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Abstract001

We propose a new, training-free method,002
Graph Reasoning via Retrieval Augmented003
Framework (GRRAF), that harnesses retrieval-004
augmented generation (RAG) alongside the005
code-generation capabilities of large language006
models (LLMs) to address a wide range of007
graph reasoning tasks. In GRRAF, the target008
graph is stored in a graph database, and the009
LLM is prompted to generate executable code010
queries that retrieve the necessary information.011
This approach circumvents the limitations of012
existing methods that require extensive finetun-013
ing or depend on predefined algorithms, and014
it incorporates an error feedback loop with a015
time-out mechanism to ensure both correctness016
and efficiency. Experimental evaluations on017
the GraphInstruct dataset reveal that GRRAF018
achieves 100% accuracy on most graph reason-019
ing tasks, including cycle detection, bipartite020
graph checks, shortest path computation, and021
maximum flow, while maintaining consistent022
token costs regardless of graph sizes. Imperfect023
but still very high performance is observed on024
subgraph matching. Notably, GRRAF scales025
effectively to large graphs with up to 10,000026
nodes.027

1 Introduction028

Graph reasoning plays a pivotal role in modeling029

and understanding complex systems across numer-030

ous domains (Wu et al., 2020). Graphs naturally031

represent entities and their interrelations in areas032

such as social networks, transportation systems,033

biological networks, and communication infras-034

tructures. Graph reasoning tasks like determin-035

ing connectivity, detecting cycles, and finding the036

shortest path are not only central to theoretical com-037

puter science but also have practical implications038

in network optimization, anomaly detection, deci-039

sion support systems, etc (Scarselli et al., 2008).040

However, addressing these tasks requires a deep un-041

derstanding of graph topology combined with pre-042

Figure 1: A schematic representation of the GRRAF
concept. When a user asks a graph reasoning question,
the LLM generates code to query the target graph stored
in a graph database, retrieves the answer, and presents
it as the response. An error feedback loop is integrated
into GRRAF to prompt the LLM to refine the code
whenever execution or time-out errors occur.

cise computational procedures, underscoring the 043

critical challenge of developing efficient graph rea- 044

soning methods in contemporary machine learning 045

research (Zhao et al., 2024). 046

Large language models (LLMs) have demon- 047

strated an impressive capacity for multi-step reason- 048

ing, which enables them to interpret complex graph- 049

related questions expressed in natural language and 050

generate human-readable responses (Guo et al., 051

2023). Several recent studies have leveraged LLMs 052

to tackle graph reasoning problems by converting 053

graph structures into textual representations or la- 054

tent embeddings through graph neural networks 055

(GNNs), thereby exploiting the powerful natural 056

language reasoning capabilities of LLMs (Perozzi 057

et al., 2024; Guo et al., 2023; Zhang, 2023; Wang 058

et al., 2024a; Fatemi et al., 2024; Skianis et al., 059

2024; Lin et al., 2024). However, even when ad- 060

vanced prompting techniques are employed, these 061
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methods tend to perform poorly on fundamental062

