
Workshop track - ICLR 2017

GENERALIZATION TO NEW COMPOSITIONS OF KNOWN
ENTITIES IN IMAGE UNDERSTANDING

Yuval Atzmon
Bar Ilan University, Israel
yuval.atzmon@biu.ac.il

Jonathan Berant &
Amir Globerson
Tel Aviv University,
Israel

Vahid Kazemi &
Gal Chechik
Google Research,
Mountain View CA, USA

ABSTRACT

Recurrent neural networks can be trained to describe images with natural lan-
guage, but it has been observed that they generalize poorly to new scenes at test
time. Here we provide an experimental framework to quantify their generaliza-
tion to unseen compositions. By describing images using short structured repre-
sentations, we tease apart and evaluate separately two types of generalization: (1)
generalization to new images of similar scenes, and (2) generalization to unseen
compositions of known entities. We quantify these two types of generalization
by a large-scale experiment on the MS-COCO dataset with a state-of-the-art re-
current network, and compare to a baseline structured prediction model on top
of a deep network. We find that a state-of-the-art image captioning approach is
largely “blind” to new combinations of known entities (∼2.3% precision@1),
and achieves statistically similar precision@1 to that of a considerably simpler
structured-prediction model with much smaller capacity. We therefore advocate
using compositional generalization metrics to evaluate vision and language mod-
els, since generalizing to new combinations of known entities is key for under-
standing complex real data.

1 INTRODUCTION

Recently, deep neural networks were successfully used for training models that describe images
with natural language. While the results were both inspiring and impressive, it became clear in the
aftermath of analyzing the results, that current approaches suffer from two fundamental issues. First,
generalization was poor for images describing scenarios not seen at training time. Second, evaluating
descriptions was challenging, because strong language models can generate sensible descriptions
that are missing essential components in the image (Cui et al., 2015; Anderson et al., 2016). Here
we propose to address these issues by using structured representations for image descriptions. As a
first step, we use a simple representation consisting of subject-relation-object (SRO) triplets (Farhadi
et al., 2010; Gupta et al., 2012). By reducing sentences to an SRO representation, we focus on the
composition of entities in an image. This allows to partition the data such that the model is tested
only on new unseen compositions, which are not included in the training set. Our key observation is
that one should separate two kinds of generalization when generating image descriptions. The first,
generalizing to new images of the same class, is routinely being evaluated in the current data split
of the MS-COCO challenge (Lin et al., 2014). The second type, which we focus on, is concerned
with generalizing to new scenarios, akin to transfer or zero-shot learning (Fei-Fei et al., 2006),
where learning is extended to semantically-similar classes. Importantly, this generalization is the
crux of learning in scenes, since both language and visual scenes are compositional, resulting in an
exponentially large set of possible descriptions. Hence, a key component of image captioning is to
properly quantify generalization to new combinations of known entities and relations. In practice,
we first map image descriptions to short open-IE style phrases of the form subject-relation-object
(termed SRO triplets). We then partition the examples such that the test and training sets share no
common images or SRO triplets, (Fig. 1).

2 RELATED WORK

There is already substantial body of work on image captioning, which is not reviewed here. Rele-
vant to the currnet work, it has been shown that spatial attention can improve captioning quality (Xu
et al., 2015; Lu et al., 2016; Rennie et al., 2016), and that further improvement can be achieved using
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Figure 1:
Learning to generalize to new composi-
tions of entities in images, reflected in
their descriptions. Each image is repre-
sented with subject-relation-object (SRO)
tuple. In a compositional split, testing is
performed over novel compositions of en-
tities observed during training.

vehicle, carry, luggage girl, carry, dog

Training
girl, carry, luggage

Testing

Visual-Concepts (VC) predictions (Fang et al., 2015; You et al., 2016; Chen et al., 2016). Com-
positional aspects of language and images were explored using both DNNs and structured mod-
els. Andreas et al. (2015) addressed a visual QA task by breaking questions into substructures,
and composing modular networks. Socher et al. (2011) and (Lin et al., 2016) aggregated objects
into parse trees using recursive NNs. Out-of-vocabulary terms are often handled by “smearing” to
semantically-related entities using external language priors (Hendricks et al., 2016; Frome et al.,
2013; Xian et al., 2016), and smearing also improves subject-relation-object prediction (Lu et al.,
2016). Several authors used structured CRF models: Kulkarni et al. (2011) learned spatial relations
for generating descriptions based on templates; Zitnick et al. (2013) generated synthetic scenes.
Yatskar et al. (2016) modelled combinations of entities using CRFs. Closely related to our struc-
tured approach, Farhadi et al. (2010) matched sentences and images, through a space of meaning
parametrized by subject-verb-object triplets, and Johnson et al. (2015) combined subjects, objects
and relationships in a graph structure for image retrieval.

3 EXPERIMENTS

3.1 THE DATA

We evaluated image captioning on the MS-COCO data (Lin et al., 2014), currently the standard
benchmark for evaluating image captioning models (122K images, ≤ 5 textual descriptions per
image). We parsed MS-COCO descriptions into SRO triplets by first constructing dependency parse
trees for each description (Andor et al., 2016), and then using manually-constructed patterns to
extract triplets from each description. Finally, relation words were stemmed. Removing descriptions
without SROs (due to noun phrases, rare prepositions, or parsing errors), yielded 444K (image, SRO)
pairs. We will provide the triplets and splits online. We limited the vocabulary to the 800 most
frequent nouns (covering 89%) and 100 stemmed relations (90%). Taking only SRO labels that
jointly participate at the vocabulary and removing duplicate SROs per image yielded 268K unique
pairs of (image, SRO) over 105K unique images. This dataset was split in two ways: by intersecting
with the COCO benchmark split, and in a compositional way as described in Section 3.3.

