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Abstract

From scientific experiments to online A/B testing, the previously observed data1

often affects how future experiments are performed, which in turn affects which2

data will be collected. Such adaptivity introduces complex correlations between3

the data and the collection procedure. In this paper, we prove that when the data4

collection procedure satisfies natural conditions, then sample means of the data5

have systematic negative biases. As an example, consider an adaptive clinical trial6

where additional data points are more likely to be tested for treatments that show7

initial promise. Our surprising result implies that the average observed treatment8

effects would underestimate the true effects of each treatment. We quantitatively9

analyze the magnitude and behavior of this negative bias in a variety of settings. We10

also propose a novel debiasing algorithm based on selective inference techniques.11

In experiments, our method can effectively reduce bias and estimation error.12

1 Introduction13

Much of modern data science is driven by data that is collected adaptively. A scientist often starts off14

testing multiple experimental conditions, and based on the initial results may decide to collect more15

data points from some conditions and less data from other settings. A sequential clinical trial initially16

groups the participants into different treatment regimes, and depending on the continuous feedback,17

may reallocate participants into the more promising treatments. In e-commerce, companies often use18

online A/B tests to collect user data from multiple variants of a project, and could adaptively collect19

more data from a subset of the variants (multi-arm bandit algorithms are often used here to decide20

which variant to collect data from as a function of the data log history).21

The key characteristic of adaptively collected data is that the analyst sequentially collects data from22

multiple alternatives (e.g. different treatments, products, etc.). The choice of which alternative to23

gather data from at a particular time depends on the previously observed data from all the options.24

The collected data could be used in many different ways. In some settings, the analyst simply wants25

to use it to identify the single best alternative, and may not care about the data beyond this goal (this26

setting motivates many bandit problems). In many other settings, the data itself could be used to27

estimate various statistical parameters. In the sequential clinical trial example, many scientists would28

like to use the data to estimate the effects of each of the treatments. Even if the company sponsoring29

the trials may care most about identifying the best treatment, other scientist using the data may care30

about the effect size estimates of other treatments in the data for their own applications.31

Our contributions. We study the problem of estimation using adaptively collected data. We prove32

that when the adaptive data collection procedure satisfies two natural conditions (precisely defined in33

Sec. 2), then the sample mean of the collected data is negatively biased as an estimator for the true34

mean. This means that the effect size empirically observed is systematically less than the true effect35
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size for every alternative. We provide intuition for this counter-intuitive result, and compare and36

analyze the magnitude of this negative bias across different conditions and collection procedures. We37

then propose a novel randomized algorithm called the conditional Maximum Likelihood Estimator38

(cMLE) based on selective inference to reduce this ubiquitous bias, and compare it a simple approach39

using an independent set of held-out data. We validate the performance of our bias-reduction40

algorithm in extensive experiments. All the proofs and additional experiments are in the Appendix.41

Related works. Multi-arm bandits and its variations are extensively studied in machine learning.42

The goal of our work is different from that of the standard bandit setting. In bandits, the data sampled43

from an arm (i.e. one of the alternatives) is considered a reward and the objective is to design adaptive44

algorithms to pick arms so to maximize total reward (or minimize regret). Our goal is not to design45

such algorithms and we are agnostic to the reward. We take the perspective of an analyst who is given46

such an adaptively collected dataset and wants to estimate statistical parameters.47

Xu et al [20] empirically observed estimation bias due to selection in specific multi-arm bandit48

algorithms. They were primarily interested in estimating the values of the top two arms, and used49

data splitting with a held-out set in their experiments to reduce bias. We are the first one to rigorously50

prove that such underestimation is a general phenomenon. Our cMLE approach builds upon recent51

advances in selective inference [15, 18], which derives valid confidence intervals accounting for52

selection effects of the algorithm. Selective inference has been applied to regression problems (e.g.53

LASSO, Stepwise regression), and has not been considered for the adaptive data collection setting54

before. We build upon results from recent developments in this area [18, 17, 9].55

The problem of selection bias has been extensively studied, especially in the context of Winner’s56

Curse in genetic association studies [10]. There is no adaptive data collection component to this57

selection bias; rather the bias arise from selective reporting. There is a related line of recent work [6]58

[13] in adaptive data analysis that is complementary to ours. There the data is fixed (and is typically59

i.i.d.) and the adaptivity is in the analyst. In contrast, in our work the data collection itself is adaptive.60

2 Adaptive data collection has negative bias61

Model of adaptive data collection. We haveK unknown distributions that we would like to collect62

data from. There are T rounds of data collection and at round t ∈ [T ] the distribution st ∈ [K] is63

selected, and we draw X
(st)
t , an independent sample, from st. The data collection procedure can64

be modeled by a selection function st = f(Λt), where Λt is the history of the observed samples65

up to time t. More precisely, let X(k)
i denote the i-th sample from distribution k and N (k)

t denote66

the number of times that distribution k is sampled by round t, which could be a random variable,67

then Λt = {{X(1)
1 , ..., X

(1)

N
(1)
t

}, ..., {X(K)
1 , ..., X

(K)

N
(K)
t

}}. The history of distribution k up to round t68

is denoted by Λ
(k)
t = {X(k)

1 , ..., X
(k)

N
(K)
t

}. We use Λ
(−k)
t to denote the history up to round t of all69

the distributions except for the k-th one; Λ
(−k)
t = {{X(i)

1 , ..., X
(i)

N
(K)
t

}}i∈[K]\k. We allow f to be a70

randomized function, and will sometimes write f(Λt, ω), where ω ∈ Ω is a random seed, to highlight71

this randomness. Let X(k)
t ≡

∑N
(k)
t

i=1 X
(k)
i

N
(k)
t

denote the sample average of distribution k at round t.72

Appendix B gives examples of the selection function f .73

Many adaptive data collection procedures correspond to a selection function f that satisfies two74

natural properties: Exploit and Independence of Irrelevant Option (IIO). Exploit means that all else75

being equal, if distribution k is selected in a scenario where it has lower sample average, then k would76

also be selected in a scenario where it has higher sample average. IIO means that if distribution k is77

not selected then the precise values observed from k does not affect which of the other distribution is78

selected. We precisely define these two properties next.79

Definition 1 (Exploit). Given any t ∈ [T ], k ∈ [K], realization Λ
(−k)
t and random seed ω. Suppose80

Λ
(k)
t and Λ

′(k)
t are two sample histories of distribution k of length n with sample meansX(k)

t ≤ X
′(k)
t .81

Then f(Λ
(k)
t ∪ Λ

(−k)
t , ω) = k implies f(Λ

′(k)
t ∪ Λ

(−k)
t , ω) = k. In words, Exploit states that given82
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(a) lil’ UCB, µ scale = 1 (b) lil’ UCB, µ scale = 3 (c) Greedy, µ scale = 1