graph reasoning tasks, such as evaluating connec-063

tivity or identifying the shortest path, with average064

accuracies ranging from 20% to 60%. Alternative065

approaches that achieve higher accuracy typically066

either require extensive finetuning—which results067

in poor performance on out-of-domain questions068

(Chen et al., 2024; Zhang, 2023)—or rely on pre-069

defined algorithms as input, thereby limiting their070

ability to address unseen tasks (Hu et al., 2024).071

To address these limitations, we introduce a072

training-free and zero-shot method, the Graph Rea-073

soning via Retrieval Augmented Framework (GR-074

RAF), that leverages retrieval-augmented gener-075

ation (RAG) (Lewis et al., 2020) alongside the076

code-writing capabilities of large language mod-077

els. In GRRAF, the target graph is stored in a078

graph database, and the LLM is prompted to gen-079

erate appropriate queries, written as code, that ex-080

tract the desired answer by retrieving relevant in-081

formation from the database. This strategy har-082

nesses the LLM’s robust reasoning ability and its083

proficiency in generating executable code, thereby084

achieving high accuracy on a range of graph reason-085

ing tasks without requiring additional finetuning086

or predefined algorithms. In addition, we incor-087

porate an error feedback loop combined with a088

time-out mechanism to ensure that the LLM pro-089

duces correct queries in a time-efficient manner.090

Furthermore, since accurate code reliably yields091

the correct answer regardless of the graph’s size,092

GRRAF can easily scale for polynomial problems093

to accommodate larger graphs without a drop in094

accuracy. In GRRAF, we use Neo4j, an interactive095

graph database, and NetworkX, a Python library096

for graphs. GRRAF accepts the target graph as097

either plain text or data already stored in Neo4j,098

specified in the prompt by the graph file name. In099

the former case, the prompt must specify if Neo4j100

or NetworkX is to be used. The LLM then must ei-101

ther create code to insert the graph specified in the102

prompt to Neo4j or to a NetworkX graph object.103

GRRAF offers a fully automated, end-to-end104

framework for handling graph-reasoning problems105

written entirely in text. By leveraging the world106

knowledge encoded in LLMs, it generates cor-107

rect code and returns accurate answers automat-108

ically for a wide range of graph-reasoning tasks109

expressed as natural-language questions. In addi-110

tion, GRRAF establishes a foundation for future111

work on real-world structured relational-inference112

problems—ranging from knowledge-graph com-113

pletion to molecular analysis—that are naturally 114

represented as graph-structured data. An LLM user 115

could potentially accomplish the same by directly 116

prompting the LLM to create Python or Neo4j 117

queries for the task on hand. Our approach of- 118

fers the benefits of graph reading and loading, the 119

execution of the code with the error-feedback loop, 120

and the fallback approach. 121

Experimental results demonstrate that GRRAF 122

achieves 100% accuracy on many graph reasoning 123

tasks, outperforming state-of-the-art benchmarks. 124

Moreover, GRRAF is applicable to large graphs 125

containing up to 10,000 nodes, maintaining 100% 126

accuracy with no increase in token cost. Although 127

GRRAF only achieves 86.5% accuracy on sub- 128

graph matching, it still outperforms other state- 129

of-the-art methods. Our contributions are listed 130

below. 131

• Novel Graph Reasoning Approach: This 132

work introduces a new method that leverages 133

RAG to address graph reasoning tasks, such 134

as connectivity analyses, cycle detection, and 135

shortest path computations. It represents the 136

first application of RAG in the domain of 137

graph reasoning. 138

• Error Feedback Loop Innovation: The pa- 139

per introduces the integration of a time out 140

mechanism within an error feedback loop, 141

along with the dynamic refreshing of a prompt 142

to guide the LLM to produce more efficient 143

code. This mechanism enhances robustness 144

and efficiency of the generated query by pre- 145

venting an infinite loop. 146

• Scalable State-of-the-Art Performance: 147

The proposed method achieves state-of-the-art 148

accuracy and demonstrates exceptional scal- 149

ability, being the first to handle large graphs 150

effectively without significant degradation in 151

accuracy or substantial cost increases. 152

All implementations and datasets are available in 153

https://github.com/Anonymous-Author980/ 154

zero_shot_GRRAF/tree/main. 155

2 Related Works 156

2.1 Graph RAG 157

There exist numerous prior works that employ 158

graph data within RAG frameworks to enhance 159

the capabilities of LLMs, a paradigm often referred 160
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Figure 2: GRRAF workflow. The retrieval component represents the interaction with the graph database through
code, while the generation component involves prompting an LLM to produce the output.

