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Abstract

We propose a new, training-free method,
Graph Reasoning via Retrieval Augmented
Framework (GRRAF), that harnesses retrieval-
augmented generation (RAG) alongside the
code-generation capabilities of large language
models (LLMs) to address a wide range of
graph reasoning tasks. In GRRAF, the target
graph is stored in a graph database, and the
LLM is prompted to generate executable code
queries that retrieve the necessary information.
This approach circumvents the limitations of
existing methods that require extensive finetun-
ing or depend on predefined algorithms, and
it incorporates an error feedback loop with a
time-out mechanism to ensure both correctness
and efficiency. Experimental evaluations on
the Graphlnstruct dataset reveal that GRRAF
achieves 100% accuracy on most graph reason-
ing tasks, including cycle detection, bipartite
graph checks, shortest path computation, and
maximum flow, while maintaining consistent
token costs regardless of graph sizes. Imperfect
but still very high performance is observed on
subgraph matching. Notably, GRRAF scales
effectively to large graphs with up to 10,000
nodes.

1 Introduction

Graph reasoning plays a pivotal role in modeling
and understanding complex systems across numer-
ous domains (Wu et al., 2020). Graphs naturally
represent entities and their interrelations in areas
such as social networks, transportation systems,
biological networks, and communication infras-
tructures. Graph reasoning tasks like determin-
ing connectivity, detecting cycles, and finding the
shortest path are not only central to theoretical com-
puter science but also have practical implications
in network optimization, anomaly detection, deci-
sion support systems, etc (Scarselli et al., 2008).
However, addressing these tasks requires a deep un-
derstanding of graph topology combined with pre-
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Figure 1: A schematic representation of the GRRAF
concept. When a user asks a graph reasoning question,
the LLM generates code to query the target graph stored
in a graph database, retrieves the answer, and presents
it as the response. An error feedback loop is integrated
into GRRAF to prompt the LLM to refine the code
whenever execution or time-out errors occur.

cise computational procedures, underscoring the
critical challenge of developing efficient graph rea-
soning methods in contemporary machine learning
research (Zhao et al., 2024).

Large language models (LLMs) have demon-
strated an impressive capacity for multi-step reason-
ing, which enables them to interpret complex graph-
related questions expressed in natural language and
generate human-readable responses (Guo et al.,
2023). Several recent studies have leveraged LLMs
to tackle graph reasoning problems by converting
graph structures into textual representations or la-
tent embeddings through graph neural networks
(GNNs), thereby exploiting the powerful natural
language reasoning capabilities of LLMs (Perozzi
et al., 2024; Guo et al., 2023; Zhang, 2023; Wang
et al., 2024a; Fatemi et al., 2024; Skianis et al.,
2024; Lin et al., 2024). However, even when ad-
vanced prompting techniques are employed, these



methods tend to perform poorly on fundamental
graph reasoning tasks, such as evaluating connec-
tivity or identifying the shortest path, with average
accuracies ranging from 20% to 60%. Alternative
approaches that achieve higher accuracy typically
either require extensive finetuning—which results
in poor performance on out-of-domain questions
(Chen et al., 2024; Zhang, 2023)—or rely on pre-
defined algorithms as input, thereby limiting their
ability to address unseen tasks (Hu et al., 2024).
To address these limitations, we introduce a
training-free and zero-shot method, the Graph Rea-
soning via Retrieval Augmented Framework (GR-
RAF), that leverages retrieval-augmented gener-
ation (RAG) (Lewis et al., 2020) alongside the
code-writing capabilities of large language mod-
els. In GRRAF, the target graph is stored in a
graph database, and the LLM is prompted to gen-
erate appropriate queries, written as code, that ex-
tract the desired answer by retrieving relevant in-
formation from the database. This strategy har-
nesses the LLM’s robust reasoning ability and its
proficiency in generating executable code, thereby
achieving high accuracy on a range of graph reason-
ing tasks without requiring additional finetuning
or predefined algorithms. In addition, we incor-
porate an error feedback loop combined with a
time-out mechanism to ensure that the LLM pro-
duces correct queries in a time-efficient manner.
Furthermore, since accurate code reliably yields
the correct answer regardless of the graph’s size,
GRRAF can easily scale for polynomial problems
to accommodate larger graphs without a drop in
accuracy. In GRRAF, we use Neo4j, an interactive
graph database, and NetworkX, a Python library
for graphs. GRRAF accepts the target graph as
either plain text or data already stored in Neo4j,
specified in the prompt by the graph file name. In
the former case, the prompt must specify if Neo4j
or NetworkX is to be used. The LLM then must ei-
ther create code to insert the graph specified in the
prompt to Neo4j or to a NetworkX graph object.
GRRAF offers a fully automated, end-to-end
framework for handling graph-reasoning problems
written entirely in text. By leveraging the world
knowledge encoded in LLMs, it generates cor-
rect code and returns accurate answers automat-
ically for a wide range of graph-reasoning tasks
expressed as natural-language questions. In addi-
tion, GRRAF establishes a foundation for future
work on real-world structured relational-inference
problems—ranging from knowledge-graph com-