Figure 1: In (a-b), we plot the bias of the empirical mean estimates of three unknown distributions
running lil’ UCB with horizon T=500. Each is distributed according to N (µi, 1), specified in the
legends of the plot. We see that as we scale up µi’s, so they become more spread out, the bias
increases/decreases depending how far the µi’s are from each other, and what is the order of the
distributions. (c) plots the bias of the three unknown distributions running Greedy.

the same context specified by Λ
(−k)
t and ω, if k is selected when it has smaller sample mean then it83

should also be selected when it has a larger mean.84

Exploit captures the intuition that when we are looking for options that work well, we are more likely85

to try out the options that show more promise early on. It’s easy to show that examples of standard86

multi-arm bandit algorithms all satisfy Exploit (see Proposition. 1).87

Definition 2 (Independent of Irrelevant Options (IIO)). Given any t ∈ [T ] and k ∈ [K]. Let88

Λt = Λ
(k)
t ∪ Λ

(−k)
t and Λ′t = Λ

′(k)
t ∪ Λ

(−k)
t , i.e. Λt and Λ′t have the same histories for distributions89

i 6= k and could have arbitrary histories for distribution k. Then ∀ i 6= k,90

Pr [f (Λt) = i|f (Λt) 6= k] = Pr [f (Λ′t) = i|f (Λ′t) 6= k] .

In words, so long as k is not chosen, which other distribution is selected depends only on the history91

Λ
(−k)
t of those distributions.92

Estimation bias. In this paper, we are interested in the fundamental problem of estimating the93

true mean, µk = E[X(k)], of each of the distributions given a sample history dataset, ΛT , which is94

collected through an adaptive procedure. This models the adaptive clinical trials example, where the95

scientist is interested in estimating {µk}k∈[K], the true effects of the treatments. Of course, if the96

scientist can collect her own data, she could just collect a non-adaptive set of samples and obtain97

unbiased estimates of {µk}k∈[K]. However, in many settings like the clinical trials, the scientist does98

not collect the data; rather it is adaptively collected by a pharmaceutical company with a different99

objective of finding an optimal treatment or demonstrating efficacy. The simplest and most common100

approach is to use the sample average X(k)
T to estimate the true mean µk. Our main result shows101

that in expectation, the sample average underestimates the true mean if f satisfies Exploit and IIO:102

E
[
X

(k)
T

]
≤ µk,∀k ∈ [K].103

Theorem 1. Suppose X(k), k ∈ [K] is a sample drawn from a distribution with finite mean µk =104

E[X(k)], and the selection function f satisfies Exploit and IIO. Then ∀k and ∀T , E
[
X

(k)
T

]
≤ µk.105

Moreover, the equality holds only if the number of times distribution k is selected, N (k)
T , does not106

depend on the observed history Λ
(k)
T of k.107

Many standard multi-arm bandit algorithms can be modeled by a selection function f that satisfies108

Exploit and IIO. While Greedy (defined in Appendix B) only has sample mean as its input, upper109

confidence bound (UCB) type algorithms also account for the number of observations and give110

preference for the less explored distributions. lil’ UCB is the state-of-the-art UCB algorithm [11] and111

its details are presented in Appendix A.112

Proposition 1. lil’ UCB, Greedy, ε-Greedy are all equivalent to selection functions f(Λt) that satisfy113

Exploit and IIO.114
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In Appendix I, we extend Proposition 1 to Thompson Sampling [16, 1]. When K = 2, we do not115

need the IIO condition in order for the bias to be non-positive.116

Proposition 2. Suppose X(1), X(2) are samples drawn from distributions with finite means µ1, µ2117

and the selection function f satifies Exploit. Then for k ∈ {1, 2} and all T , E
[
X

(k)
T

]
≤ µk.118

Moreover the equality holds only if the number of times distribution k is selected, N (k)
T , does not119

depend on observed values Λ
(k)
T of k.120

We empirically characterize the bias in Figure 1. See Appendix C for more detailed descriptions of121

experiment setups, and an analytic example with explicit bias.122

3 Debiasing algorithms and experiments123

Data splitting A simple approach to obtain unbiased estimators of µk’s is to split the data. Let k124

be the distribution the selection function f chooses at time t. Instead of taking one sample from k,125

we maintain a "held-out" set by taking an additional independent sample from k. We use the first126

samples as the sample history for f which determines the future selections, and use the "held-out" set127

composed of the second samples for mean estimation. Since the "held-out" set is composed of i.i.d.128

samples that are independent of the selection process, its sample average is an unbiased estimate of129

µk. However, if the total number of samples collected is fixed at T rounds, then data splitting suffers130

from high variance, since half of all the samples are discarded in estimation.131

Conditional Maximum Likelihood Estimator (cMLE) Data splitting is a general approach since132

it is agnostic to the selection function f . If we know the f used to collect the data, then more powerful133

debiasing could be achieved by explicitly condition on f and the observed data in a maximum134

likelihood framework. Consistency results have been proved in [18, 12]. To illustrate this approach,135

we consider the special case where the decision on which distribution to sample at round t is based136

on comparing the decision statistics of the form,137

Ut
∆
= (U(X

(1)
t , N

(1)
t ), . . . , U(X

(K)
t , N

(K)
t )). (1)

Ut depends only on the empirical average X(k)
t ’s and the number of samples N (k)

t ’s for k ∈ [K].138

In other words, the selection function f depends on the history of rewards Λt only through Ut. In139

Greedy, U(X
(k)
t , N

(k)
t ) = X

(k)
t , while in UCB type algorithms, U (k)

t will be the upper confidence140

bounds that depend on both X(k)
t ’s and N (k)

t ’s, where U (k)
t is shorthand for U(X

(k)
t , N

(k)
t ).141

Theorem 2. Suppose the distributional function for distribution k has density hθ(k) , then the condi-142

tional likelihood of the adaptive data collection problem is proportional to143

p(ΛT | st, t = 1, . . . , T ) ∝
K∏
k=1

N
(k)
T∏

m=1

hθ(k)(X
(k)
m ) ·

T−1∏
t=K

Pr [f(Ut) = st+1 | Ut] . (2)

To maximize the conditional likelihood, we need to solve the following optimization problem,144

max
θ

K∑
k=1

N
(k)
T∑

m=1

log
[
hθ(k)(X

(k)
m )

]
+

T−1∑
t=K

log

[
Pr [f(Ut) = st+1 | Ut]

]
− logZ(θ), (3)

where θ = (θ(1), . . . , θ(K)) are the parameters of interest and Z(θ) is the partition function in145

Eqn. (2), that only depends on the parameters θ.146

Theorem 2 gives an explicit form for the likelihood function of the adaptive data collection problem147

