi- 588
cient knowledge paths: knowledge graph guides large 589
language model for domain question answering. In 590
2024 IEEE International Conference on Knowledge 591
Graph, pages 142–149. 592

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin 593
Zhao, and Ji-Rong Wen. 2023. StructGPT: A general 594
framework for large language model to reason over 595
structured data. In Proceedings of the 2023 Con- 596
ference on Empirical Methods in Natural Language 597
Processing, pages 9237–9251. 598

Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Ku- 599
mar Roy, Yu Zhang, Zheng Li, Ruirui Li, Xianfeng 600
Tang, Suhang Wang, Yu Meng, and Jiawei Han. 2024. 601
Graph chain-of-thought: Augmenting large language 602
models by reasoning on graphs. In Findings of the As- 603
sociation for Computational Linguistics: ACL 2024, 604
pages 163–184. 605

Jiho Kim, Yeonsu Kwon, Yohan Jo, and Edward Choi. 606
2023. KG-GPT: A general framework for reasoning 607
on knowledge graphs using large language models. 608
In Findings of the Association for Computational 609
Linguistics: EMNLP 2023. 610

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 611
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 612
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 613
täschel, Sebastian Riedel, and Douwe Kiela. 2020. 614
Retrieval-augmented generation for knowledge- 615
intensive nlp tasks. In Advances in Neural Infor- 616
mation Processing Systems, volume 33, pages 9459– 617
9474. 618

Shiyang Li, Yifan Gao, Haoming Jiang, Qingyu Yin, 619
Zheng Li, Xifeng Yan, Chao Zhang, and Bing Yin. 620
2023. Graph reasoning for question answering with 621
triplet retrieval. In Findings of the Association for 622
Computational Linguistics: ACL 2023, pages 3366– 623
3375. 624

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang 625
Ren. 2019. KagNet: Knowledge-aware graph net- 626
works for commonsense reasoning. In Proceedings 627
of the 2019 Conference on Empirical Methods in Nat- 628
ural Language Processing and the 9th International 629
Joint Conference on Natural Language Processing, 630
pages 2829–2839. 631

Tianqianjin Lin, Pengwei Yan, Kaisong Song, Zhuoren 632
Jiang, Yangyang Kang, Jun Lin, Weikang Yuan, Jun- 633
jie Cao, Changlong Sun, and Xiaozhong Liu. 2024. 634
LangGFM: A large language model alone can be a 635
powerful graph foundation model. In arXiv preprint 636
arXiv:2410.14961. 637