to as GraphRAG (Peng et al., 2024). These ap-161

proaches retrieve graph elements containing rela-162

tional knowledge relevant to a given query from a163

pre-constructed graph database (Edge et al., 2024).164

Several studies have contributed to the develop-165

ment of open-source knowledge graph datasets for166

GraphRAG (Auer et al., 2007; Suchanek et al.,167

2007; Vrandečić and Krötzsch, 2014; Sap et al.,168

2019; Liu and Singh, 2004; Bollacker et al., 2008).169

Building on these datasets, many methods opt to170

convert graphs to other easily retrievable forms,171

such as text (Li et al., 2023; Huang et al., 2023; Yu172

et al., 2023; Edge et al., 2024; Dehghan et al., 2024)173

or vectors (He et al., 2024; Sarmah et al., 2024),174

to improve the efficiency of query operations on175

graph databases. To further enhance the quality of176

retrieved data, several approaches optimize the re-177

trieval process within GraphRAG by refining the re-178

triever component (Delile et al., 2024; Zhang et al.,179

2022a; Kim et al., 2023; Wold et al., 2023; Jiang180

et al., 2023; Mavromatis and Karypis, 2024), opti-181

mizing the retrieval paradigm (Wang et al., 2024b;182

Sun et al., 2024c; Lin et al., 2019), and editing a183

user query or the retrieved information (Jin et al.,184

2024; LUO et al., 2024; Ma et al., 2025; Sun et al.,185

2024a; Taunk et al., 2023; Yasunaga et al., 2021).186

Furthermore, many methods enhance the answer187

generation process of GraphRAG to ensure that188

the LLM fully utilizes the retrieved graph data to189

generate the correct answer (Dong et al., 2023;190

Mavromatis and Karypis, 2022; Jiang et al., 2024;191

Sun et al., 2024b; Zhang et al., 2022b; Zhu et al.,192

2024; Wen et al., 2024; Shu et al., 2022; Baek193

et al., 2023). However, these methods focus exclu-194

sively on knowledge graphs and cannot be directly195

applied to solve graph reasoning questions. In con- 196

trast, GRRAF is the first method to employ RAG 197

for addressing graph reasoning questions on pure 198

graphs. 199

2.2 Graph Reasoning 200

Recent work has explored the use of LLMs to ad- 201

dress graph reasoning problems. Several meth- 202

ods rely solely on prompt engineering techniques 203

to enhance LLM reasoning capabilities on graphs 204

(Liu and Wu, 2023; Guo et al., 2023; Wang et al., 205

2024a; Zhang et al., 2024; Fatemi et al., 2024; Wu 206

et al., 2024; Tang et al., 2025; Skianis et al., 2024; 207

Lin et al., 2024). Building on them, Perozzi et al. 208

(2024) integrate a trained graph neural network 209

(Scarselli et al., 2008) with an LLM to improve 210

its performance on graph reasoning tasks by en- 211

coding each graph into a token provided as input 212

to the LLM. Meanwhile, Zhang (2023) and Chen 213

et al. (2024) finetune an LLM with instructions 214

tailored to graph reasoning tasks to boost perfor- 215

mance. In another approach, Hu et al. (2024) pro- 216

pose a multi-agent solution for graph reasoning 217

problems by assigning an LLM agent to each node 218

and enabling communication among agents based 219

on a predefined algorithm. In contrast, GRRAF em- 220

ploys RAG to address graph reasoning problems 221

without extensive prompt engineering. This ap- 222

proach is training-free and thus unsupervised and 223

does not depend on any predefined algorithm. Fur- 224

thermore, unlike previous methods, the LLM in 225

GRRAF does not receive the entire graph as input; 226

consequently, the token usage remains independent 227

of graph size, thereby enabling efficient scalability 228

to very large graphs. 229
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Figure 3: An illustrative example demonstrating the
application of GRRAF to solve a shortest path question
by using NetworkX. Graph G in text is stored as an
NetworkX object by code.

Task Node Size # of
Test
Graphs

Cycle Detection [2, 100] 400
Connectivity [2, 100] 400
Bipartite Graph Check [2, 100] 400
Topological Sort [2, 50] 400
Shortest Path [2, 100] 400
Maximum Triangle Sum [2, 25] 400
Maximum Flow [2, 50] 400
Subgraph Matching [2, 30] 400
Indegree Calculation [2, 50] 400
Outdegree Calculation [2, 50] 400

Table 1: The detailed information of GraphInstruct
dataset and two additional tasks (indegree calculation
and outdegree calculation). The subgraph matching task
is to verify if there exists a subgraph in G that is isomor-
phic to a given graph G′.