(up to a constant). We give a proof of Theorem 2 in Appendix D, and give examples of computing148

the conditional likelihood functions of common bandit algorithms in Appendix E149

We solve the cMLE optimization problem using contrastive divergence [4]. The details of the150

algorithm is in the Appendix G. The computational bottleneck of the optimization is in evaluating151

Pr [f(Ut) = st+1 | Ut], because it can induce singularities along the hard boundaries in the sample152

space. Details see Appendix F. To overcome this difficulty, we introduce additional randomization153

when selecting a distribution.154
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Table 1: Bias reduction. With K = 5, each distribution is drawn from N (µi, 1). where µ1 =
1.0, µ2 = 0.75, µ3 = 0.5, µ4 = 0.38, µ5 = 0.25. In the left columns under each algorithm, we
record the bias of the original algorithm at different time steps T . In the right columns, we record the
percentage of the original bias that still remains after we run cMLE by adding gumbel noise εg ∼ Gτ ,
with scale parameter τ = 1.0, and contrastive divergence with 600 gradient descent iterations. All
results are averaged across 1000 independent trials.

lil’ UCB ε-Greedy
orig. cMLE orig. cMLE

T=20 -0.32 14.9% -0.31 9.1%
T=40 -0.35 14.2% -0.27 8.8%

Adding additional noise to the sample values to improve cMLE optimization We propose
adding Gumbel noise to the decision statistics Ut to smooth out Pr [f(Ut) = st+1 | Ut] (Details see
Appendix G). For lil’ UCB or Greedy, we can compute Ut deterministically from Xt and Nt. The
selection function after Gumbel randomization is defined as

f(Ut) = arg max
k

U
(k)
t + ε

(k)
t , ε

(k)
t

iid∼ Gτt ,

where Gτ is a Gumbel distribution of mean 0 and scale parameter τ .155

We summarize the debiasing procedure in Algorithm 1.

Algorithm 1 Algorithm for debiasing adaptive data collection

Add Gumbel noise when choosing which distribution to sample from. Instead of applying the
selection function directly to Ut, we apply it to

(U
(k)
t + ε

(k)
t ), k = 1, . . . ,K

where ε(k)
t

iid∼ Gτt .
Compute conditional likelihood by computing the selection probabilities,

Pr
εt

[f(Ut) = st+1 | Ut] .

Note that here f also incorporates the randomness of Gumbel randomizations {ε(k)
t }k∈[K] as well

as the randomness in the original bandit algorithm.
Compute cMLE using approximate gradient descent with contrastive divergence.

156

Table 2: Mean Squared Error(MSE) reduction Same experiments as in Table 1. The leftmost
columns under each algorithm is the MSE of the original algorithm. The second to the left columns
are the MSE percentage ratio of the data splitting with a held-out set compared to the MSE of
the original algorithm. The right columns are the MSE percentage ratio of the cMLE algorithm
after debiasing compared to the MSE of the original algorithm. For ε-Greedy, we additionally run
propensity matching (prop). Note that both data splitting and prop suffer from high variance despite
achieving consistent estimation.

lil’ UCB ε−Greedy
orig. held cMLE orig. held prop cMLE

T=20 0.57 112% 99% 0.52 123% 401% 94%
T=40 0.54 104% 52% 0.39 135% 312% 62%

Debiasing experiments We empirically show that the cMLE algorithm can reduce bias significantly157

and reduce the mean squared error (MSE) as well. In Table 1, we see significant bias reduction for158

the lil’ UCB and ε-Greedy using the cMLE debiasing algorithm, in the K = 5 cases, where K is the159

number of distributions. More extensive experiments for lil’ UCB and ε-Greedy, along with Greedy160

and Thompson Sampling are included in Appendix H and Appendix I. Table 2 show the reduction of161

MSE. The data splitting algorithm achieves consistent estimates, but it incurs high variance since162
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the effective sample size is halved by maintaining a held-out set. Empirically we observe that data163

splitting suffers from high MSE. All experiments use gradient descent learning rate η = 0.01, 30164

steps of MCMC (with the first half of the steps as burn-in), 600 gradient descent iterations, and165

have adjusted the stepsize of MCMC to ensure the acceptance ratio is between 20% − 50%. The166

convergence of the mean estimates with gradient descent is shown in Figure 2(f) in Appendix C. We167

see that cMLE significantly reduces the bias, while improving the MSE. We also experimented with168

propensity matching, a commonly used method that weights each observed value of a distribution by169

one over the probability that this distribution is selected [3]. Propensity matching is unbiased, but has170

very large variance and thus a much greater MSE by several fold compared to cMLE. We discuss it in171

more detail in Appendix H.172

4 Discussion173

Our main result shows that adaptively collected data is negatively biased when the data collection174

algorithm f satisfies Exploit and IIO. This seems counterintuitive at first because we typically175

associate optimization (as in exploitative algorithms) with a positive selection bias ala Winner’s176

Curse. For example, if we draw 10 samples from N (0, 1) and report the max, then we have positive177

reporting bias. The reason between these phenomena is that for any sample history of data, the “best”178

option k’s sample mean is likely to be larger than its true mean. However who is the “best” varies in179

different sample path, and the bias of every k is negative in expectation.180

We explored data splitting and cMLE as two approaches to reduce this bias. Data splitting is unbiased181

but suffers larger MSE because it ignores half of the samples during estimation. cMLE can reduce bias182

close to 0 while also reducing MSE. The trade-off is that it requires specific knowledge about f and183

also requires one to add additional noise to the collected data. Both approaches requires modifying the184

data collection procedure and cannot be generically applied to debias existing adaptively collected data.185

Considering that adaptively collected data is ubiquitous, developing flexible debiasing approaches to186

debias existing data is an important direction of future research.187
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A lil’ UCB Algorithm236

lil’ UCB Algorithm is proposed by [11], and achieves optimal regret. It has become one of the most237

popular upper confidence bound type algorithms.238

In lil’ UCB, the selection function239

f(Λt) = arg max
k

X
(k)
t + (1 + β)(1 +

√
ε)

√√√√2(1 + ε) log( log((1+ε)n)
δ )

N
(k)
t

(4)

where ε, δ, β are lil’ UCB hyperparameters as specified in [11].240

B Examples for the selection function f241

The simplest example of adaptive data collection is the Greedy algorithm. In Greedy, at round t,
the selection function chooses to sample the distribution from which we have observed the highest

empirical mean. Then f(Λt) = arg maxk∈[K]X
(k)
t . Often in practice, a randomized version of