8

https://dl.acm.org/doi/10.1145/1376616.1376746
https://dl.acm.org/doi/10.1145/1376616.1376746
https://dl.acm.org/doi/10.1145/1376616.1376746
https://dl.acm.org/doi/10.1145/1376616.1376746
https://dl.acm.org/doi/10.1145/1376616.1376746
https://dl.acm.org/doi/abs/10.1145/3637528.3672010
https://dl.acm.org/doi/abs/10.1145/3637528.3672010
https://dl.acm.org/doi/abs/10.1145/3637528.3672010
https://doi.org/10.18653/v1/2024.acl-long.764
https://doi.org/10.18653/v1/2024.acl-long.764
https://doi.org/10.18653/v1/2024.acl-long.764
https://doi.org/10.18653/v1/2024.acl-long.764
https://doi.org/10.18653/v1/2024.acl-long.764
https://openreview.net/forum?id=RUwfsPWrv3
https://openreview.net/forum?id=RUwfsPWrv3
https://openreview.net/forum?id=RUwfsPWrv3
https://dl.acm.org/doi/10.1145/3543507.3583376
https://dl.acm.org/doi/10.1145/3543507.3583376
https://dl.acm.org/doi/10.1145/3543507.3583376
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://openreview.net/forum?id=IuXR1CCrSi
https://openreview.net/forum?id=IuXR1CCrSi
https://openreview.net/forum?id=IuXR1CCrSi
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2305.15066
https://openreview.net/forum?id=MPJ3oXtTZl
https://openreview.net/forum?id=MPJ3oXtTZl
https://openreview.net/forum?id=MPJ3oXtTZl
https://openreview.net/forum?id=MPJ3oXtTZl
https://openreview.net/forum?id=MPJ3oXtTZl
https://arxiv.org/abs/2410.05130
https://arxiv.org/abs/2410.05130
https://arxiv.org/abs/2410.05130
https://aclanthology.org/2023.acl-long.750/
https://aclanthology.org/2023.acl-long.750/
https://aclanthology.org/2023.acl-long.750/
https://arxiv.org/abs/2404.10384
https://arxiv.org/abs/2404.10384
https://arxiv.org/abs/2404.10384
https://arxiv.org/abs/2404.10384
https://arxiv.org/abs/2404.10384
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2024.findings-acl.11
https://doi.org/10.18653/v1/2024.findings-acl.11
https://doi.org/10.18653/v1/2024.findings-acl.11
https://aclanthology.org/2023.findings-emnlp.631/
https://aclanthology.org/2023.findings-emnlp.631/
https://aclanthology.org/2023.findings-emnlp.631/
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://aclanthology.org/2023.findings-acl.208.pdf
https://aclanthology.org/2023.findings-acl.208.pdf
https://aclanthology.org/2023.findings-acl.208.pdf
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.18653/v1/D19-1282
https://arxiv.org/abs/2410.14961
https://arxiv.org/abs/2410.14961
https://arxiv.org/abs/2410.14961


Chang Liu and Bo Wu. 2023. Evaluating large language638
models on graphs: Performance insights and compar-639
ative analysis. In arXiv preprint arXiv:2308.11224.640

Hugo Liu and Push Singh. 2004. ConceptNet—a practi-641
cal commonsense reasoning tool-kit. In BT Technol-642
ogy Journal, volume 22, pages 211–226.643

LINHAO LUO, Yuan-Fang Li, Reza Haf, and Shirui644
Pan. 2024. Reasoning on graphs: Faithful and in-645
terpretable large language model reasoning. In The646
Twelfth International Conference on Learning Repre-647
sentations.648

Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li,649
Huaren Qu, Cehao Yang, Jiaxin Mao, and Jian Guo.650
2025. Think-on-graph 2.0: Deep and faithful large651
language model reasoning with knowledge-guided652
retrieval augmented generation. In The Thirteenth In-653
ternational Conference on Learning Representations.654

Costas Mavromatis and George Karypis. 2022. ReaRev:655
Adaptive reasoning for question answering over656
knowledge graphs. In Findings of the Association657
for Computational Linguistics: EMNLP 2022, pages658
2447–2458.659

Costas Mavromatis and George Karypis. 2024.660
GNN-RAG: Graph neural retrieval for large lan-661
guage model reasoning. In arXiv preprint662
arXiv:2405.20139.663

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo,664
Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang665
Tang. 2024. Graph retrieval-augmented generation:666
A survey. In arXiv preprint arXiv:2408.08921.667

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsit-668
sulin, Mehran Kazemi, Rami Al-Rfou, and Jonathan669
Halcrow. 2024. Let your graph do the talking: En-670
coding structured data for LLMs. In arXiv preprint671
arXiv:2402.05862.672

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-673
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,674
Brendan Roof, Noah A Smith, and Yejin Choi. 2019.675
Atomic: An atlas of machine commonsense for if-676
then reasoning. In Proceedings of the AAAI Con-677
ference on Artificial Intelligence, volume 33, pages678
3027–3035.679

Bhaskarjit Sarmah, Dhagash Mehta, Benika Hall, Ro-680
han Rao, Sunil Patel, and Stefano Pasquali. 2024.681
HybridRAG: Integrating knowledge graphs and vec-682
tor retrieval augmented generation for efficient infor-683
mation extraction. In Proceedings of the 5th ACM684
International Conference on AI in Finance, pages685
608–616.686