3.2 COMPARED METHODS

We compare four methods and baselines: (1) SSVM/Conv. Jointly predict the subject, relation and
object of an SRO triplet, by training a structured-prediction model on top of Visual-Concepts (VC)
convolutional network (Fang et al., 2015). VC optimizes a multiple-instance-learning (MIL) objec-
tive, yielding probabilities of P (S|Image), P (R|Image) and P (O|Image). On top of VC, we
trained a structured SVM (SSVM) (Tsochantaridis et al., 2005), minimizing the hinge loss between
the predicted and ground-truth SRO triplets. The model learns a score function over SRO triplets,
decomposed as: f(s, r, o) = wSfS(s) + wOfO(o) + wRfR(r) + wSRfSR(s, r) + wROfRO(r, o),
where wS , wO, wR, wSR, wRO are scalar weights learned by the algorithm. Node scores fS(s),
fO(o), fR(r) were set as the VC predictions of P (S|Image), P (R|Image) and P (O|Image).
The binary features fSR(s, r), fRO(r, o) were set as the bigram probability of (s, r) and (r, o)
in the training SRO data. (2) Show-Attend-and-Tell (SA&T). An LSTM with attention model
for caption generation (Xu et al., 2015). For a fair comparison with the structured model we re-
placed the VGG 512x14x14 convolutional feature maps with the 900x12x12 VC spatial response
maps, where each 12x12 response map represents a single visual concept.1 We re-trained the
decoder layers to predict SRO triplets with soft-attention. Hyper-parameters were tuned to mini-
mize perplexity on a validation set, learning rate in 2 · (10−3, 10−4, . . . 10−6) and weight decay in
(0, 10−6, . . . , 10−3). Importantly, we also controlled for model capacity by tuning the embedding
dimensionality (128, 512, 1024) and the LSTM dimensionality (200, 600, 1800, 3600). The remain-
ing parameters were set as in Xu et al. (2015). (3) Stochastic conditional (SC). Draw R based on

1We found that replacing VGG convolutional feature maps by VC spatial response maps also improves
performance for SA&T.
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the training distribution, then draw S and O based on ptrain(S|R), ptrain(O|R). This baseline is
designed to capture the gain that can be attributed to bigram statistics. (4) Most frequent triplet
(MF). Predict an SRO consisting of the most frequent subject, most frequent relation, and most
frequent object, based on the training set. By construction, for the compositional split, the most
frequent SRO in the train set can not appear in the test set.

Figure 2: Compar-
ing precision@k
for SA&T vs.
SSVM/conv. Error
bars denote the stan-
dard deviation of the
precision across five
compositional folds.
Both approaches are
largely “blind” to un-
seen compositions and
achieve statistically
similar p@1. (a) COCO split (b) Compositional split

3.3 EVALUATION PROCEDURE

We experimented with two cross-validation procedures. (1) COCO split: The split provided by
ms-coco, restricted to the set of images with SRO triplets. Since captions are not provided for the
COCO test set, we used the COCO validation set for evaluations. (2) Compositional split: We first
split unique SRO triplets to training, validation and test sets (80%/10%/10%). To determines how
images are split, note that an image may have more than one caption, and as a result may have SRO
triplets on more than one split set. We remove images from the training set that have SRO triplets of
the test set, and then removed images from the test set that have SRO triplets from the train set (same
for the validation set). Repeating this process with 5 randomizations, yielded an average of 140K
training triplets over 61K unique images and an average of 5.1K testing triplets (4K images). Since
images have up to 5 descriptions, they may have more than one ground-truth SRO. For SSVM, we
computed precision@k by ranking candidate SRO triplets by their scores and comparing against the
set of ground-truth SRO triplets.

3.4 RESULTS

Compositional vs. within-class generalization: We find that (1) SA&T is largely “blind” to new
combinations of known entities, and (2) it achieves statistically similar precision@1 to that of a
considerably simpler structured-prediction model with much smaller capacity.

Figure 2 shows the average precision@k across images, comparing SSVM to SA&T for both their
test and training performance. In standard COCO split (left panel) SA&T model (red) wins with test
precision of p@1 = 16.7% and the SSVM/Conv model (blue) achieves p@1 = 8.4%. Test precision
of the baselines was p@1 = 0.026% for SC, and 0% for MF. Both approaches mostly predicted
compositions that appeared on the train set (LSTM 94%, SSVM 91%). In the compositional split
(right panel), SSVM test precision (solid blue) was p@1 = 2.1%± 1%, which is statistically similar
to LSTM (red) p@1 = 2.5% ± 0.8%. Test precision of the baselines (purple) was p@1 = 0% for
SC. The most frequent S, R and O in the dataset were man, with and field, but the triplet (man with
field) did not appear at all in the data, yielding 0% MF accuracy. .

Model capacity: The large generalization gap, manifested by the precision difference between
training and test set, could be due to over-fitting. We tested SA&T with different capacities, varying
the number of parameters (word dimensionality and LSTM hidden state dimensionality), but found
that the generalization gap was always very large. This shows that merely reducing the capacity of
the SA&T model was not sufficiently effective to control overfitting for the compositional case.

3.5 CONCLUSION

This paper highlights the role of generalization to new combinations of known objects in vision-to-
language problems, and proposes an experimental framework to measure compositional generaliza-
tion. In a large-scale experiment, we found that existing state-of-the-art image captioning models
generalize poorly to new combinations of known entities, and achieve statistically similar preci-
sion@1 to that of a structured-prediction model with much smaller capacity.
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