Greedy, called ε-Greedy, is also used. In ε-Greedy with probability ε we uniformly randomly select a
distribution and with probability 1− ε, we perform Greedy. This corresponds to the selection

f(Λt, ω) =

{
arg maxk∈[K]X

(k)
t , if ω > ε

k, k ∈ [K] if ε
K · (k − 1) < ω < ε

K · k

where ω ∼ Unif[0, 1]. All the algorithms used for multi-arm bandits can be modeled as a selection242

function f .243

C Quantitative characteristics of bias244

Analytic example with explicit bias. Consider the setting where K = 2, X(1) ∼ Bern(µ1) and245

X(2) ∼ Bern(µ2), with µ1 ≥ µ2. A greedy data collection procedure is to draw one sample from246

each distribution in the first two rounds, and at T = 3 sample from the distribution with the larger247

sample. In the event of a tie, i.e. both samples are 0 or 1, then distribution 1 is selected for T = 3 by248

default. We can explicitly compute the bias of each arm at T = 3.249

bias1 ≡ E
[
X

(1)
3

]
− µ1 = −1

2
µ1(1− µ1)µ2 (5)

bias2 ≡ E
[
X

(2)
3

]
− µ2 = −1

2
µ2(1− µ2)(1− µ1). (6)

When 0 < µ1, µ2 < 1, both biases are strictly negative.250

Note that the distribution with the highest mean does not always have the least bias. Using Eqn. 5, the251

ratio of the biases is bias1

bias2
= µ1

1−µ2
. Therefore bias2 is worse than bias1 when µ1, µ2 are both close252

to 1, and bias1 is worse than bias2 when µ1, µ2 are both close to 0. This point is further illustrated253

empirically in Figure 2(d) in the Gaussian case.254

The insight from our proof of Theorem 1 is that the bias of distribution k at time t should be large if255

how likely we are to choose k in the future (after t) is sensitive to the value X(k)
t . This sensitivity256

increases if there is consequential competition for distribution k at time t, i.e. if there are other257

distribution(s), i, whose empirical average X(i)
t is in some middle range from the empirical average258

of distribution k. When they are too far apart, the particular sample values drawn from k are not259

consequential to the chance of it getting sampled again. If they are too close, having one bad sample260

value also does not affect the chance of k being drawn as much. It is only when the distance between261

the distribution means are in some middle range, does it incur the most negative bias. We demonstrate262

the above remarks empirically in the next section.263
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(a) lil’ UCB, µ scale = 1 (b) lil’ UCB, µ scale = 2 (c) lil’ UCB, µ scale = 3

(d) Greedy, µ scale = 1 (e) # future samples drawn given
bias at t=100, with horizon T=1000

(f) cMLE debiasing

Figure 2: In (a-c), we plot the bias of the empirical mean estimates of three unknown distributions
running lil’ UCB with horizon T=500. Each is distributed according to N (µi, 1), where µi is the
mean of the i-th distribution, specified in the legends of the plot. We see that as we scale up µi’s, so
they become more spread out, the bias increases/decreases depending how far the µi’s are from each
other, and what is the order of the distributions. (d) plots the bias of the three unknown distributions
running Greedy. (e) plots the number of future samples drawn from distribution 1 given its bias at
t = 100, running lil’ UCB. Here T=1000 with two distributions, N (2, 1) and N (1.5, 1). This is a
scatter plot over 1000 independent trials. (f) plots the bias as the estimate of the mean converges to
the true mean across 600 gradient descent iterations

Experiments quantifying negative bias. We explore the effects on the bias from moving the264

distribution means apart. We used the lil’ UCB algorithm, with algorithm specific parameters265

α = 9, β = 1, ε = 0.01, δ = 0.005, which are the same as in the experiment section of [11]. We ran266

1000 independent trials, with horizon T = 500. We have three unknown distributions, all of the form267

N (µi, 1), with µ1 = 2, µ2 = 1.5, µ3 = 1. In this experiment, we scale the µ’s by a scaling factor of268

1, 2, 3, and observe the bias of the empirical mean estimates of the three distributions. In Figure 2(a)269

(b) (c), we plot the bias with the number of rounds.270

We first observe all distributions have negatively biased estimates of their true means. Further, the271

distribution with the second best mean has worse bias as we scale up the µ’s. We hypothesize the272

exact sample values we receive from this distribution matter a lot more when it is farther from the273

distribution with the highest mean. When they are close together, having one bad sample value does274

not affect its chance of being sampled again as much as when their means are further apart. On the275

other hand, for the distribution with the lowest true mean, we observe its bias becomes worse first and276

then better as we scale up the µ’s. The reason why it goes down first is the same as why the second277

best distribution has worse bias as µ scales up - that is, they are both in the consequential competition278

regime. However, as we further scale up the µ’s, the bad sample values from the distribution with279

the lowest mean does not affect its future chances of being drawn much more than the good samples280

values, since its true mean is far from the distribution with the highest mean.281

Next we compare lil’ UCB with Greedy, see subfigure (a) and (d) in Figure 2. First, we observe that282

with Greedy in our setting, the empirical mean estimates for distribution with the lowest mean has283

the least bias, followed by the distribution with the highest true mean. This is an example in which284

the distribution with the highest mean might not incur the least bias. With lil’ UCB, the bias for the285

distribution with the highest true mean converges to 0 quickly, but with Greedy it plateaus. In lil’286

UCB, since it achieves optimal regret, the algorithm finds the distribution the highest true mean in287

finite number of time steps. The samples we get from that distribution become close to i.i.d. samples288
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as t increases, since the effect of the competition from other arms is reduced over time. In Greedy289

it’s known that the algorithm can be stuck on drawing from a suboptimal distribution, in which case290

the empirical average of the particular samples we have drawn from the distribution with the highest291

true mean must have a negative bias for this to happen. The bias of the best distribution thus doesn’t292

converge to 0.293

Figure 2(e) shows at round step t = 100 with horizon T = 1000, running lil’ UCB with the same294

hyperparameters in the same setting as in Figure 2(a), we plot the number of future samples drawn295

from the distribution with the highest mean (i.e. µ = 2.0) vs. the bias from the empirical average of296

samples drawn so far from this distribution at time t = 100. This confirms our intuition that large297

negative bias is correlated with fewer future chances of getting sampled.298

D Proofs of the main results299

Proof of Theorem 1. Without loss of generality, we focus on showing that distribution 1 has negative300

bias. The argument applies directly to every other distribution. For a given history Λt, f(Λt) is301

a random variable over [K]. We define two independent random variables based on f(Λt). Let302

g(Λt) be a binary random variable such that Pr[g(Λt) = 1] = Pr[f(Λt) = 1] and Pr[g(Λt) =303

0] = Pr[f(Λt) 6= 1]. Let h
(

Λ
(−1)
t

)
be a random variable with support {2, ...,K}, such that for304

k ∈ {2, ...,K},305

Pr
[
h
(

Λ
(−1)
t

)
= k

]
= Pr[f(Λt) = k|f(Λt) 6= 1] =

Pr[f(Λt) = k]∑K
i=2 Pr[f(Λt) = i]

.