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus687
Hagenbuchner, and Gabriele Monfardini. 2008. The688
graph neural network model. In IEEE Transactions689
on Neural Networks, volume 20, pages 61–80.690

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje Karlsson, 691
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022. 692
TIARA: Multi-grained retrieval for robust question 693
answering over large knowledge base. In Proceed- 694
ings of the 2022 Conference on Empirical Methods 695
in Natural Language Processing, pages 8108–8121. 696

Konstantinos Skianis, Giannis Nikolentzos, and 697
Michalis Vazirgiannis. 2024. Graph reasoning with 698
large language models via pseudo-code prompting. 699
In arXiv preprint arXiv:2409.17906. 700

Fabian M Suchanek, Gjergji Kasneci, and Gerhard 701
Weikum. 2007. Yago: a core of semantic knowledge. 702
In Proceedings of the 16th International Conference 703
on World Wide Web, pages 697–706. 704

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo 705
Wang, Chen Lin, Yeyun Gong, Lionel Ni, Heung- 706
Yeung Shum, and Jian Guo. 2024a. Think-on-Graph: 707
Deep and responsible reasoning of large language 708
model on knowledge graph. In The Twelfth Interna- 709
tional Conference on Learning Representations. 710

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo 711
Wang, Chen Lin, Yeyun Gong, Lionel Ni, Heung- 712
Yeung Shum, and Jian Guo. 2024b. Think-on-graph: 713
Deep and responsible reasoning of large language 714
model on knowledge graph. In The Twelfth Interna- 715
tional Conference on Learning Representations. 716

Lei Sun, Zhengwei Tao, Youdi Li, and Hiroshi Arakawa. 717
2024c. ODA: Observation-driven agent for integrat- 718
ing LLMs and knowledge graphs. In Findings of 719
the Association for Computational Linguistics: ACL 720
2024, pages 7417–7431. 721

Jianheng Tang, Qifan Zhang, Yuhan Li, Nuo Chen, and 722
Jia Li. 2025. GraphArena: Evaluating and exploring 723
large language models on graph computation. In 724
The Thirteenth International Conference on Learning 725
Representations. 726

Dhaval Taunk, Lakshya Khanna, Siri Venkata Pavan Ku- 727
mar Kandru, Vasudeva Varma, Charu Sharma, and 728
Makarand Tapaswi. 2023. GrapeQA: Graph augmen- 729
tation and pruning to enhance question-answering. In 730
Companion Proceedings of the ACM Web Conference 731
2023, pages 1138–1144. 732

Denny Vrandečić and Markus Krötzsch. 2014. Wiki- 733
data: a free collaborative knowledgebase. In Com- 734
munications of the ACM, volume 57, pages 78–85. 735

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan 736
Tan, Xiaochuang Han, and Yulia Tsvetkov. 2024a. 737
Can language models solve graph problems in nat- 738
ural language? In Advances in Neural Information 739
Processing Systems, volume 36. 740

Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi 741
Zhang, and Tyler Derr. 2024b. Knowledge graph 742
prompting for multi-document question answering. 743
In Proceedings of the AAAI Conference on Artificial 744
Intelligence, volume 38, pages 19206–19214. 745

