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ABSTRACT

We use empirical methods to argue that deep neural networks (DNNs) do
not achieve their performance by memorizing training data, in spite of overly-
expressive model architectures. Instead, they learn a simple available hypothesis
that fits the finite data samples. In support of this view, we establish that there are
qualitative differences when learning noise vs. natural datasets, showing that: (1)
more capacity is needed to fit noise, (2) time to convergence is longer for random
labels, but shorter for random inputs, and (3) DNNs trained on real data exam-
ples learn simpler functions than when trained with noise data, as measured by
the sharpness of the loss function at convergence. Finally, we demonstrate that
for appropriately tuned explicit regularization, e.g. dropout, we can degrade DNN
training performance on noise datasets without compromising generalization on
real data.

1 INTRODUCTION

Zhang et al.| (2017) show that deep neural networks (DNNs) can be trained to fit random labels,
and note that this poses a challenge for traditional theories of generalization based on measures of
capacity. Based on their findings, they suggest that “brute-force memorization” may be part of an
effective learning strategy for DNNs on real data, implying that generalization and memorization
are not necessarily opposed. We argue this is not the case, and support our view by demonstrating
qualitative differences in learning random noise vs. learning data.

What does it mean to “memorize’ a training set? In the context of learning, memorization means
a failure to generalize. Zhang et al.| (2017), however, claim that memorization may be a compo-
nent of learning real tasks requiring generalization. This brings us to another, fuzzier definition of
memorization: not learning patterns from data. Phrases like “brute-force memorization” (Zhang
et al.,2017) connote fitting a dataset without capitalizing on any patterns in the data. In contrast, we
believe that DNNSs first learn and then refine simple patterns, which are shared across examples, in
order to quickly drive down training loss, and only incorporate more case-by-case memorization as
a later resort. Consider this popular mnemonic for remembering a English spellings: “i before e”.
This simple pattern is refined, as the mnemonic continues: “except after ¢”, and further: “or when
sounded as ‘A’ as in ‘neighbor’ and ‘weigh’’, with many further exceptions, such as “eigenvalue”,
existing and sometimes being incorporated into further rhymes.

2 EXPERIMENTS AND DISCUSSION

While random noise datasets of a fixed size do contain some patterns, we expect the patterns in
most real-world deep learning datasets to be simpler and more general. To probe whether and how
learning differs for real versus random data, we randomize the inputs or targets for some subset
of data points, as in [Zhang et al.| (2017). Specifically, for some fraction of training examples, we
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replace either the labels (with random labels), or the inputs (with i.i.d. Gaussian noise matching the
real dataset’s mean and variance).

2.1 LEARNING FROM DATA VS. NOISE

For these experiments, we train 2-layer ReLU-MLPs on MNIST for 1000 epochs using SGD with
learning rate 0.01, using 5 random seeds for each hyper-parameter setting. Our first finding (see
Figure [I)), is that as more examples are replaced with noise, more capacity is needed in order to
reach maximal validation performance. This indicates that networks are able to explain real data in
terms of simpler patterns, which can be represented by fewer parameters.
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Figure 1: Performance as a function of capacity in 2-layer MLPs. For real data, performance is
already very close to maximal with 4096 hidden units, but when there is noise in the dataset, higher
capacity is needed.

Our next experiments measure time-to-convergence, i.e. how many epochs it takes to reach 100%
training accuracy. Reducing the capacity or increasing the size of the dataset slows down training
for real data as well as noise. However, the effect is more severe for datasets containing noise, as
our experiments (Figure 2 show.

The reduced dependence of training time on dataset size demonstrates that the functions learned by
a neural net capture patterns in the data. Since these patterns are consistent across data examples,
adding more real data examples requires less changes to the parameter values. In contrast, adding
more noise examples continues to require large changes to the parameters, because there are no
consistent patterns in the noise data.

The reduced dependence of training time on capacity suggests that hypotheses learned by DNNs
trained on real data are simpler than those learned on noise data, reinforcing the results in Figure

2.2 COMPLEXITY OF THE LEARNED FUNCTION

Hochreiter & Schmidhuber|(1997) argue that flat minima of the loss function have better generaliza-
tion properties, using a Bayesian MDL-based argument. |[Keskar et al.|(2017)) argue that SGD learns
flatter minima when the batch-size is smaller, explaining the experimental finding that small batch-
sizes yield better generalization, and correlating this with a novel measure of flatness. In Figure [3]
(left), we investigate the sharpness/flatness of learned function around the local minima given dif-
ferent amount of noise in the dataset. To characterize the sharpness, we approximate the norm of the
Hessian’s largest eigenvalue using the method of (LeCun et al.,[1993). As we increase the amount
of noise in the training data, we observe an increase in this sharpness around the local minima of the
learned function, indicating that fitting noise results in a more complex function.



Workshop track - ICLR 2017

1

o

o
©

0 decrease in time-to-convergence as a function of capacity

noise_level=0.0
noise_level=0.2
noise_level=0.4
noise_level=0.6
noise_level=0.8
noise_level=1.0

@
LI

noise_level=0.0
noise_level=0.2
noise_level=0.4
noise_level=0.6
noise_level=0.8
noise_level=1.0

—

normalized time-to-convergence
o °
> 2

normalized time-to-convergence

°

o
o

NE
o
&

1024
number of hidden units per layer

2096 180 781 3125

#examples

12500 50000

Figure 2: Change in time to convergence: as a function of capacity with dataset size fixed to 50000
(left), or dataset size with capacity fixed at 4096 units (right). Noise level is the proportion of the
dataset whose inputs are replaced with Gaussian noise. Because there is are patterns underlying real
data, having more capacity/data doesn’t help/hurt performance as much as it does for noise data.
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Figure 3: Left: Approximate norm of the Hessian’s largest eigenvalue for MLPs trained on the
MNIST dataset with different levels of input and label noise. Right: Effect of regularization on train
accuracy for noise data vs. generalization on real data.

2.3 EFFECT OF REGULARIZATION ON LEARNING

We now assess the ability of regularization to degrade training performance on random labels, while
maintaining generalization performance on real data. Specifically, we train a small Alexnet-style
CNN (following |Zhang et al.|(2017))) on CIFAR-10 with either real or random labels. We compare
the following regularizers: dropout(0-.9), input dropout(0-.9), Gaussian noise(0-5), and weight de-
cay (0-1), and find that dropout is most able to hinder memorization without reducing the model’s
ability to learn. We train for 50 epochs and a learning rate schedule of 0.01, dropping by half every
10 epochs.

Results are shown in Figure 3 (right). Each curve represents a different regularizer. We plot the (ran-
dom label) train accuracy achieved with a particular value of the regularizer on the x-axis, and the
corresponding value of (real label) validation accuracy on the y-axis. Higher curves indicate better
performance overall (on real data). Flat curves further indicate that the corresponding regularization
technique differentially targets memorization-style learning (of random labels).

3 CONCLUSION

Our empirical exploration demonstrates qualitative differences in DNN training for noise vs. real
data, all of which support the claim that DNNs use simple hypotheses, not memorization, to fit real
data. Nonetheless, since DNNs have the effective capacity to fit noise, it is unclear why they recover
generalizable solutions on real data. We hypothesize this is because finding patterns is easier than
brute-force memorization, and hope that this can be formalized in future work.
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