Note that f satisfies IIO implies that the law of h is only a function of Λ
(−1)
t , which is the history306

only of the distributions 2, ...,K up to time t. It’s clear that distribution selection by st+1 = f(Λt) is307

equivalent to (i.e. have the same law as)308

st+1 =

{
1, if g(Λt) = 1.

k, if g(Λt) = 0, h(Λ
(−1)
t ) = k, k ∈ [2,K].

(7)

Since this equivalence holds for every t, the adaptive data collection procedure is defined by the309

independent random variables g(Λt) and h(Λ
(−1)
t ).310

To study distribution 1 we condition on the realization Θ, where Θ includes the realizations of311

distributions k for k ∈ {2, ...,K} and T random seeds for g and h, {ωg,t, ωh,t}Tt=1. More precisely,312

Θ = {{x(k)
t }Tt=1, {ωg,t, ωh,t}Tt=1, k ∈ [K]}, where x(k)

t is a realized value of a sample drawn from313

distribution k at round t. Then given any realization of distribution 1, σ = (σ1, σ2, . . . , σT ), σi ∈ R,314

conditioning on Θ induces a deterministic mapping S(σ) = (t1, ..., tT ), where ti is a positive integer315

corresponding to the time when the i-th sampling of distribution 1 occurs. Note that ti ∈ [T ] ∪ ∗,316

where ti = ∗ indicates that the i-th pull occurs after time T . Since all the other distribution’s317

realization and randomness are fixed, ti is a deterministic function of (σ1, ..., σi−1). Let t̃j indicate318

the round at which distribution 1 is not selected the j-th time, then IIO implies st̃j = h(Λ
(−1)

t̃j−1
, ωh,j).319

Which distribution among 2, . . . ,K is selected is determined by Λ
(−1)

t̃j−1
, which is the history of320

distributions 2, . . . ,K up to time t̃j − 1. Note that st̃j is a function of ωh,j not ωh,t̃j ; i.e. the random321

seeds ωh,j is only used when distribution 1 is not selected. From this observation, we see an important322

property of conditioning on Θ.323

Property 1. If t̃j indicate the round at which distribution 1 is not selected for the j-th time, then324

the history Λ
(−1)

t̃j
is completely determined by the index j.325

Our goal is to show that for an arbitrary realization Θ, E
[
X

(1)
T |Θ

]
≤ µ1. Then it would follow326

that E
[
X

(1)
T

]
≤ µ1. As we discussed above, after conditioning on Θ, the data collection procedure327

is equivalent to a mapping S((σ1, ..., σT )) = (t1, ..., tT ). For a given path σ = (σ1, ..., σT ), let328

nσ = |{ti : ti ≤ T}| be the number of times distribution 1 is selected by round T . S depends on Θ,329
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but we’ll not write this explicitly to simplify notation. Moreover, Pr[σ|Θ] = Pr[σ] since the values330

of distribution 1 is independent of the realizations of the other distributions and the randomness in331

the selections. Therefore,332

E
[
X

(1)
T |Θ

]
=
∑
σ

Pr[σ]

∑nσ
i=1 σi
nσ

.

Our proof strategy is to show that any mapping S from paths σ to sets of times (t1, ..., tT ) which333

satisfies Exploit condition must have bias ≤ 0. It suffices to consider the mapping S corresponding334

to the largest E
[
X

(1)
T |Θ

]
and still satisfies Exploit. We show that such a mapping S must have335

the property that nσ is the same constant for all path σ. For such an S, it is immediate that336

E
[
X

(1)
T |Θ

]
= µ1.337

Suppose for a maximal mapping S, nσ differs for different σ. Let l be the largest integer for which338

there exists two paths σ and σ′ such that σi = σ′i for i < l and nσ 6= nσ′ . So σ and σ′ agree up to339

the l − 1st drawing of distribution 1. We denote α ≡ σl and α′ ≡ σ′l; without loss of generality we340

can assume α < α′.341

Property 2. The fact that l is the largest such index implies that if σ′′ is any other path such that342

σ′′i = σi for i ≤ l then nσ′′ = nσ . Similarly if σ′′i = σ′i for i ≤ l then nσ′′ = nσ′ .343

There are two possible cases and we show that they both lead to contradictions. This would complete344

the proof by contradiction.345

Case 1: nσ > nσ′ . Consider the two path λ = (σ1, ..., σl−1, α, λl+1, ..., σT ) and λ′ =346

(σ1, ..., σl−1, α
′, λl+1, ..., λT ), where λl+1...λT is some arbitrary fixed string of realizations. Prop-347

erty 2 implies that nλ = nσ > nσ′ = nλ′ . Under the mapping S, λ and λ′ maps onto two sets of348

times {tλ,i}Ti=1 and {tλ′,i}Ti=1, where tλ,i (resp. tλ′,i) is the round at which distribution 1 is drawn349

the i-th time under the realization λ (resp. λ′). Since at least the first l− 1 terms of λ and λ′ are equal,350

at least the first l terms of tλ,i and tλ′,i are equal. Let l1 > l be the first index where tλ,l1 < tλ′,l1 .351

There must exist such a l1 in order for nλ > nλ′ .352

Consider the round t∗ = tλ,l1 − 1. The histories up to round t∗ of paths λ and λ′, i.e. Λ
(−1)
λ,t∗ and353

Λ
(−1)
λ′,t∗ , are identical because in both paths distribution 1 has been selected l1 − 1 times by round354

t∗ (by Property 1). Moreover the empirical average of distribution 1 under λ is strictly lower than355

the average under λ′. Exploit property states that g(Λλ,t∗ , ωg,t∗) = 1 = f(Λλ,t∗ , ωg,t∗) implies356

f(Λλ′,t∗ , ωg,t∗) = 1 = g(Λλ′,t∗ , ωg,t∗). This implies that tλ,l1 = tλ′,l1 , contradicting tλ,l1 < tλ′,l1 .357

Therefore the scenario nσ > nσ′ is not possible if f satisfies Exploit. Note that for any Λt, we can use358

the same probability space Ω for g(Λt) and f(Λt) such that {ω : g(Λt, ω) = 1} = {ω : f(Λt, ω) =359

1}.360

Case 2: nσ < nσ′ . By Property 2, all the path where the first l terms are σ1...σl−1α have nσ total361

number of draws. The contribution of these paths to the average X(1)
T is362

E
[
X

(1)
T |Θ, σ1, ..., σl−1, α

]
=

∑l−1
i=1 σi + α+ (nσ − l)µ1

nσ
.

Similarly, all the path where the first l terms are σ1...σl−1α
′ have nσ′ total number of draws. The363

contribution of these paths to the average X(1)
T is364

E
[
X

(1)
T |Θ, σ1, ..., σl−1, α

′
]

=

∑l−1
i=1 σi + α′ + (nσ′ − l)µ1

nσ′
.