9

https://arxiv.org/abs/2308.11224
https://arxiv.org/abs/2308.11224
https://arxiv.org/abs/2308.11224
https://arxiv.org/abs/2308.11224
https://arxiv.org/abs/2308.11224
https://doi.org/10.1023/B:BTTJ.0000047600.45421.6d
https://doi.org/10.1023/B:BTTJ.0000047600.45421.6d
https://doi.org/10.1023/B:BTTJ.0000047600.45421.6d
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://openreview.net/forum?id=oFBu7qaZpS
https://openreview.net/forum?id=oFBu7qaZpS
https://openreview.net/forum?id=oFBu7qaZpS
https://openreview.net/forum?id=oFBu7qaZpS
https://openreview.net/forum?id=oFBu7qaZpS
https://aclanthology.org/2022.findings-emnlp.181.pdf
https://aclanthology.org/2022.findings-emnlp.181.pdf
https://aclanthology.org/2022.findings-emnlp.181.pdf
https://aclanthology.org/2022.findings-emnlp.181.pdf
https://aclanthology.org/2022.findings-emnlp.181.pdf
https://arxiv.org/abs/2405.20139
https://arxiv.org/abs/2405.20139
https://arxiv.org/abs/2405.20139
https://arxiv.org/abs/2408.08921
https://arxiv.org/abs/2408.08921
https://arxiv.org/abs/2408.08921
https://arxiv.org/abs/2402.05862
https://arxiv.org/abs/2402.05862
https://arxiv.org/abs/2402.05862
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1609/aaai.v33i01.33013027
https://dl.acm.org/doi/10.1145/3677052.3698671
https://dl.acm.org/doi/10.1145/3677052.3698671
https://dl.acm.org/doi/10.1145/3677052.3698671
https://dl.acm.org/doi/10.1145/3677052.3698671
https://dl.acm.org/doi/10.1145/3677052.3698671
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.18653/v1/2022.emnlp-main.555
https://doi.org/10.18653/v1/2022.emnlp-main.555
https://doi.org/10.18653/v1/2022.emnlp-main.555
https://arxiv.org/abs/2410.19084
https://arxiv.org/abs/2410.19084
https://arxiv.org/abs/2410.19084
https://dl.acm.org/doi/10.1145/1242572.1242667
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://doi.org/10.18653/v1/2024.findings-acl.442
https://doi.org/10.18653/v1/2024.findings-acl.442
https://doi.org/10.18653/v1/2024.findings-acl.442
https://openreview.net/forum?id=Y1r9yCMzeA
https://openreview.net/forum?id=Y1r9yCMzeA
https://openreview.net/forum?id=Y1r9yCMzeA
https://dl.acm.org/doi/10.1145/3543873.3587651
https://dl.acm.org/doi/10.1145/3543873.3587651
https://dl.acm.org/doi/10.1145/3543873.3587651
https://dl.acm.org/doi/abs/10.1145/2629489
https://dl.acm.org/doi/abs/10.1145/2629489
https://dl.acm.org/doi/abs/10.1145/2629489
https://proceedings.neurips.cc/paper_files/paper/2023/hash/622afc4edf2824a1b6aaf5afe153fa93-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/622afc4edf2824a1b6aaf5afe153fa93-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/622afc4edf2824a1b6aaf5afe153fa93-Abstract-Conference.html
https://dl.acm.org/doi/10.1609/aaai.v38i17.29889
https://dl.acm.org/doi/10.1609/aaai.v38i17.29889
https://dl.acm.org/doi/10.1609/aaai.v38i17.29889


Yilin Wen, Zifeng Wang, and Jimeng Sun. 2024.746
MindMap: Knowledge graph prompting sparks graph747
of thoughts in large language models. In Proceedings748
of the 62nd Annual Meeting of the Association for749
Computational Linguistics (Volume 1: Long Papers),750
pages 10370–10388.751

Sondre Wold, Lilja Øvrelid, and Erik Velldal. 2023.752
Text-to-KG alignment: Comparing current methods753
on classification tasks. In Proceedings of the First754
Workshop on Matching From Unstructured and Struc-755
tured Data, pages 1–13.756

Qiming Wu, Zichen Chen, Will Corcoran, Misha Sra,757
and Ambuj K Singh. 2024. Grapheval2000: Bench-758
marking and improving large language models on759
graph datasets. In arXiv preprint arXiv:2406.16176.760

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong761
Long, Chengqi Zhang, and S Yu Philip. 2020. A762
comprehensive survey on graph neural networks. In763
IEEE Transactions on Neural Networks and Learning764
Systems, volume 32, pages 4–24.765

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,766
Percy Liang, and Jure Leskovec. 2021. QA-GNN:767
Reasoning with language models and knowledge768
graphs for question answering. In North American769
Chapter of the Association for Computational Lin-770
guistics.771