pletion to molecular analysis—that are naturally
represented as graph-structured data. An LLM user
could potentially accomplish the same by directly
prompting the LLM to create Python or Neo4;j
queries for the task on hand. Our approach of-
fers the benefits of graph reading and loading, the
execution of the code with the error-feedback loop,
and the fallback approach.

Experimental results demonstrate that GRRAF
achieves 100% accuracy on many graph reasoning
tasks, outperforming state-of-the-art benchmarks.
Moreover, GRRAF is applicable to large graphs
containing up to 10,000 nodes, maintaining 100%
accuracy with no increase in token cost. Although
GRRAF only achieves 86.5% accuracy on sub-
graph matching, it still outperforms other state-
of-the-art methods. Our contributions are listed
below.

* Novel Graph Reasoning Approach: This
work introduces a new method that leverages
RAG to address graph reasoning tasks, such
as connectivity analyses, cycle detection, and
shortest path computations. It represents the
first application of RAG in the domain of
graph reasoning.

* Error Feedback Loop Innovation: The pa-
per introduces the integration of a time out
mechanism within an error feedback loop,
along with the dynamic refreshing of a prompt
to guide the LLM to produce more efficient
code. This mechanism enhances robustness
and efficiency of the generated query by pre-
venting an infinite loop.

* Scalable State-of-the-Art Performance:
The proposed method achieves state-of-the-art
accuracy and demonstrates exceptional scal-
ability, being the first to handle large graphs
effectively without significant degradation in
accuracy or substantial cost increases.

All implementations and datasets are available in
https://github.com/Anonymous-Author980/
zero_shot_GRRAF/tree/main.

2 Related Works
2.1 Graph RAG

There exist numerous prior works that employ
graph data within RAG frameworks to enhance
the capabilities of LLMs, a paradigm often referred
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Figure 2: GRRAF workflow. The retrieval component represents the interaction with the graph database through
code, while the generation component involves prompting an LLM to produce the output.

to as GraphRAG (Peng et al., 2024). These ap-
proaches retrieve graph elements containing rela-
tional knowledge relevant to a given query from a
pre-constructed graph database (Edge et al., 2024).
Several studies have contributed to the develop-
ment of open-source knowledge graph datasets for
GraphRAG (Auer et al., 2007; Suchanek et al.,
2007; Vrandecié¢ and Krotzsch, 2014; Sap et al.,
2019; Liu and Singh, 2004; Bollacker et al., 2008).
Building on these datasets, many methods opt to
convert graphs to other easily retrievable forms,
such as text (Li et al., 2023; Huang et al., 2023; Yu
etal., 2023; Edge et al., 2024; Dehghan et al., 2024)
or vectors (He et al., 2024; Sarmah et al., 2024),
to improve the efficiency of query operations on
graph databases. To further enhance the quality of
retrieved data, several approaches optimize the re-
trieval process within GraphRAG by refining the re-
triever component (Delile et al., 2024; Zhang et al.,
2022a; Kim et al., 2023; Wold et al., 2023; Jiang
et al., 2023; Mavromatis and Karypis, 2024), opti-
mizing the retrieval paradigm (Wang et al., 2024b;
Sun et al., 2024c; Lin et al., 2019), and editing a
user query or the retrieved information (Jin et al.,
2024; LUO et al., 2024; Ma et al., 2025; Sun et al.,
2024a; Taunk et al., 2023; Yasunaga et al., 2021).
Furthermore, many methods enhance the answer
generation process of GraphRAG to ensure that
the LLM fully utilizes the retrieved graph data to
generate the correct answer (Dong et al., 2023;
Mavromatis and Karypis, 2022; Jiang et al., 2024;
Sun et al., 2024b; Zhang et al., 2022b; Zhu et al.,
2024; Wen et al., 2024; Shu et al., 2022; Baek
et al., 2023). However, these methods focus exclu-
sively on knowledge graphs and cannot be directly

applied to solve graph reasoning questions. In con-
trast, GRRAF is the first method to employ RAG
for addressing graph reasoning questions on pure
graphs.

