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Abstract

Fast and accurate monocular depth estimation on mobile

devices is a challenging task as one should always trade off

the accuracy against the inference time. Most monocular

depth methods adopt models with large computation over-

head, which are not applicable on mobile devices. How-

ever, directly training a light-weight neural network to esti-

mate depth can yield poor performance. To remedy this,

we utilize knowledge distillation, transferring the knowl-

edge and representation ability of a stronger teacher net-

work to a light-weight student network. Experiments on

Mobile AI 2021 (MAI2021) dataset demonstrate that our

solution helps increase the fidelity of the output depth map

and maintain fast inference speed. Specifically, with 94.7%

less parameters than teacher network, the si-RMSE of stu-

dent network only decrease by 10%. Moreover, our method

ranks second in the MAI2021 Monocular Depth Estima-

tion Challenge, with a si-RMSE of 0.2602, a RMSE of

3.25, and the inference time is 1197 ms tested on the Rasp-

berry Pi 4.

1. Introduction

Real-time monocular depth estimation on mobile devices

is a task in great demand. For example, accurate depth esti-

mation helps robots sense the surroundings. Meanwhile,

depth estimation is a preliminary task for many applica-

tions, such as semantic segmentation [7], bokeh effect ren-

dering [31], and relighting [15]. Many other applications

also need to be deployed on mobile devices like smart-

phones such as image enhancement [22]and super resolu-

tion [43]. However, most depth estimation methods adopt

convolutional neural networks (CNNs) with complex ar-

chitectures and large computation overhead, which makes

them infeasible for real-time depth estimation on mobile de-

vices due to the limited computing power.*
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Figure 1. Comparison of teacher and student networks. with

94.7% less parameters than teacher network, the RMSE of student

network only decrease by 10%, which can show the efficiency of

our knowledge distillation strategy. These metrics are defined in

section 4.1. (a) Number of parameters; (b) RMSE; (c) si-RMSE;

(d) rel.

A straightforward way to implement real-time depth es-

timation is to reduce the complexity of CNN. For dense pre-

diction tasks, most methods adopt a fully convolutional net-

work with an encoder and a decoder. One can apply light-

weight encoder and decoder, e.g., MobileNet [18] and its

variants [36], to extract features from input images. Model

complexity can also be reduced by pruning redundant pa-

rameters [14]. Nonetheless, trade-off always exists between

the accuracy and the efficiency. Directly training a light-

weight network can not obtain depth maps with high accu-

racy and fidelity. Naturally, we come to the question that

how we can take advantage of a complex and deep model

with strong capability to enhance the performance of a light-

weight network. To address this, in this paper, we trans-

fer the strong representation ability of a teacher network

to a light-weight student network via knowledge distilla-

tion [33]. Specifically, during training, the student network

learns to extract similar feature maps at different scales as



the teacher network does. We evaluate our method on Mo-

bile AI (MAI2021) dataset [2], and the results demonstrate

the knowledge distillation framework can improve the ac-

curacy of the light-weight student networks. With a re-

duction of 94.7% parameters, compared to teacher network,

the RMSE of student network only decrease by 10%. Our

method ranks second in the Mobile AI 2021 Monocular

Depth Estimation Challenge [19].

In summary, our main contributions are:

• We utilize knowledge distillation for fast and accurate

monocular depth estimation on mobile devices.

• We evaluate our method on MAI2021 dataset and show

the effectiveness of our method.

• We rank the second place in the MAI2021 Monocular

Depth Estimation Challenge.

2. Related work

In this section, we introduce some past research achieve-

ments on monocular depth estimation, knowledge distilla-

tion, and neural networks for mobile devices.

Monocular depth estimation Monocular depth estima-

tion has become an active field in computer vision in re-

cent decades. Its fundamental task is to recover the cor-

responding depth information from a single RGB three-

channel image captured by a monocular camera. At the

early stage, depth estimation is obtained by image retrieval.

Saxena et al. [37] extract hand-crafted features from in-

put images and select most similar samples from a pre-

collected database to obtain depth map patch by patch. Af-

ter that, with deep learning and convolutional neural net-

works achieving tremendous progress in many tasks (e.g.

classification, object detections), deep learning-based meth-

ods become the mainstream. Eigen et al. [11] first utilize the

power of deep learning to estimate depth maps and surpass

the previous methods by a large margin. A constellation of

learning-based method are purposed afterwards and achieve

higher accuracy and robustness. For example, Liu et al. [28]

combine convolutional neural networks (CNN) with con-

ditional random field (CRF) . They explore the unary and

pairwise potentials of the CRF using a unified CNN frame-

work. Li et al. [26] reckon depth estimation as a classifi-

cation task, where depth value at each pixel is discretized

into different classes. They predict the depth categories for

each pixel. They designed attention-based network archi-

tecture which can predict both indoor and outdoor scenes

quite well. Eigen et al. [10] simultaneously estimate depth

maps, surface normals and semantic labels using a com-

mon network architecture. Based on the residual learning

framework [13], Laina et al. [23] build a deeper network

and achieve high accuracy.