Since
∑l−1
i=1 σi+α

l <
∑l−1
i=1 σi+α

′

l , we must have either of the following hold:365

1.
∑l−1
i=1 σi+α

l < µ1. If this holds true, then the paths where the first l terms are σ1...σl−1α366

can have m instead of nσ total number of draws, where nσ < m ≤ nσ′ . Note that367
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∑l−1
i=1 σi+α+(nσ−l)µ1

nσ
<

∑l−1
i=1 σi+α+(m−l)µ1

m . This modification preserves Exploit property368

while increasing E
[
X

(1)
T |Θ, σ1, ..., σl−1, α

]
, and thus increasing the E

[
X

(1)
T |Θ

]
of S. This369

contradicts the assumption that S is the maximal mapping.370

2.
∑l−1
i=1 σi+α

′

l > µ1. If this holds true, then the paths where the first l terms are σ1...σl−1α
′371

can have m′ instead of nσ′ total number of draws, where nσ ≤ m < nσ′ . Note that372 ∑l−1
i=1 σi+α

′+(nσ′−l)µ1

nσ′
<

∑l−1
i=1 σi+α

′+(m−l)µ1

m . This modification preserves Exploit prop-373

erty while increasing E
[
X

(1)
T |Θ, σ1, ..., σl−1, α

′
]
, and thus increasing the E

[
X

(1)
T |Θ

]
of374

S. This contradicts the assumption that S is the maximal mapping.375

The case analysis proves that in order for S to be the mapping corresponding to the maximal
[
X

(1)
T |Θ

]
376

it must assign the same constant nσ for all path σ, i.e. the number of times distribution 1 is selected377

does not depend on its observed values. Such a mapping is unbiased:
[
X

(1)
T |Θ

]
= µ1.378

Proof of Proposition. 1. For any algorithm with the following form of the selection function,379

f
(

Λ
(k)
t ∪ Λ

(−k)
t

)
= arg max

k∈[K]

U
(k)
t

(
X

(k)
t , N

(k)
t , ω

)
, (8)

such that conditioning on Λ
(k)
t and Λ

′(k)
t with N (k)

t = N
′(k)
t , and X(k)

t < X
′(k)
t , and fixing Λ

(−k)
t380

and ω, we have U (k)
t (X

(k)
t , N

(k)
t , ω) < U

′(k)
t (X

′(k)
t , N

′(k)
t , ω), then it satisfies Exploit by definition.381

We show lil’ UCB, Greedy, and ε-Greedy can all be written in the form of Eqn. 8.382

In lil’ UCB,383

U
(k)
t

(
X

(k)
t , N

(k)
t , ω

)
= U

(k)
t

(
X

(k)
t , N

(k)
t

)
= X

(k)
t + (1 + β)(1 +

√
ε)

√√√√2(1 + ε) log( log((1+ε)n)
δ )

N
(k)
t

(9)

where ε, δ, β are lil’ UCB hyperparameters as specified in [11]. In Greedy,384

U
(k)
t (X

(k)
t , N

(k)
t , ω) = U

(k)
t (X

(k)
t ) = X

(k)
t (10)

In ε-Greedy,385

U
(k)
t (X

(k)
t , N

(k)
t , ω) =

{
X

(k)
t , if ω > ε

− if ω < ε
(11)

In Eqn. 11, when ω < ε, since we condition on ω, it is trivially true that f(Λ
(k)
t ∪Λ

(−k)
t ) = k implies386

f(Λ
(k)
t ∪Λ

(−k)
t ) = k. In all of the above algorithms, U (k)

t monotonically increases as X(k)
t increases,387

conditioning on ω and Nt(k) fixed. Thus all three algorithms satisfy Exploit.388

lil’ UCB and greedy trivially satisfy IIO because they are deterministic algorithms. For ε-Greedy,389

conditioning on f(Λt) 6= k and f(Λt) 6= k, and Λ
(−k)
t , if ω < ε, then f(Λt, ω) is determined by390

Λ
(−k)
t . If ω > ε, then all the K − 1 arms are uniformly chosen in both cases.391

Proof of Proposition. 2. Without loss of generality, we focus on showing that distribution 1 has392

negative bias. We modify the arguments used to prove Theorem 1. To study distribution 1 we393

condition on the realization Θ, where Θ includes the realization of distribution 2 and T random394

seeds for f , {ωt}Tt=1. Then given any realization of distribution 1, σ = (σ1, σ2, ..., σT ), σi ∈ R,395

conditioning on Θ induces a deterministic mapping S(σ) = {t1, ..., tT }, where ti is a positive integer396

corresponding to the time when the i− th pull of distribution 1 occurs. Note that ti ∈ [T ] ∪ ∗, where397

ti = ∗ indicates that the i-th pull occurs after time T . Since the realizations of distribution 2 and the398

randomness in f are fixed, ti is a deterministic function of {σ1, ..., σi−1}. We also have the following399

property as a consequence.400
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Property 1. If t̃j indicate the j-th time where distribution 2 is selected, then the history Λ
(2)

t̃j
is401

completely determined by the index j.402

The rest of the proof is identical to the proof of Theorem 1.403

Proof of Theorem 2. The conditional likelihood is related to the original likelihood via selective404

likelihood ratio (LR) .405

LR(U | st, t = 1, . . . , T ) ∝
T−1∏
t=K

Pr [f(Ut) = st+1 | Ut] , (12)

where U = (Ut)
T
t=1. The index starts from K because we always draw samples from each distri-406

bution once in the beginning. The probability is taken over the extra randomness in the selection407

function f , fixing the decision statistics Ut’s and the sequence of choices st’s. Moreover, note that408

conditioning on the sequence of distribution to select st’s means we are also fixing Nt’s as they are409

equivalent.410

Using the change of variable formula and the selective likelihood ratio in Eqn. 12, we have

pΛT (ΛT | st, t = 1, . . . , T )

=pU(U | st, t = 1, . . . , T )× | detJΛT→U|
=hU(U)LR(U | st, t = 1, . . . , T )× | detJΛT→U|
=hΛT (ΛT )× | detJU→ΛT

| × LR(U | st, t = 1, . . . , T )× | detJΛT→U|

=hΛT (ΛT )×
T−1∏
t=K

Pr [f(Ut) = st+1 | Ut] ,

where JΛT→U is the Jacobian matrix for the map from ΛT → U. hΛT (ΛT ) is the unconditional411

likelihood of the data generating distribution. Note the last equation is due to that there is an invertible412

(linear) map between ΛT and U.413

Finally, we note that the unconditional distribution of ΛT is

hΛT (ΛT ) =

K∏
k=1

N
(k)
T∏

m=1

hθ(k)(X
(k)
m )

and the selective likelihood ratio is proportional to the right-hand-side of Eqn.12.414

E Examples of computing the conditional likelihood415

Here are some examples of computing the explicit forms of the conditional likelihood. We see from416

Eqn. 2 that it suffices to compute the selective likelihood ratios through Eqn. 12 for the different417

algorithms. The explicit form of the conditional likelihood for Thompson Sampling can be found in418

Appendix I.419

1. Additive Gumbel randomizations for Greedy or lil’ UCB algorithms: per Lemma 1,

Pr [f(Ut) = k | Ut] =
exp

[
U

(k)
t /τt

]
∑K
i=1 exp

[
U

(i)
t /τt

] ,
2. ε-Greedy:

Pr
[
f(Xt) = k

]
=

ε

K
+ (1− ε)I

(
arg max

i
X

(i)
t = k

)
.