3 Method230

In this section, we explain how GRRAF integrates231

RAG to address graph reasoning questions and re-232

trieve accurate answers. The entire workflow of233

GRRAF is demonstrated in Figure 2. A graph rea-234

soning question, denoted as Q, consists of two com-235

ponents: a graph G and a user prompt P . The graph236

G represents the target graph associated with Q and237

is stored either in Neo4j or as a NetworkX graph238

object (code written by an LLM and executed by239

an agent). The prompt P contains a graph-specific240

question regarding G (e.g., “Does node 2 connect241

to node 5?” or “What is the shortest path from node242

5 to node 8?”). To enhance code generation by the243

language model, we initially input P into the LLM, 244

requesting it to refine the prompt, clarify the format, 245

and eliminate redundant information. The resulting 246

refined prompt is denoted as P ′. Then, the LLM 247

is prompted to generate a generic code template 248

C that addresses P ′ without incorporating graph- 249

specific details. For example, if P ′ states “Find the 250

shortest path from node 3 to node 5,” the template 251

C encapsulates a generic shortest path algorithm 252

that does not include the specific node identifiers. 253

Additionally, we extract the schema S (compris- 254

ing of node properties and edge properties) from 255

the graph database using a hard-coded procedure. 256

This schema ensures that the LLM-generated code 257

utilizes correct variable names. 258

Subsequently, we provide P ′, C, and S to the 259

LLM and instruct it to generate the final code C ′ 260

that produces an answer A corresponding to P ′. 261

An error feedback loop is incorporated into this 262

process. If an error arises during the execution of 263

C ′, the error message, along with C ′, is supplied 264

back to the LLM, prompting it to produce a revised 265

version of the code. To promote the generation of 266

time-efficient code, given that multiple algorithms 267

with varying time complexities may be applicable, 268

we integrate a time-out mechanism within the error 269

feedback loop. Specifically, a time limit t is im- 270

posed on the execution of C ′. If the execution time 271

exceeds t, the process is halted, and the LLM is 272

asked to modify C ′ so that it runs faster. If the feed- 273

back loop iterates more than n times, the system 274

reverts to using the original question Q as a prompt 275

to directly obtain the answer A from the LLM. This 276

forced exit is designed to prevent perpetual itera- 277

tions when addressing computationally intractable 278

NP-hard problems (e.g., substructure matching on 279

large graphs), where no modification of C ′ can 280

reduce the execution time below the threshold t. 281

In the final step, the answer A is provided to 282

the LLM to generate a reader-friendly natural lan- 283

guage response A0 that addresses the graph reason- 284

ing question Q. An example of solving a graph 285

reasoning question with GRRAF is demonstrated 286

in Figure 3. 287

4 Computational Assessment 288

4.1 Dataset and Benchmark 289

We conduct experiments on GraphInstruct (Chen 290

et al., 2024), a dataset that comprises of nine graph 291

reasoning tasks with varying complexities. Due to 292

its diversity in graph reasoning tasks and its prior 293
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Figure 4: Performance of GRRAF and benchmark models across all ten graph reasoning tasks. Missing data are
indicated as “NA” in the plot. The available-case mean refers to the average accuracy of each method calculated
using only the tasks where complete data is available (excluding maximum flow, subgraph matching, indegree
calculation, and outdegree calculation). The all-case mean refers to the average accuracy across all tasks, treating
’NA’ as 0.