2.2 Graph Reasoning

Recent work has explored the use of LLMs to ad-
dress graph reasoning problems. Several meth-
ods rely solely on prompt engineering techniques
to enhance LLM reasoning capabilities on graphs
(Liu and Wu, 2023; Guo et al., 2023; Wang et al.,
2024a; Zhang et al., 2024; Fatemi et al., 2024; Wu
et al., 2024; Tang et al., 2025; Skianis et al., 2024;
Lin et al., 2024). Building on them, Perozzi et al.
(2024) integrate a trained graph neural network
(Scarselli et al., 2008) with an LLM to improve
its performance on graph reasoning tasks by en-
coding each graph into a token provided as input
to the LLM. Meanwhile, Zhang (2023) and Chen
et al. (2024) finetune an LLM with instructions
tailored to graph reasoning tasks to boost perfor-
mance. In another approach, Hu et al. (2024) pro-
pose a multi-agent solution for graph reasoning
problems by assigning an LLM agent to each node
and enabling communication among agents based
on a predefined algorithm. In contrast, GRRAF em-
ploys RAG to address graph reasoning problems
without extensive prompt engineering. This ap-
proach is training-free and thus unsupervised and
does not depend on any predefined algorithm. Fur-
thermore, unlike previous methods, the LLM in
GRRAF does not receive the entire graph as input;
consequently, the token usage remains independent
of graph size, thereby enabling efficient scalability
to very large graphs.



Graph Reasoning Question Q:

User Prompt P: Find the shortest path between two nodes in an undirected graph using NetworkX. In an undirected graph, (i)
means that node i and node j are connected with an undirected edge with weight k. Given a graph and a pair of nodes, you need to
output the shortest path between the two nodes. The nodes are numbered from 0 to 11, give the weight of the shortest path from
node 11 to node 4.

Graph G: The edges of the graph are: (0,5,4) (0,9,1) (0,4,1) (0,1,5) (0,2,4) (1,9,2) (1,8,3) (1,2,5) (1,11,8) (1,3,2) (24,5) (2.9,1)

(25,9 (2,3,2) (2,7,5) (3,8,8) (3,6,0) (3,11,10) (3,10,5) (4,5,4) (4,10,10) (4,6,1) (5,7,5) (5,9,5) (5.6,8) (6,9,6) (6,10,7) (6,11,7) (6,7,8)
(7,11,9) (7,9,1) (8,11,8) (9,11,9).

Refined Prompt P': Find the weight of the shortest path from node 11 to node 4 in an undirected graph.
Code Template

Schema S: Graph has 12 nodes with id from 0 to 11. Node weight is none. Edge weight is in ‘weight’ attribute.
Final Code C:

# Calculate the shortest path weight from node 11 to node 4
shortest_path_length = nx.shortest path length(G, source=11, target=d,
weight="weight’)

answer = shortest_path_length

Answer 4:8

Response Aq:The weight of the shortest path from node 11 to node 4 in the undirected graph is 8,

Figure 3: An illustrative example demonstrating the
application of GRRAF to solve a shortest path question
by using NetworkX. Graph G in text is stored as an
NetworkX object by code.

Task Node Size | # of
Test
Graphs
Cycle Detection [2, 100] 400
Connectivity [2, 100] 400
Bipartite Graph Check [2, 100] 400
Topological Sort [2, 50] 400
Shortest Path [2, 100] 400
Maximum Triangle Sum | [2, 25] 400
Maximum Flow [2,50] 400
Subgraph Matching [2, 30] 400
Indegree Calculation [2, 50] 400
Outdegree Calculation [2, 50] 400

Table 1: The detailed information of Graphlnstruct
dataset and two additional tasks (indegree calculation
and outdegree calculation). The subgraph matching task
is to verify if there exists a subgraph in G that is isomor-
phic to a given graph G’.