ε-Greedy + Gumbel: the selection function will be

f(Xt) =

{
arg maxkX

(k)
t + ε

(k)
t , w.p. 1− ε

chooses k uniformly at random w.p. ε
, ε

(k)
t

iid∼ Gτt .
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and the selection probabilities are

Pr
[
f(Xt) = k

]
=

ε

K
+ (1− ε) · exp[X

(k)
t /τt]∑K

i=1 exp[X
(i)
t /τt]

.

We see that with Gumbel randomization, the only difference is that we replace argmax with420

the softmax function.421

F Details on the computational difficulty of evaluating the selection422

likelihood423

As an example, in Greedy,424

Pr [f(Ut) = st+1 | Ut] = I
(

arg max
k

X
(k)
t = st+1

)
(13)

which means to compute the cMLE, we need to maximize the log-likelihood in a constrained425

region of the sample space. However, since the comparisons are made on the sample average426

Xt =
(
X

(1)
t , . . . , X

(K)
t

)
, it induces a complicated constrained region on the sample history ΛT .427

Optimization on such a region is no easy task. Moreover, since the hard-max function induces428

singularity along the boundary of the constrained region, the cMLE will be ill-behaved, c.f. [18, 12].429

To overcome this difficulty, we introduce additional randomization when selecting a distribution.430

G Optimization the cMLE with contrastive divergence431

As stated above, Theorem 2 gives an explicit formula for likelihood function up to a normalizing432

constant (partition function). Since it is infeasible to get an explicit formula for this partition function,433

we use Contrastive Divergence (CD) proposed in [4] for solving the Maximum Likelihood Estimation434

problem.435

To maximize the log-likelihood,

max
θ

log p(ΛT | st, t = 1, . . . , T ; θ)

we compute its approximate gradient descent using CD. Suppose

p(ΛT | st, t = 1, . . . , T ; θ) =
`(ΛT | st, t = 1, . . . , T ; θ)

Z(θ)
,

then the approximate gradient step for θ would be

θi+1 = θi + η

(
∂`

∂θ

∣∣∣∣
ΛT

− ∂`

∂θ

∣∣∣∣
Λ′T

)
,

where Λ′T is a single step of MCMC from the density p(ΛT | st, t = 1, . . . , T ; θi), η is the step436

size. Contrastive Divergence can be seen as a form of stochastic gradient descent where the gradient437
∂ logZ(θ)

∂θ = EΛT

[
∂`
θ

]
is approximated by a single sample from the MCMC chain. In practice, to438

stabilize the gradient, we may take multiple samples from the MCMC chain and average the gradient439

to reduce variance.440

The following is the algorithm for finding the (conditional) MLE using Contrastive Divergence,441

Gumbel noise is chosen so that442

Pr [f(Ut) = k | Ut] =
exp[U

(k)
t /τt]∑K

i=1 exp[U
(i)
t /τt]

, (14)

due to the Gumbel-max trick [8] (also see Lemma 1 in Appendix G). Eqn. 14 is smooth and is much443

easier to optimize over compared to Eqn. 13. Similarly, we can also add Gumbel noise to ε-Greedy to444

derive smooth conditional probabilities.445

With these smooth Pr [f(Ut) = k | Ut], we can now optimize the cMLE Eqn. 3 using contrastive446

divergence[4].447
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Algorithm 2 Algorithm for computing cMLE for adaptive data collection

Initialize θ0 =
(
X

(1)
T , . . . , X

(K)
T

)
to be the empirical means.

repeat
Obtain MCMC samples (Λ

′(1)
T , . . . ,Λ

′(R)
T ) from the density in Eqn. 2 at θi, where R is the

number of MCMC samples we take.
Update θ through the gradient step,

θi+1 = θi + η

(
∂`

∂θ

∣∣∣∣
ΛT

− 1

R

R∑
r=1

∂`

∂θ

∣∣∣∣
Λ
′(r)
T

)
,

i 7→ i+ 1
until θi converges

Lemma 1 (Gumbel-Max trick). For any fixed vectors U = (U (1), . . . , U (K)) ∈ RK , we have

Pr
ε

[
arg max

i
U (i) + ε(i) = k

]
=

exp(U (k)/τ)∑K
i=1 exp(U (k)/τ)

,

where ε(k) iid∼ Gτ , where Gτ is Gumbel distribution with scale τ .448

Proof. Let t(x) = exp(−x/τ), then we have449

Pr
ε

[
U (k) + ε(k) > U (i) + ε(i), i 6= k

]
= Pr
ε(k)

 ∏
1≤i≤K,i6=k

e−t(U
(k)+ε(k)−U(i))


=

∫
ε(k)∈R

exp

− ∑
1≤k≤K,i6=k

t(U (k) + ε(k) − U (k))

 1

τ
t(ε(k))e−t(ε

(k))dε(k)

=

∫
ε(k)∈R

exp

(
−

K∑
i=1

t(ε(k) + U (k) − U (i))

)
1

τ
t(ε(k))dε(k)

=

∫
ε(k)∈R

exp

(
−t(ε(k))

K∑
i=1

t(U (k) − U (i))

)
1

τ
t(ε(k))dε(k)

=−
0∫

−∞

exp

(
−s

K∑
i=1

t(U (k) − U (i))

)
ds

=
1∑K

i=1 t(U
(k) − U (i))

=
eU

(k)/τ∑K
i=1 e

U(i)/τ
.