use in evaluating state-of-the-art methods (Chen294

et al., 2024; Hu et al., 2024), we select this dataset295

for our evaluation. However, the task of finding296

a Hamilton path lacks publicly available ground297

truth labels and generating such labels through298

code is infeasible due to the NP-hard nature of299

the problem; consequently, we exclude this task300

from our experiments. Accordingly, we assess the301

performance of GRRAF on the following eight302

tasks: cycle detection, connectivity, bipartite graph303

check, topological sort, shortest path, maximum304

triangle sum, maximum flow, and subgraph match-305

ing. Details of these tasks are provided in Table 1.306

Moreover, to achieve a more robust performance307

evaluation, we augment the test dataset with two308

additional simple tasks—indegree calculation and309

outdegree calculation (as shown in Table 1)—to fa-310

cilitate a comprehensive evaluation of GRRAF and311

the state-of-the-art benchmarks. Each task has 400312

question–graph pairs, each with a single correct313

answer. We measure a method’s performance on314

one task by its accuracy—that is, the proportion of315

questions answered correctly out of the total (400).316

GRRAF, i.e., its LLM, generates code which is317

either correct or not. This is the reason why most318

accuracies are going to be 100%. For tasks with319

less than 100% accuracy, GRRAF yields correct320

code but the underlying problems are NP-hard and321

for some test graphs the execution times out. One322

can argue that the output code is correct and thus323

appropriate credit should be given, but on the other324

hand, a more efficient algorithm and code can be325

potentially produced. Sometimes the generated 326

code does not handle edge cases correctly, yet other 327

times the code or algorithms are incorrect (they 328

solve only some test graphs by coincidence). 329

We compare the performance of GRRAF against 330

two state-of-the-art benchmarks: GraphWiz (Chen 331

et al., 2024) and GAR (Hu et al., 2024). Graph- 332

Wiz is trained on 17,158 questions and 72,785 333

answers, complete with reasoning paths, from 334

the training set of GraphInstruct. Since no sin- 335

gle version of GraphWiz consistently outperforms 336

the others across all tasks, we include three ver- 337

sions in our comparisons: GraphWiz (Mistral-7B), 338

GraphWiz-DPO (LLaMA 2-7B), and GraphWiz- 339

DPO (LLaMA 2-13B). GAR is a training-free 340

multi-agent framework that relies on a predefined 341

library of distributed algorithms created by humans. 342

As a result, it is incapable of solving unseen graph 343

reasoning tasks that require algorithms not present 344

in its library. Therefore, some results from GAR 345

are missing in the subsequent comparisons because 346

of its limitation. 347

4.2 Experiments 348

We conduct experiments using GRRAF with a time 349

limit of t = 5 minutes and a maximum error 350

feedback loop iteration of n = 3. The backbone 351

LLM is GPT-4o. These parameter choices are jus- 352

tified by the sensitivity analysis in Appendix A. 353

For the graph querying code, we evaluate two ap- 354

proaches: Cypher, a query language for Neo4j, and 355

NetworkX, a Python library for graphs, which we 356
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denote as GRRAFC and GRRAFN , respectively.357

We deal with graph plain text, and thus can be con-358

verted into either Neo4j data or NetworkX objects.359

Figure 4 demonstrates that GARRFN outper-360

forms all benchmark methods, achieving 100% ac-361

curacy on most graph reasoning tasks. GARRFC362

exhibits comparable or superior performance rela-363

tive to other benchmarks on the majority of tasks,364

except for topological sort and subgraph match-365

ing. Although GraphWiz outperforms GARRFC366

in topological sort and subgraph matching, its in-367

adequate performance on indegree calculation and368

outdegree calculation suggests that it struggles with369

even simple out-of-domain graph reasoning tasks.370

Furthermore, due to its inherent limitations, GAR371

is inapplicable to out-of-domain tasks such as max-372

imum flow, subgraph matching, indegree calcula-373

tion, and outdegree calculation. Consequently, con-374

sidering both performance and generalization abil-375

ity, GARRFC and GARRFN are better for address-376

ing graph reasoning tasks than the other benchmark377

models. The example code generated by GARRFN378

for each graph reasoning task is presented in Ap-379

pendix B.380

Subgraph matching is NP-complete, and the381

code produced by GARRFN has exponential time382

complexity. For graphs of 20 nodes, executing that383

code can take over a day—exceeding the time limit384

t. Based on Section 3, in such cases GARRDN385

falls back to using the original question Q as a386

prompt to obtain the answer A directly from the387

LLM, which may yield incorrect results. GRRAFC388

likewise falls short of 100% accuracy on cycle de-389

tection and bipartite-graph checking, since Cypher390

queries execute more slowly than NetworkX. For391

the maximum-flow task, GRRAFC produces code392

that overlooks certain edge cases. And for topo-393

logical sorting and subgraph matching, it generates394

code that only succeeds on some graphs by chance.395

Across the ten tasks, solving a single graph rea-396

soning question requires GRRAFN to use an av-397

erage of 767 input tokens and 124 output tokens,398

while GRRAFC uses 796 input tokens and 201 out-399

put tokens. In comparison, GraphWiz (Mistral-7B)400

consumes an average of 1,046 input tokens and401

126 output tokens per question, whereas GraphWiz-402

DPO (LLaMA 2-7B) requires 1,046 input tokens403

and 290 output tokens on average, and GraphWiz-404

DPO (LLaMA 2-13B) uses 1,046 input tokens and405

301 output tokens per question. Notably, GAR406

demands more resources, averaging 8,095 input to-407

kens and 5,987 output tokens for each graph reason-408

Figure 5: Accuracy of each method on the shortest path
task across graphs of differenct sizes (number of nodes).