Besides works on network architectures, there have been

plenty of progress on other aspects of the learning-based

methods. For instance, Eigen et al. [11] present their scale-

invariant loss function aiming to measure depth relations

and accuracy , irrespective of the absolute global scale. .

Xian et al. [41] propose a new dataset with great images

diversity and dense depth labels. They also introduce an

improved ranking loss to solve the imbalanced ordinal re-

lations. Li et al. [27] use multi-view Internet images as

an unlimited data source and present a new dataset named

Megadepth with great amounts of photos in it. Ranftl et

al. [35] develop a method in which depth prediction mod-

els can be trained on mixed multiple datasets despite their

incompatible labels.

It is also worth noticing that some methods also take the

inference time and model complexity into account, which

makes them applicable on mobile devices like smart phones

or embedded systems. Ranftl et al. [35] achieve great suc-

cess dealing with the trade off between accuracy and speed.

Their Midas-v2.1 small achieve 30 FPS on iPhone 11. Fast-

Depth [40] is another exemplar in this field. They deploy

a real-time depth estimation method on embedded systems

by designing a efficient model architecture and a pruning

strategy to further reduce the model complexity. In our ap-

proach, we adopt the same network architecture as Fast-

Depth [40] and apply knowledge distillation on it to im-

prove its performance.

Knowledge distillation Reducing the model complexity

and computation overhead while maintaining the perfor-

mance has long been a popular topic. One feasible way

is to simplify the model, e.g., pruning the redundant pa-

rameters [14], model quantization [34]. Here, we focus on

an elegant way called knowledge distillation, which is first

purposed by Hinton et al. [16]. Knowledge distillation aims

at transferring knowledge from a cumbersome teacher net-

work to a compact student network. This training strategy

was initially designed for image classification and gradu-

ally transferred to other tasks such as semantic segmenta-

tion [29], objection detection [6] and depth prediction [33].

At the early stage, the pixel-wise distillation strategy was

mainly utilized to distill the class probabilities distribution

for each pixels. Shen et al. [30] expand pixel-wise distilla-

tion to pair-wise distillation and holistic distillation. They

purpose a generic structured knowledge distillation frame-

work for dense prediction tasks. In holistic distillation part,

they use conditional generative adversarial learning [32]

and introduce the discriminator to formulate the holistic dis-

tillation problem. We mainly refer to [30] and [33] to build

our own training framework.

Neural networks for mobile devices There have been

lots of effort in designing efficient networks for mobile
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Figure 2. The overview of our method. The above network represents the student model while the below stands for the teacher model. We

build our distillation strategy between the decoders of two networks. Meanwhile, we build the scale invariant loss and gradient matching

loss between the student model output and ground-truth.

devices. These networks with extraordinary architectures

pave the way of many real-time tasks on mobile de-

vices. MobileNet-V1 [18] reduces the parameters by 31.9
times compared to VGG16 [38] by replacing the standard

convolutions with the depth-wise separable convolutions.

MobileNet-V2 [36] introduces the inverted residuals and

linear bottlenecks structure. To further show the potential of

MobileNet V2, the original model is developed to an object

detection framework SSDLite and a light-weight seman-

tic segmentation framework DeepLab-V3 [8]. MobileNet

V3 [17] utilizes neural architecture search (NAS) [12] to

search optimal architectures, and achieves 3.2% higher top-

1 accuracy than MobileNet-v2 on ImageNet [9]. Efficient-

Net [39] is another popular network for mobile devices,

which mainly focuses on model scaling on convolutional

neural networks.They design their baseline network and

scale it up to get a series of models by using ConvNet scal-

ing for three dimensions of network: width, depth, and reso-

lutions. In our solution, we compare the performance of dif-

ferent compact student networks and submit the MobileNet-

NNConv5 network architecture [40] as our final student

model.

Running Deep Neural Networks on mobile devices De-

spite the computational power of mobile devices, e.g., smart

phones, tablets, has increased rapidly, many applications

based on deep neural networks are not executed on mobile

devices directly. Because the computation overhead of un-

optimized models is too large even for high-end devices.