3 Method

In this section, we explain how GRRAF integrates
RAG to address graph reasoning questions and re-
trieve accurate answers. The entire workflow of
GRRAF is demonstrated in Figure 2. A graph rea-
soning question, denoted as (), consists of two com-
ponents: a graph G and a user prompt P. The graph
G represents the target graph associated with () and
is stored either in Neo4j or as a NetworkX graph
object (code written by an LLM and executed by
an agent). The prompt P contains a graph-specific
question regarding G (e.g., “Does node 2 connect
tonode 577 or “What is the shortest path from node
5 to node 8?”). To enhance code generation by the

language model, we initially input P into the LLM,
requesting it to refine the prompt, clarify the format,
and eliminate redundant information. The resulting
refined prompt is denoted as P’. Then, the LLM
is prompted to generate a generic code template
C that addresses P’ without incorporating graph-
specific details. For example, if P’ states “Find the
shortest path from node 3 to node 5,” the template
C encapsulates a generic shortest path algorithm
that does not include the specific node identifiers.
Additionally, we extract the schema S (compris-
ing of node properties and edge properties) from
the graph database using a hard-coded procedure.
This schema ensures that the LLM-generated code
utilizes correct variable names.

Subsequently, we provide P’, C, and S to the
LLM and instruct it to generate the final code C’
that produces an answer A corresponding to P’.
An error feedback loop is incorporated into this
process. If an error arises during the execution of
(', the error message, along with C’, is supplied
back to the LLM, prompting it to produce a revised
version of the code. To promote the generation of
time-efficient code, given that multiple algorithms
with varying time complexities may be applicable,
we integrate a time-out mechanism within the error
feedback loop. Specifically, a time limit ¢ is im-
posed on the execution of C”. If the execution time
exceeds t, the process is halted, and the LLM is
asked to modify C’ so that it runs faster. If the feed-
back loop iterates more than n times, the system
reverts to using the original question () as a prompt
to directly obtain the answer A from the LLM. This
forced exit is designed to prevent perpetual itera-
tions when addressing computationally intractable
NP-hard problems (e.g., substructure matching on
large graphs), where no modification of C’ can
reduce the execution time below the threshold ¢.

In the final step, the answer A is provided to
the LLM to generate a reader-friendly natural lan-
guage response Ag that addresses the graph reason-
ing question (). An example of solving a graph
reasoning question with GRRAF is demonstrated
in Figure 3.

4 Computational Assessment

4.1 Dataset and Benchmark

We conduct experiments on Graphlnstruct (Chen
et al., 2024), a dataset that comprises of nine graph
reasoning tasks with varying complexities. Due to
its diversity in graph reasoning tasks and its prior
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Figure 4: Performance of GRRAF and benchmark models across all ten graph reasoning tasks. Missing data are
indicated as “NA” in the plot. The available-case mean refers to the average accuracy of each method calculated
using only the tasks where complete data is available (excluding maximum flow, subgraph matching, indegree
calculation, and outdegree calculation). The all-case mean refers to the average accuracy across all tasks, treating

’NA’ as 0.

use in evaluating state-of-the-art methods (Chen
et al., 2024; Hu et al., 2024), we select this dataset
for our evaluation. However, the task of finding
a Hamilton path lacks publicly available ground
truth labels and generating such labels through
code is infeasible due to the NP-hard nature of
the problem; consequently, we exclude this task
from our experiments. Accordingly, we assess the
performance of GRRAF on the following eight
tasks: cycle detection, connectivity, bipartite graph
check, topological sort, shortest path, maximum
triangle sum, maximum flow, and subgraph match-
ing. Details of these tasks are provided in Table 1.
Moreover, to achieve a more robust performance
evaluation, we augment the test dataset with two
additional simple tasks—indegree calculation and
outdegree calculation (as shown in Table 1)—to fa-
cilitate a comprehensive evaluation of GRRAF and
the state-of-the-art benchmarks. Each task has 400
question—graph pairs, each with a single correct
answer. We measure a method’s performance on
one task by its accuracy—that is, the proportion of
questions answered correctly out of the total (400).

GRRAF, i.e., its LLM, generates code which is
either correct or not. This is the reason why most
accuracies are going to be 100%. For tasks with
less than 100% accuracy, GRRAF yields correct
code but the underlying problems are NP-hard and
for some test graphs the execution times out. One
can argue that the output code is correct and thus
appropriate credit should be given, but on the other
hand, a more efficient algorithm and code can be

potentially produced. Sometimes the generated
code does not handle edge cases correctly, yet other
times the code or algorithms are incorrect (they
solve only some test graphs by coincidence).