ing question. Thus, comparing to other benchmark 409

methods, GRRAFN and GRRAFC achieve high 410

accuracy in graph reasoning tasks while utilizing 411

fewer token resources. 412

Since the largest graph in GraphInstruct (Chen 413

et al., 2024) comprises of only 100 nodes, which 414

remains insufficient for real-world graph reason- 415

ing scenarios (Hu et al., 2024), we further evaluate 416

the best-performing method, GRRAFN , on large- 417

scale graphs. Following the approach of Hu et al. 418

(2024), we assess GRRAFN on the shortest path 419

task using larger graphs with 20 test samples for 420

each graph size. Whereas their work scales graphs 421

to 1,000 nodes, we extend this evaluation by scal- 422

ing graphs to 10,000 nodes to thoroughly assess 423

the performance of GRRAFN . According to Fig- 424

ure 5, GRRAFN achieves 100% accuracy across 425

all graph sizes, demonstrating its exceptional scal- 426

ability. GAR attains 100% accuracy on graphs 427

with 100, 200, and 500 nodes, but its accuracy de- 428

creases to 90% on graphs with 1,000 nodes. Due to 429

token limitations, GAR is unable to address ques- 430

tions on graphs with 2,000 nodes or more. In con- 431

trast, all three versions of GraphWiz perform poorly 432

on large graphs, achieving only 5-10% accuracy 433

on graphs with 100 nodes and failing entirely on 434

graphs with 200 nodes. The token limits of their 435

base model prevent them from processing graphs 436

larger than 200 nodes. 437

We also record the variation in token cost re- 438

quired to solve a single graph reasoning question 439

as the graph size increases on the shortest path task. 440

As illustrated in Figure 6, the number of tokens 441

used by GRRAFN remains constant regardless of 442

the graph size. As detailed in Section 3, GRRAF in- 443

teracts with the graph solely via the graph database 444

through code execution; thus, the graph description 445

(nodes, edges, weights) is not directly input to the 446

LLM, and the token cost remains unaffected by 447

increases in graph size. In contrast, the token cost 448
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Figure 6: Average token cost for solving a graph rea-
soning problem across graphs of varying sizes on the
shortest path task.

Method Execution Error Time-out

GRRAFN 2.2% 5.4%
GRRAFC 4.9% 9.1%

Table 2: Percentage of graph reasoning questions over
10 tasks triggering error feedback loop due to execution
errors or time-outs for each method.