Thus, a constellation of attempts has been made for acceler-

ation. CNNdroid [24] purposes a GPU-accelerated library

for the CNNs. SoC manufacturers also develop their own

SDKs for deep neural networks, e.g., SNPE [3] from Qual-

comm, HiAI platform [1] from HiSilicon and NeuroPilot

from MediaTek. [25]. In order to simplify the optimiza-

tion process, TensorFlow Lite [4] provides a series of opti-

mized kernels, pre-fused activations. Besides, TensorFlow

Lite can convert the model pretrained by TensorFlow [5] to

.tflite format, which can be easily used for inference on mo-

bile devices. AI benchmark [21] comprehensively analyzes

the acceleration techniques for mobile devices and establish

a benchmark to evaluate the efficiency and performance of

different chipsets. Readers can refer to [21] and [20] for

more details.

3. Our method

Fig. 2 gives an overview of our method. Our method

consists of two networks: a teacher network with strong ca-

pability and a compact student network. During training,

we adopt 3 different loss functions: pairwise loss, gradient



matching loss and scale invariant loss. Under the supervi-

sion of the pairwise loss between the feature maps of two

networks, the representation ability of our teacher network

is transferred to the student network via knowledge distil-

lation. Scale-invariant loss and gradient matching loss are

adopted to measure the discrepancy between the estimated

depth map and the ground truth depth map. During infer-

ence, only the light-weight student network are needed. The

rest part of this section discusses each part in details.

3.1. Networks description

In this section, we introduce the architecture of our stu-

dent network and teacher network in details. The two net-

works share similar architecture with an encoder and a de-

coder.

Student Network For student network, we adopt the

same model architecture as FastDepth [40], which is de-

signed for embedded systems. As shown in Fig. 3, the stu-

dent network has a typical encoder-decoder structure with

skip connections. We adopt MobileNet [18] as the back-

bone to extract features, which use depthwise and pointwise

convolution to reduce the computation overhead and num-

ber of parameters.

The decoder gradually upsamples the feature maps ex-

tracted by the encoder and outputs an estimated density map

which has the same resolution as the input image. As the en-

coder reduces the resolution by 32×, the decoder includes 5

blocks. In each block, the number of channels is halved and

the spatial resolutions of feature maps are doubled. Like

many methods designed for dense prediction, skip connec-

tions are used between the encoder and decoder, as they are

conducive to combining the high-level semantic informa-

tion with low-level image details.

Given an input image I , the student network output a

estimated depth map as d̂s = Fs(I, θs), where θs denotes

the parameters of the student network, and d̂s denotes the

estimated depth map.

Teacher Network Similar to the student network, feature

maps in the encoder are merged to the decoder with skip

connections. We adopt the same feature fusion operation

as Xian et al. [41], where the feature maps from the en-

coder are first processed by a residual convolution module

and then merged into feature maps of the decoder by addi-

tion. The spatial resolution of the fused feature maps are

doubled by bilinear interpolation. At the final stage, the

feature maps are fed into an adaptive output module and the

estimated depth maps are obtained. In practice, we test a

series of backbone, and adopt ResNeSt-101 [42] as the en-

coder for its superior performance.

We denote the teacher network as Ft(I). Ft transfer the

input image I into a depth map d̂t by d̂t = Ft(I, θt), where

θt denotes the parameters of the teacher network.

3.2. Knowledge distillation

Knowledge distillation aims at transferring the represen-

tation ability of the teacher network to the student network.

Targeting this, the student network are taught to output fea-

ture maps similar to the counterparts in the teacher network.

We mainly refer to Pilzer et al. [33] and Liu et al. [30] to

build our knowledge distillation strategy. To be specific,

given the teacher network Ft and the student network Fs,

we extract a series of intermediate feature maps from Ft

and Fs, i.e., Mt from the teacher network and Ms from the

student network. Then we select K pairs of feature maps

{Mt,i,Ms,i}, i = 1, 2, · · · ,K, to construct a knowledge

distillation framework.

During training, a pairwise distillation loss Lpa is de-

signed as optimization target, which will be discussed in

section 3.3. The total distillation loss function can be de-

noted by

Ld =

K
∑

i=1

Lpa (Mt,i,Ms,i, θs) (1)

In practice, we train the teacher network on MAI2021

dataset and select a model with best performance on the val-

idation set. When training the student network, the param-

eters of the teacher network are fixed and the feature maps

are extracted to calculate the distillation loss Ld. Only the

parameters of student network are updated by optimizing

the overall loss function 1.