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui772
Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,773
William Yang Wang, Zhiguo Wang, and Bing Xiang.774
2023. DecAF: Joint decoding of answers and log-775
ical forms for question answering over knowledge776
bases. In The Eleventh International Conference on777
Learning Representations.778

Jiawei Zhang. 2023. Graph-toolformer: To em-779
power LLMs with graph reasoning ability via780
prompt augmented by chatgpt. In arXiv preprint781
arXiv:2304.11116.782

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie783
Tang, Cuiping Li, and Hong Chen. 2022a. Subgraph784
retrieval enhanced model for multi-hop knowledge785
base question answering. In Proceedings of the 60th786
Annual Meeting of the Association for Computational787
Linguistics (Volume 1: Long Papers), pages 5773–788
5784.789

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,790
Hongyu Ren, Percy Liang, Christopher D Manning,791
and Jure Leskovec. 2022b. GreaseLM: Graph REA-792
Soning enhanced language models. In International793
Conference on Learning Representations.794

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li,795
Yijian Qin, and Wenwu Zhu. 2024. LLM4DyG: Can796
large language models solve spatial-temporal prob-797
lems on dynamic graphs? In Proceedings of the 30th798
ACM SIGKDD Conference on Knowledge Discovery799
and Data Mining, page 4350–4361.800

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai 801
Liu, Michael M. Bronstein, Zhaocheng Zhu, and 802
Jian Tang. 2024. Graphtext: Graph reasoning in text 803
space. In Adaptive Foundation Models: Evolving AI 804
for Personalized and Efficient Learning. 805

Yun Zhu, Yaoke Wang, Haizhou Shi, and Siliang Tang. 806
2024. Efficient tuning and inference for large lan- 807
guage models on textual graphs. In Proceedings of 808
the Thirty-Third International Joint Conference on 809
Artificial Intelligence, pages 5734–5742. 810

A Sensitivity Analysis 811

Figure 7: Average accuracy of GRRAFN with different
time limit t.

Figure 8: Average accuracy of GRRAFN with different
maximum error feedback loop iteration n.

Figure 9: Average accuracy of GRRAFN with different
backbone LLM.

We perform sensitivity analyses on GRRAFN 812

to assess the impact of the time limit t, the max- 813

imum number of error-feedback loop iterations 814

n, and the choice of backbone LLM. We report 815

the average accuracy across all ten graph reason- 816

ing tasks. As shown in Figure 7, the accuracy 817

increases with t up to five minutes, after which 818

no further gains are observed. Figure 8 indicates 819

that accuracy peaks at n = 3 and declines slightly 820

10

https://doi.org/10.18653/v1/2024.acl-long.558
https://doi.org/10.18653/v1/2024.acl-long.558
https://doi.org/10.18653/v1/2024.acl-long.558
https://doi.org/10.18653/v1/2023.matching-1.1
https://doi.org/10.18653/v1/2023.matching-1.1
https://doi.org/10.18653/v1/2023.matching-1.1
https://doi.org/10.48550/arXiv.2406.16176
https://doi.org/10.48550/arXiv.2406.16176
https://doi.org/10.48550/arXiv.2406.16176
https://doi.org/10.48550/arXiv.2406.16176
https://doi.org/10.48550/arXiv.2406.16176
https://arxiv.org/abs/1901.00596
https://arxiv.org/abs/1901.00596
https://arxiv.org/abs/1901.00596
https://aclanthology.org/2021.naacl-main.45/
https://aclanthology.org/2021.naacl-main.45/
https://aclanthology.org/2021.naacl-main.45/
https://aclanthology.org/2021.naacl-main.45/
https://aclanthology.org/2021.naacl-main.45/
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=XHc5zRPxqV9
https://arxiv.org/abs/2304.11116
https://arxiv.org/abs/2304.11116
https://arxiv.org/abs/2304.11116
https://arxiv.org/abs/2304.11116
https://arxiv.org/abs/2304.11116
https://doi.org/10.18653/v1/2022.acl-long.396
https://doi.org/10.18653/v1/2022.acl-long.396
https://doi.org/10.18653/v1/2022.acl-long.396
https://doi.org/10.18653/v1/2022.acl-long.396
https://doi.org/10.18653/v1/2022.acl-long.396
https://openreview.net/forum?id=41e9o6cQPj
https://openreview.net/forum?id=41e9o6cQPj
https://openreview.net/forum?id=41e9o6cQPj
https://doi.org/10.1145/3637528.3671709
https://doi.org/10.1145/3637528.3671709
https://doi.org/10.1145/3637528.3671709
https://doi.org/10.1145/3637528.3671709
https://doi.org/10.1145/3637528.3671709
https://openreview.net/forum?id=6cRM0OT03F
https://openreview.net/forum?id=6cRM0OT03F
https://openreview.net/forum?id=6cRM0OT03F
https://www.ijcai.org/proceedings/2024/0634.pdf
https://www.ijcai.org/proceedings/2024/0634.pdf
https://www.ijcai.org/proceedings/2024/0634.pdf