for GraphWiz increases linearly with graph size be-449

cause it must pass the information of each node and450

edge to the LLM. The token cost for GAR is con-451

siderably higher than that for GRRAFN and grows452

nearly exponentially with graph size. This is due453

to GAR’s design, where each node is assigned an454

LLM agent, and each agent communicates with ev-455

ery adjacent agent in each iteration (Hu et al., 2024).456

As the number of nodes increases, so do the number457

of agents, the number of adjacent agents per node458

(i.e., edges), and the number of iterations required459

to obtain an answer, all of which contribute to a460

significant rise in token cost. Therefore, compared461

to other benchmarks, GRRAFN can readily scale462

to very large graphs (up to 10,000 nodes) without463

compromising performance and increasing token464

cost.465

To evaluate the effectiveness of the error feed-466

back loop, we quantify the total percentage of ques-467

tions that activate this loop, as reported in Table 2.468

In general, GRRAFC triggers the error feedback469

loop more frequently than GRRAFN . For both vari-470

ants, the loop is activated due to time-outs more471

often than due to execution errors, underscoring472

the importance of time efficiency in graph reason-473

ing tasks. Overall, the backbone LLM generates474

correct code queries in most instances, and the in-475

tegration of an error feedback loop with a time-out476

mechanism further enhances code accuracy and 477

efficiency. 478

5 Conclusion 479

In this work, we introduced GRRAF, a novel frame- 480

work that integrates RAG with the code-writing 481

prowess of LLMs to address graph reasoning ques- 482

tions. Our approach, which operates without addi- 483

tional training or reliance on predefined algorithms, 484

leverages a graph database to store target graphs 485

and employs an error feedback loop with a time-out 486

mechanism to ensure the generation of correct and 487

efficient code queries. Comprehensive experiments 488

on the GraphInstruct dataset and two extra tasks 489

(indegree and outdegree) demonstrate that GRRAF 490

outperforms existing state-of-the-art benchmarks, 491

achieving 100% accuracy on a majority of graph 492

reasoning tasks while effectively scaling to graphs 493

containing up to 10,000 nodes without incurring 494

extra token costs. These findings underscore the 495

potential of combining retrieval-based techniques 496

with LLM-driven code generation for solving com- 497

plex graph reasoning problems. Future work could 498

explore extending this framework to dynamic graph 499

scenarios and additional reasoning tasks, further 500

enhancing its applicability and robustness. 501

6 Limitations 502

Although GRRAFN attains 100% accuracy on all 503

polynomial-time graph reasoning tasks, it nev- 504

ertheless struggles to solve NP-complete prob- 505

lems—such as subgraph matching—both accu- 506

rately and efficiently. Moreover, the inferior per- 507

formance of GRRAFC relative to GRRAFN indi- 508

cates that our framework currently generates lower- 509

quality Cypher queries than the equivalent Python 510

code. These two issues constitute the primary limi- 511

tations of our method. 512
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for n > 3. Finally, we evaluated GRRAFN us-821

ing three backbone LLMs—GPT-4o, Claude-3.5-822

Sonnet, and Llama3.1-405b-Instruct—and found823

that all three yield comparable results, with GPT-4o824

achieving a slightly higher average accuracy than825

the others (Figure 9).826

B Example Code827

This section presents example code generated by828

GRRAFN for each graph reasoning task in our829

experiments: cycle detection (Figure 10), connec-830

tivity (Figure 11), bipartite graph check (Figure 12),831

topological sort (Figure 13), shortest path (Figure832

14), maximum triangle sum (Figure 15), maximum833

flow (Figure 16), subgraph matching (Figure 17),834

indegree calculation (Figure 18), and outdegree cal-835

culation (Figure 19). All these examples produce836

correct answers.837

We also include in Figure 20 an example Cypher838

query generated by GRRAFC for the maximum-839

flow task. Although this query attempts to imple-840

ment the Ford–Fulkerson algorithm, it omits the841

backward residual edges, preventing any rerouting842

of earlier flows. Consequently, on certain edge843

cases (e.g., the graph in Figure 21), it produces844

incorrect results. Similarly, Figure 22 shows an845

instance where GRRAFC generates an incorrect846

Cypher query for topological sorting. That query847

builds a spanning tree rooted at a node of zero in-848

degree to derive the ordering—a method that is849

unsound and succeeds only by chance on some850

graphs.851
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Figure 10: An example of the final code C ′ generated for the cycle detection task.

Figure 11: An example of the final code C ′ generated for the connectivity task.

Figure 12: An example of the final code C ′ generated for the bipartite graph check task.

Figure 13: An example of the final code C ′ generated for the topological sort task.

Figure 14: An example of the final code C ′ generated for the shortest path task.

Figure 15: An example of the final code C ′ generated for the maximum triangle sum task.

Figure 16: An example of the final code C ′ generated for the maximum flow task.
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Figure 17: An example of the final code C ′ generated for the subgraph matching task.

Figure 18: An example of the final code C ′ generated for the indegree calculation task.

Figure 19: An example of the final code C ′ generated for the outdegree calculation task.

Figure 20: An example of the final code C ′ in Cypher query by GARRFC generated for the maximum flow task.
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Figure 21: An example directed graph with edge weights. The correct maximum flow from node 2 to 6 is 3 but the
Cypher query in Figure 20 returns 4 as the answer.

Figure 22: An example of the final code C ′ in Cypher query by GARRFC generated for the topological sort task.
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