3.3. Loss functions

Scale-invariant loss We adopt scale-invariant loss pur-

posed by Eigen et al. [11] to measure the discrepancy be-

tween the output of the student network and the ground

truth depth map without being disturbed by the difference

in scales. Given the predicted depth map d ∈ R
H×W and

the ground truth depth map d∗ ∈ R
H×W , each with n pixels

indexed by i, scale-invariant loss Ls is defined as

Ls (d, d
∗, θs) =

1

n

∑

i

g2i −
1

n2
(
∑

i

gi)
2, (2)

Where gi = log di − log d∗i . gi denotes the pixel-wise dif-

ference between the predicted and ground truth depth map

in log space.

Gradient matching loss Only applying scale-invariant

loss is not enough to train a network which outputs high-

quality depth maps. Thus, gradient matching loss [35] is

adopted to force the network to output depth map with sharp

edges and smooth internal areas, which coincide with the

ground truth depth maps. Gradient matching loss Lgml is
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Figure 3. The architecture of student network and teacher network. (a) The network architecture of our light-weight student model. We use

MobileNet as encoder to extract features. The decoder contains 5 layers that consists of depthwise separable convolution to half the number

of channels and bilinear interpolation to double the spatial resolution. The skip connection is used to recover the detailed information. (b)

The architecture of our teacher model. We select ResNeSt-101 as encoder as its strong feature extraction capability. As for its decoder, we

mainly adopt the feature fusion block and the adaptive output block to recover the depth map from feature maps obtained by the encoder.

defined as:

Lgml (d, d
∗, θs) =

1

M

K
∑

k=1

M
∑

i=1

(|∇k
xW

k
x |+ |∇k

yW
k
y |), (3)

where ∇k
x and ∇k

y denotes the gradient of the prediction re-

sults in x and y direction, respectively. We select 4 different

levels of depth map resolution indexed by k. For each res-

olution, we calculate the gradient of ground truth and the

prediction results and convert the gradient of ground truth

in x and y direction to weight W k
x and W k

y .

Pairwise distillation loss Pairwise distillation loss [30]

supervises the knowledge transfer process by comparing the

feature maps of the teacher network and the student net-

work. Assume that we have a pair of feature maps, includ-

ing feature maps mt ∈ R
h×w×c1 from the teacher net and

feature maps ms ∈ R
h×w×c2 from the student net. Note

that these two feature maps must have the same spatial res-

olution. The pairwise distillation loss Lpa is calculated in

two steps. First, affinity maps are built for these two fea-

ture maps. Then, in the second step, we compute the mean

square error between the affinity maps of the two feature

maps as defined by

Lpa(ms,mt) =
1

w × h

∑

i

∑

j

(asij − atij)
2, (4)

where aij denotes the element in the affinity maps.

Overall loss function The over all loss function can be

defined as follows:

L(I, d∗, θs) =λs · Ls (d, d
∗, θs) + λgml · Lgml(d, d

∗, θs)

+λd · Ld(Mt,Ms, θs),
(5)

where λs, λgml and λpa are pre-defined weights for differ-

ent loss functions.



Figure 4. The visualizations of our method. For each image, from left to right alternating: input RGB image, the prediction result of our

student model and the result of teacher model.

4. Experiments

In this section, we introduce our experiments and ana-

lyze their results to demonstrate the effectiveness of our so-

lution. First, we define the evaluation metrics and elaborate

the dataset. Then the detailed results of ablation study and

accuracy evaluation are given. We also evaluate the infer-

ence time on mobile devices to show that our method can

obtain high-throughput depth estimation on mobile devices.

4.1. Experiments setup

Dataset The MAI2021 Monocular Depth Dataset is pro-

posed by MAI2021 Monocular Depth Estimation Chal-

lenge. It includes 7385 RGB images of outdoor scene and

the corresponding depth maps. The pixel values of depth

maps are in uint16 format ranging from 0 to 40000, which

represent depth values from 0 to 40 meters. In our experi-

ments, we randomly select 6725 images as the training set

and the other 660 images as the validation set to evaluate

the performance of our models.

Evaluation metrics We use si-RMSE, RMSE and rel to

evaluate the accuracy of estimated depth map. If we denote

di as the prediction depth map and d∗i as the ground-truth,

these three metrics are defined as:

gi = log di − log d∗i

si-RMSE =

√

√

√

√

1

n

∑

i

(gi)2 −
1

n2

[

∑

i

(gi)

]2

, (6)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(di − d∗i )
2
, (7)

rel =
1

n

∑

i

|di − d∗i |

d∗i
. (8)

4.2. Quantitative results

Our method rank the second in Mobile AI 2021 monoc-

ular depth estimation challenge. The preliminary competi-

tion results are shown in Tab. 1. The username of our team

is KX SMART. Teams are sorted according the submission

score, which takes both the accuracy and the inference time

into account. The inference time is tested on a Raspberry Pi

4. Our method achieves a moderate balance between accu-

racy and inference time.