for n > 3. Finally, we evaluated GRRAFN us-821

ing three backbone LLMs—GPT-4o, Claude-3.5-822

Sonnet, and Llama3.1-405b-Instruct—and found823

that all three yield comparable results, with GPT-4o824

achieving a slightly higher average accuracy than825

the others (Figure 9).826

B Example Code827

This section presents example code generated by828

GRRAFN for each graph reasoning task in our829

experiments: cycle detection (Figure 10), connec-830

tivity (Figure 11), bipartite graph check (Figure 12),831

topological sort (Figure 13), shortest path (Figure832

14), maximum triangle sum (Figure 15), maximum833

flow (Figure 16), subgraph matching (Figure 17),834

indegree calculation (Figure 18), and outdegree cal-835

culation (Figure 19). All these examples produce836

correct answers.837

We also include in Figure 20 an example Cypher838

query generated by GRRAFC for the maximum-839

flow task. Although this query attempts to imple-840

ment the Ford–Fulkerson algorithm, it omits the841

backward residual edges, preventing any rerouting842

of earlier flows. Consequently, on certain edge843

cases (e.g., the graph in Figure 21), it produces844

incorrect results. Similarly, Figure 22 shows an845

instance where GRRAFC generates an incorrect846

Cypher query for topological sorting. That query847

builds a spanning tree rooted at a node of zero in-848

degree to derive the ordering—a method that is849

unsound and succeeds only by chance on some850

graphs.851

11



Figure 10: An example of the final code C ′ generated for the cycle detection task.

Figure 11: An example of the final code C ′ generated for the connectivity task.

Figure 12: An example of the final code C ′ generated for the bipartite graph check task.

Figure 13: An example of the final code C ′ generated for the topological sort task.

Figure 14: An example of the final code C ′ generated for the shortest path task.

Figure 15: An example of the final code C ′ generated for the maximum triangle sum task.

Figure 16: An example of the final code C ′ generated for the maximum flow task.

12



Figure 17: An example of the final code C ′ generated for the subgraph matching task.

Figure 18: An example of the final code C ′ generated for the indegree calculation task.

Figure 19: An example of the final code C ′ generated for the outdegree calculation task.

Figure 20: An example of the final code C ′ in Cypher query by GARRFC generated for the maximum flow task.

13



Figure 21: An example directed graph with edge weights. The correct maximum flow from node 2 to 6 is 3 but the
Cypher query in Figure 20 returns 4 as the answer.

Figure 22: An example of the final code C ′ in Cypher query by GARRFC generated for the topological sort task.

14


	Introduction
	Related Works
	Graph RAG
	Graph Reasoning

	Method
	Computational Assessment
	Dataset and Benchmark
	Experiments

	Conclusion
	Limitations
	Sensitivity Analysis
	Example Code