We compare the performance of GRRAF against
two state-of-the-art benchmarks: GraphWiz (Chen
et al., 2024) and GAR (Hu et al., 2024). Graph-
Wiz is trained on 17,158 questions and 72,785
answers, complete with reasoning paths, from
the training set of Graphlnstruct. Since no sin-
gle version of GraphWiz consistently outperforms
the others across all tasks, we include three ver-
sions in our comparisons: GraphWiz (Mistral-7B),
GraphWiz-DPO (LLaMA 2-7B), and GraphWiz-
DPO (LLaMA 2-13B). GAR is a training-free
multi-agent framework that relies on a predefined
library of distributed algorithms created by humans.
As aresult, it is incapable of solving unseen graph
reasoning tasks that require algorithms not present
in its library. Therefore, some results from GAR
are missing in the subsequent comparisons because
of its limitation.

4.2 Experiments

We conduct experiments using GRRAF with a time
limit of £ = 5 minutes and a maximum error
feedback loop iteration of n = 3. The backbone
LLM is GPT-40. These parameter choices are jus-
tified by the sensitivity analysis in Appendix A.
For the graph querying code, we evaluate two ap-
proaches: Cypher, a query language for Neo4j, and
NetworkX, a Python library for graphs, which we



denote as GRRAFc and GRRAF, respectively.
We deal with graph plain text, and thus can be con-
verted into either Neo4j data or NetworkX objects.

Figure 4 demonstrates that GARRFy outper-
forms all benchmark methods, achieving 100% ac-
curacy on most graph reasoning tasks. GARRF¢
exhibits comparable or superior performance rela-
tive to other benchmarks on the majority of tasks,
except for topological sort and subgraph match-
ing. Although GraphWiz outperforms GARRF¢
in topological sort and subgraph matching, its in-
adequate performance on indegree calculation and
outdegree calculation suggests that it struggles with
even simple out-of-domain graph reasoning tasks.
Furthermore, due to its inherent limitations, GAR
is inapplicable to out-of-domain tasks such as max-
imum flow, subgraph matching, indegree calcula-
tion, and outdegree calculation. Consequently, con-
sidering both performance and generalization abil-
ity, GARRF¢ and GARRFy; are better for address-
ing graph reasoning tasks than the other benchmark
models. The example code generated by GARRFy
for each graph reasoning task is presented in Ap-
pendix B.

Subgraph matching is NP-complete, and the
code produced by GARRF; has exponential time
complexity. For graphs of 20 nodes, executing that
code can take over a day—exceeding the time limit
t. Based on Section 3, in such cases GARRD y
falls back to using the original question () as a
prompt to obtain the answer A directly from the
LLM, which may yield incorrect results. GRRAF¢
likewise falls short of 100% accuracy on cycle de-
tection and bipartite-graph checking, since Cypher
queries execute more slowly than NetworkX. For
the maximum-flow task, GRRAF produces code
that overlooks certain edge cases. And for topo-
logical sorting and subgraph matching, it generates
code that only succeeds on some graphs by chance.

Across the ten tasks, solving a single graph rea-
soning question requires GRRAF to use an av-
erage of 767 input tokens and 124 output tokens,
while GRRAF¢ uses 796 input tokens and 201 out-
put tokens. In comparison, GraphWiz (Mistral-7B)
consumes an average of 1,046 input tokens and
126 output tokens per question, whereas GraphWiz-
DPO (LLaMA 2-7B) requires 1,046 input tokens
and 290 output tokens on average, and GraphWiz-
DPO (LLaMA 2-13B) uses 1,046 input tokens and
301 output tokens per question. Notably, GAR
demands more resources, averaging 8,095 input to-
kens and 5,987 output tokens for each graph reason-
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ing question. Thus, comparing to other benchmark
methods, GRRAFy and GRRAF¢ achieve high
accuracy in graph reasoning tasks while utilizing
fewer token resources.