450

H More extensive debiasing experiments451

H.1 Propensity Matching452

Propensity Matching [3] is an unbiased estimator that is commonly used in selection functions that453

make choices based on the probability of selecting a distribution, such as in EXP3 suggested by [2].454

The estimator achieves consistent estimates by455

ˆX(k) = I (f(Λt) = k) ·
X

(k)

N
(k)
t

Pr[f(Λt) = k]
. (15)
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Table 3: Bias reduction. With K = 2, each distribution is drawn from N (µi, 1). where µ1 =
1.0, µ2 = 0.75. With K = 5, each distribution is drawn from N (µi, 1). where µ1 = 1.0, µ2 =
0.75, µ3 = 0.5, µ4 = 0.38, µ5 = 0.25. In the left columns under each algorithm, we record the bias
of the original algorithm at different time steps T . In the right columns, we record the percentage of
the original bias that still remains after we run cMLE by adding gumbel noise εg ∼ Gτ , with scale
parameter τ = 1.0, and contrastive divergence with 600 gradient descent iterations. All results are
averaged across 1000 independent trials.

lil’ UCB ε-Greedy (ε = 0.1) Greedy
orig. cMLE orig. cMLE orig. cMLE

T=8,K=2 -0.26 6.2% -0.25 7.3% -0.29 2.8%
T=16,K=2 -0.29 5.2% -0.25 1.6% -0.32 8.3%
T=20,K=5 -0.32 14.9% -0.31 9.1% -0.35 18.0%
T=40,K=5 -0.35 14.2% -0.27 8.8% -0.37 15.9%

Table 4: Mean Squared Error(MSE) reduction Same experiments as in Table 3. The leftmost
columns under each algorithm is the MSE of the original algorithm. The middle columns are the
MSE percentage ratio of the data splitting with a held-out set compared to the MSE of the original
algorithm. Note that despite data splitting achieves consistent estimates, it has very high variance
because it uses half of the sample size for estimation. The right columns are the MSE percentage
ratio of the cMLE algorithm after debiasing compared to the MSE of the original algorithm.

lil’ UCB ε−Greedy(ε = 0.1) Greedy
orig. held-out cMLE orig. held-out cMLE orig held-out cMLE

T=8,K=2 0.56 108% 86% 0.51 123% 76% 0.56 108% 78%
T=16,K=2 0.50 101% 40% 0.38 123% 52% 0.53 107% 45%
T=20,K=5 0.57 112% 99% 0.52 123% 94% 0.59 111% 89%
T=40,K=5 0.54 104% 52% 0.39 135% 62% 0.54 107% 52%

for any t ∈ [T ], and k ∈ [K]. This estimator also suffers from high variance, as observed in456

Table 2. Additionally, this estimator is only relevant to be applied if the selection function f outputs a457

probability distribution over which one of the K distributions to select at each timestep.458

H.2 Additional Results459

Here we include additional results with K = 2 and K = 5 arms, as well as the results of the Greedy460

algorithm.461

I Extensions to Thompson Sampling462

Thompson Sampling is another common bandit algorithm [16, 1]. We extend Proposition. 1 to463

Thompson sampling, and then show how to apply cMLE, and finally show empirical results.464

I.1 Extension of Proposition. 1 to Thompson Sampling465

Lemma 2. For Thompson sampling, we impose the following constraints. Let {θ(k)
i } be a set of M466

parameters that are updated after each pull of arm k. Let F
θ
(k)
i

be the CDF of θ(k)
i . Assume it’s467

strictly monotonic and continuous, and for any q1, · · · , qM ∈ [0, 1]468

E
[
X(k)|F−1

θ
(k)
1 |X

(k)
t

(q1), · · · , F−1

θ
(k)
M |X

(k)
t

(qM )

]
> E

[
X(k)|F−1

θ
(k)
1 |X

(k)′
t

(q1), · · · , F−1

θ
(k)
M |X

(k)′
t

(qM )

]
(16)

if X
(k)

t > X
(k)′

t . Then Thompson sampling is also equivalent to selection function f(Λt, ω =469

{qi}Mi=1) that satisfies Exploit and IIO.470

16



Proof. Since we condition on a fixed realization of q1, · · · , qM drawn for each arm at each time471

it receives a pull, given Equation (??) is satisfied, Exploit is trivially satisfied. For IIO, since the472

posterior of θ(k)
i is a deterministic function of the history Λi, it is also trivially satisfied.473

I.2 cMLE for Thompson Sampling474

For Thompson sampling:

Pr
[
f(Xt) = k

]
= Pr

µ̂t

[
µ̂

(k)
t > µ̂

(j)
t , j 6= k

]
,

where µ̂(k)
t ∼ N(µ

(k)
t , σ

(k)2
t ). Unfortunately, because the µ̂’s have different means and variances, the

above probability will not have a closed form expression. Numerical evaluations can be expensive.
To address this difficulty, we can instead condition on the observed expected posterior reward µ̂’s
which determines the choice zt. The conditional likelihood would then be proportional to

K∏
k=1

N
(k)
T∏

m=1

fθ(k)(X
(k)
m )

T−1∏
t=K

K∏
k=1

φ

(
µ̂

(k)
t − µ

(k)
t

σ
(k)
t

)
,

where φ(·) is the PDF of the standard normal distribution.475

For Thompson + Gumbel, additional Gumbel noises are added to the expected reward µ̂(k)
t ’s. In

other words, the selection function will be

f
(
(µt, σ

2
t )
)

= arg max
k

µ̂
(k)
t + ε

(k)
t , µ̂

(k)
t ∼ N(µ

(k)
t , σ

(k)2
t ), ε

(k)
t

iid∼ Gτt .

the conditional likelihood is proportional to

K∏
k=1

N
(k)
T∏

m=1

fθ(k)(X
(k)
m )

T−1∏
t=K

K∏
k=1

φ

(
µ̂

(k)
t − µ

(k)
t

σ
(k)
t

)
T−1∏
t=K

exp[S
(zt+1)
t /τt]∑K

i=1 exp[S
(i)
t /τt]

,

where the softmax terms come from the additional Gumbel randomizations.476

I.3 Experimental results477

We compare the bias and MSE of the original Thompson Sampling (TS) algorithm, and the debiased478

results after running cMLE. The debiasing runs 3000 gradient descent steps, 30 steps of MCMC with479

the first half as burn-in. The scale of the Gumbel distribution is 1.0.

Table 5: In the left table, we compare the bias of the original Thompson Sampling (TS) algorithm
and the bias after running cMLE, for K=2 and K=5 arms, with different stopping values T. The left
column is the bias of the original algorithm, and the right column is the percentage of bias that is left
after running cMLE. In the right table, we compare the MSE of the original algorithm, data splitting
(held-out), and cMLE. We see that data splitting suffers from high variance, and cMLE improves
MSE.

TS
orig. cMLE

T=24,K=2 -0.19 18.7%
T=32,K=2 -0.17 20.5%
T=60,K=5 -0.23 37.3%
T=80,K=5 -0.11 28.8%

TS
orig. held-out cMLE

T=24,K=2 0.32 130.0% 90.0%
T=32,K=2 0.28 110.0% 77.0%
T=60,K=5 0.34 123.0% 85.0%
T=80,K=5 0.16 125.0% 62.0%

480
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