4.3. Ablation study

4.3.1 Effectiveness of knowledge distillation

In this section, we show how the knowledge distillation

strategy improves the performance of the student network.

As shown in Tab. 2, baseline means the student network

MobileNet-NNConv5 is directly trained on the training set

with scale-invariant loss and gradient matching loss and the



Table 1. The result of Mobile AI 2021 monocular depth estimation challenge.

Username si-RMSE RMSE rel Runtime (ms) Submission Score

Parkzyzhang 0.2836 3.56 0.2690 97 129.41

KX SMART 0.2602 3.25 0.2678 1197 14.51

dujinhua 0.2408 3.00 0.2389 1933 11.75

root12321 0.2449 3.02 0.2648 2130 10.08

Jacob.Yao 0.2902 3.91 0.4700 1275 8.98

helloworld3 0.3128 3.89 0.3228 958 8.74

jey 0.2761 9.68 0.9951 2531 5.5

zhyl 0.2332 2.72 0.2189 6146 4.11

weichi 0.4659 7.56 0.5992 582 1.72

shayanj 0.3543 4.16 0.3862 3466 1.36

fanhuanhuan 0.2678 5.96 0.5152 26494 0.59

faustChok 0.3737 9.08 0.8573 9392 0.38

baseline+KD means the same model is trained using scale-

invariant loss, gradient matching loss and knowledge distil-

lation. The knowledge distillation framework improved the

si-RMSE from 0.295 to 0.281.

Table 2. With/without knowledge distillation

Method si-RMSE RMSE rel

baseline 0.295 4.042 0.276

baseline+KD 0.282 3.951 0.263

4.3.2 Comparison of different teacher networks

To find a teacher network with higher performance, we

compare the performance of teacher network with differ-

ent backbones. As shown in Tab. 3, we evaluate ResNeSt-

101 [42], EfficientNet-B7 [39], and ResNet-101 [13]. Ac-

cording to the result, we choose ResNeSt-101 as the back-

bone of our teacher network, which achieves the best accu-

racy on the MAI2021 dataset with a si-RMSE of 0.242 and

a rel of 0.223.

Table 3. Teacher networks with different backbones

Teacher Net si-RMSE RMSE rel

ResNet-101 0.340 5.720 0.329

EfficientNet-B7 0.264 5.829 0.235

ResNeSt-101 0.242 3.545 0.223

4.3.3 Comparison of different student networks

In this section, we compare the performance of different

backbones on the student networks. We keep the teacher

model and distillation strategy fixed and compare the accu-

racy of different student networks. The results are shown in

Tab. 4. MobileNet-NNConv5 obtains the highest accuracy

among all the models, with a si-RMSE of 0.282 and a rel of

0.263.

Table 4. Different backbones on the student networks.

Student Net si-RMSE RMSE rel

MobileNet-V2 0.330 5.81 0.485

EfficientNet-B0 0.295 3.996 0.267

MobileNet 0.282 3.951 0.263

4.4. Inference time

To verify that our method can achieve high-throughput

monocular depth estimation on mobile devices. We convert

our model to TensorFlow-Lite and test the inference time on

a smartphone with multiple processors include Snapdragon

888 andKirin 970 . We test the model using AI Bench-

mark [20]. The resolution of input and output images is

640 × 480, and the data type is float (32 bit). As shown

in Tab. 5, our student network with MobileNet as backbone

can obtain high-throughput inference with about 20 fps on

smart phones with Snapdragon 888 processor.

Table 5. Inference time of our student network(AI Benchmark)

SoC Device Average/ms STD/ms

Snapdragon 888 CPU 102.00 4.02

Snapdragon 888 GPU Delegate 46.90 0.79

Kirin 970 CPU 261.00 4.20

Kirin 970 GPU Delegate 76.80 5.84

5. Conclusion

We have introduced knowledge distillation for fast and

accurate depth estimation on mobile devices. By knowl-

edge distillation, we transfer the knowledge from a stronger

teacher network to a lightweight student network, maintain-

ing the performance while reducing the inference time. Ex-

haustive visualizations and ablation studies are presented to

validate and demonstrate the effects of our method.
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