Since the largest graph in Graphlnstruct (Chen
et al., 2024) comprises of only 100 nodes, which
remains insufficient for real-world graph reason-
ing scenarios (Hu et al., 2024), we further evaluate
the best-performing method, GRRAFy, on large-
scale graphs. Following the approach of Hu et al.
(2024), we assess GRRAF on the shortest path
task using larger graphs with 20 test samples for
each graph size. Whereas their work scales graphs
to 1,000 nodes, we extend this evaluation by scal-
ing graphs to 10,000 nodes to thoroughly assess
the performance of GRRAFy. According to Fig-
ure 5, GRRAF achieves 100% accuracy across
all graph sizes, demonstrating its exceptional scal-
ability. GAR attains 100% accuracy on graphs
with 100, 200, and 500 nodes, but its accuracy de-
creases to 90% on graphs with 1,000 nodes. Due to
token limitations, GAR is unable to address ques-
tions on graphs with 2,000 nodes or more. In con-
trast, all three versions of GraphWiz perform poorly
on large graphs, achieving only 5-10% accuracy
on graphs with 100 nodes and failing entirely on
graphs with 200 nodes. The token limits of their
base model prevent them from processing graphs
larger than 200 nodes.

We also record the variation in token cost re-
quired to solve a single graph reasoning question
as the graph size increases on the shortest path task.
As illustrated in Figure 6, the number of tokens
used by GRRAF remains constant regardless of
the graph size. As detailed in Section 3, GRRAF in-
teracts with the graph solely via the graph database
through code execution; thus, the graph description
(nodes, edges, weights) is not directly input to the
LLM, and the token cost remains unaffected by
increases in graph size. In contrast, the token cost
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Figure 6: Average token cost for solving a graph rea-
soning problem across graphs of varying sizes on the
shortest path task.

Method Execution Error Time-out
GRRAFy 2.2% 5.4%
GRRAF¢ 4.9% 9.1%

Table 2: Percentage of graph reasoning questions over
10 tasks triggering error feedback loop due to execution
errors or time-outs for each method.

for GraphWiz increases linearly with graph size be-
cause it must pass the information of each node and
edge to the LLM. The token cost for GAR is con-
siderably higher than that for GRRAFy and grows
nearly exponentially with graph size. This is due
to GAR’s design, where each node is assigned an
LLM agent, and each agent communicates with ev-
ery adjacent agent in each iteration (Hu et al., 2024).
As the number of nodes increases, so do the number
of agents, the number of adjacent agents per node
(i.e., edges), and the number of iterations required
to obtain an answer, all of which contribute to a
significant rise in token cost. Therefore, compared
to other benchmarks, GRRAF can readily scale
to very large graphs (up to 10,000 nodes) without
compromising performance and increasing token
cost.

To evaluate the effectiveness of the error feed-
back loop, we quantify the total percentage of ques-
tions that activate this loop, as reported in Table 2.
In general, GRRAF triggers the error feedback
loop more frequently than GRRAF . For both vari-
ants, the loop is activated due to time-outs more
often than due to execution errors, underscoring
the importance of time efficiency in graph reason-
ing tasks. Overall, the backbone LLLM generates
correct code queries in most instances, and the in-
tegration of an error feedback loop with a time-out

mechanism further enhances code accuracy and
efficiency.

5 Conclusion

In this work, we introduced GRRAF, a novel frame-
work that integrates RAG with the code-writing
prowess of LLMs to address graph reasoning ques-
tions. Our approach, which operates without addi-
tional training or reliance on predefined algorithms,
leverages a graph database to store target graphs
and employs an error feedback loop with a time-out
mechanism to ensure the generation of correct and
efficient code queries. Comprehensive experiments
on the Graphlnstruct dataset and two extra tasks
(indegree and outdegree) demonstrate that GRRAF
outperforms existing state-of-the-art benchmarks,
achieving 100% accuracy on a majority of graph
reasoning tasks while effectively scaling to graphs
containing up to 10,000 nodes without incurring
extra token costs. These findings underscore the
potential of combining retrieval-based techniques
with LLM-driven code generation for solving com-
plex graph reasoning problems. Future work could
explore extending this framework to dynamic graph
scenarios and additional reasoning tasks, further
enhancing its applicability and robustness.

6 Limitations

Although GRRAF attains 100% accuracy on all
polynomial-time graph reasoning tasks, it nev-
ertheless struggles to solve NP-complete prob-
lems—such as subgraph matching—both accu-
rately and efficiently. Moreover, the inferior per-
formance of GRRAF relative to GRRAF  indi-
cates that our framework currently generates lower-
quality Cypher queries than the equivalent Python
code. These two issues constitute the primary limi-
tations of our method.
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Figure 7: Average accuracy of GRRAFy with different
time limit ¢.
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Figure 9: Average accuracy of GRRAFy with different
backbone LLM.

We perform sensitivity analyses on GRRAFy
to assess the impact of the time limit ¢, the max-
imum number of error-feedback loop iterations
n, and the choice of backbone LLM. We report
the average accuracy across all ten graph reason-
ing tasks. As shown in Figure 7, the accuracy
increases with ¢ up to five minutes, after which
no further gains are observed. Figure 8 indicates
that accuracy peaks at n = 3 and declines slightly
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for n > 3. Finally, we evaluated GRRAFy us-
ing three backbone LLMs—GPT-40, Claude-3.5-
Sonnet, and Llama3.1-405b-Instruct—and found
that all three yield comparable results, with GPT-40
achieving a slightly higher average accuracy than
the others (Figure 9).

B Example Code

This section presents example code generated by
GRRAFy for each graph reasoning task in our
experiments: cycle detection (Figure 10), connec-
tivity (Figure 11), bipartite graph check (Figure 12),
topological sort (Figure 13), shortest path (Figure
14), maximum triangle sum (Figure 15), maximum
flow (Figure 16), subgraph matching (Figure 17),
indegree calculation (Figure 18), and outdegree cal-
culation (Figure 19). All these examples produce
correct answers.

We also include in Figure 20 an example Cypher
query generated by GRRAF for the maximum-
flow task. Although this query attempts to imple-
ment the Ford—Fulkerson algorithm, it omits the
backward residual edges, preventing any rerouting
of earlier flows. Consequently, on certain edge
cases (e.g., the graph in Figure 21), it produces
incorrect results. Similarly, Figure 22 shows an
instance where GRRAF generates an incorrect
Cypher query for topological sorting. That query
builds a spanning tree rooted at a node of zero in-
degree to derive the ordering—a method that is
unsound and succeeds only by chance on some
graphs.
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Cycle Detection
try: # Attempt to find a cycle in the graph G
nx.find_cycle (G, orientation='ignore’)

answer = "Yes."
except nx.exception.NetworkXNoCycle:
answer = "No."

Figure 10: An example of the final code C” generated for the cycle detection task.

Connectivity
# Check if there is a path between node 8 and node 10 in the graph G
if nx.has_path(G, 8, 10):

answer = "Yes."
else:
answer = "No."

Figure 11: An example of the final code C” generated for the connectivity task.

Bipartite Graph Check
# Check if the directed graph G is bipartite
is bipartite = nx.is bipartite(G)
# Generate the answer string
answer = "Yes" if is_bipartite else "No"

Figure 12: An example of the final code C’ generated for the bipartite graph check task.

Topological Sort
# Assuming G is already defined and is a directed graph
# Find one topological sorting path of the graph
topological_order = list(nx.topological_sort(G))
# Convert the list to a string representation
answer = ' -> '.join(map(str, topological order))

Figure 13: An example of the final code C” generated for the topological sort task.

Shortest Path
# Calculate the shortest path weight from node 11 to node 4
shortest_path_length = nx.shortest_path length(G, source=11, target=4, weight="weight')
answer = shortest path_length

Figure 14: An example of the final code C” generated for the shortest path task.

Maximum Triangle Sum
from itertools import combinations
# Assume G is already defined as a directed graph
max_sum = -float ('inf’)
max_nodes = None
# Iterate over all combinations of three nodes in the graph
for nodes in combinations (G.nodes, 3):
a, b, ¢ = nodes
# Check if the three nodes are interconnected, i.e., all pairs have edges in both directions
if (G.has_edge(a, b) and G.has_edge(b, a) and G.has_edge(b, c) and G.has_edge(c, b) and G.has_edge(a, c) and
G.has_edge(c, a)):
# Calculate the sum of their weights
total weight = (G.nodes[a].get('weight', 0) + G.nodes[b].get ('weight', 0) + G.nodes[c].get ('weight', 0)
# Updgte the maximum sum and the corresponding node set if needed
if total weight > max_sum:
max_sum = total weight
max_nodes = nodes
# Generate the answer string with the maximum sum
answer = f”Answer is {max_sum}."

Figure 15: An example of the final code C’ generated for the maximum triangle sum task.

Maximum Flow
# Calculate the maximum flow from node 0 to node 8
flow _value, flow dict = nx.maximum flow(G, 0, 8)
# Store the result in the variable 'answer’
answer = str(flow_value)

Figure 16: An example of the final code C” generated for the maximum flow task.
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Subgraph Matching
from networkx.algorithms import isomorphism
import itertools
# First, try to find a subgraph isomorphic to G_prime using the standard DiGraphMatcher
matcher = isomorphism.DiGraphMatcher (G, G_prime)
if matcher.subgraph is_isomorphic() :
# We found a subgraph isomorphic to G _prime (this covers the node-induced scenario)
answer = "Yes, G_prime is a subgraph of G."
SISER
# If no node-induced subgraph match was found, we try edge-induced.
# An edge-induced subgraph of G is defined by a subset of edges of G.
# We must find a set of edges in G that, when taken alone (with their endpoints),
# forms a subgraph iscmorphic to G_prime.
# Get edges and nodes of G_prime for reference
G_prime edges = list(G_prime.edges())
G_prime edge_count = len(G_prime edges)
G_prime nodes = set(G_prime.nodes())
found_edge_induced = False
for edge_subset in itertools.combinations(G.edges(), G_prime_edge_count) :
# Build a subgraph of G induced by these edges
sub_nodes = set()
for u, v in edge_subset:
sub_nodes.add (u)
sub nodes.add (v)
# Create a new directed graph with just these edges
sub_G = G.subgraph (sub_nodes) .copy ()
# Remove all edges not in edge_subset
sub_G.remove_edges_from([e for e in sub_G.edges() if e not in edge_subset]
# Now check if sub_G is isomorphic to G_prime
test_matcher = isomorphism.DiGraphMatcher (sub_G, G_prime)
if test_matcher.is_isomorphic():
found_edge_induced = True

break
if found edge_ induced:
answer = "Yes, G_prime is a subgraph of G."
elger
answer = "No, G_prime is not a subgraph of G."

Figure 17: An example of the final code C” generated for the subgraph matching task.

Indegree Calculation
# Assuming G is already defined as a directed graph in the existing code
indegree node 5 = G.in degree (5)
answer =_f"{inegree_ngde_5}"

Figure 18: An example of the final code C” generated for the indegree calculation task.

Outdegree Calculation
# Calculate the outdegree of node 2
outdegree node_2 = G.out_degree (2
# Create a string with the result
answer = f“{outdeqree_node_Z}."

Figure 19: An example of the final code C’ generated for the outdegree calculation task.

Maximum Flow (Cypher)

" MATCH ()-[r:CONNECTS_ flow 8]->() SET r.flow = 0 ”

" // 1. Find any path from source (id=2) to sink(id=6

// where every edge still has spare capacity (weight > flow)

MATCH path = (source:Node flow 8 {id: 2})-[:CONNECTS_ flow 8*]->(sink:Node flow 8 {id: 6})
WHERE ALL(r IN relationships(path) WHERE r.weight > r.flow)

// 2. Compute the minimum “residual capacity” along that path
WITH
path,
REDUCE (
minCap = toFloat (INFINITY),
r IN relationships (path) |
CASE
WHEN (r.weight - r.flow) < minCap
THEN (r.weight - r.flow)
ELSE
minCap
END
) AS residualCapacity

// 3. RAugment: for each edge in the path, add the residualCapacity to its flow

WITH path, residualCapacity

UNWIND relationships (path) AS r

SET r.flow = r.flow + residualCapacity; "

" MATCH (source:Node_flow_B {id: 2})-[r:CONNECTS_flow_B]—>() RETURN SUM(r.flow) AS maxFlow "

Figure 20: An example of the final code C’ in Cypher query by GARRF¢ generated for the maximum flow task.
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Figure 21: An example directed graph with edge weights. The correct maximum flow from node 2 to 6 is 3 but the
Cypher query in Figure 20 returns 4 as the answer.

Topological Sort
// 1. Find all “root” nodes (nodes with no incoming CONNECTS_topology 0 edges)
MATCH (n:Node_topology 0)
WHERE NOT (n)<-[:CONNECTS topology 01-()

// 2. For each root, traverse a spanning tree following outgoing CONNECTS_topology 0 relationships
CALL apoc.path.spanningTree(
n,
{
relationshipFilter: 'CONNECTS_topology_0>',
labelFilter: 'Node_ topology 0',
bfs: false
}
) YIELD path

// 3. Extract all nodes from each tree path
WITH nodes (path) AS nds
UNWIND nds AS n

// 4. Deduplicate and collect the node IDs into a list (your “topoSort”
WITH DISTINCT n
RETURN collect(n.id) AS topoSort;

Figure 22: An example of the final code C’ in Cypher query by GARRF¢ generated for the topological sort task.
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