
Published as a conference paper at ICLR 2022

MULTI-CRITIC ACTOR LEARNING:
TEACHING RL POLICIES TO ACT WITH STYLE

Siddharth Mysore
Boston University & Electronic Arts

George Cheng & Yunqi Zhao
Electronic Arts

Kate Saenko
Boston University & MIT-IBM Watson AI Lab

Meng Wu
Electronic Arts

ABSTRACT

Using a single value function (critic) shared over multiple tasks in Actor-Critic
multi-task reinforcement learning (MTRL) can result in negative interference be-
tween tasks, which can compromise learning performance. Multi-Critic Actor
Learning (MultiCriticAL) proposes instead maintaining separate critics for each
task being trained while training a single multi-task actor. Explicitly distinguish-
ing between tasks also eliminates the need for critics to learn to do so and mitigates
interference between task-value estimates. MultiCriticAL is tested in the context
of multi-style learning, a special case of MTRL where agents are trained to be-
have with different distinct behavior styles, and yields up to 56% performance
gains over the single-critic baselines and even successfully learns behavior styles
in cases where single-critic approaches may simply fail to learn. In a simulated
real-world use case, MultiCriticAL enables learning policies that smoothly transi-
tion between multiple fighting styles on an experimental build of EA’s UFC game.

1 INTRODUCTION

Reinforcement Learning (RL) offers an interesting means by which to develop interesting behaviors
in a variety of controls settings. The work presented in this paper is primarily contextualized by
our efforts to develop RL techniques for teaching RL-policies to behave with multiple distinct and
specific styles for game-play. RL can be useful in developing control policies for game-play and has
been demonstrated as being capable of learning human-like or even superhuman play, most notably
beating top-ranked human players in games such as Dota 2 (Berner et al., 2019), StarCraft (Vinyals
et al., 2019), Chess (Silver et al., 2017), and Go (Silver et al., 2016). RL-based control in games
offers a wide array of potential applications, including testing (Zhao et al., 2020; Ariyurek et al.,
2021; Gordillo et al., 2021), game design (Gisslén et al., 2021), providing competition for human
players (Berner et al., 2019), or simply as a means to develop more interesting game-play AI behav-
iors (Zhao et al., 2020; Alonso et al., 2020). RL algorithms can be notorious however for training
aesthetically unappealing policies, but prior work has demonstrated that, with careful shaping of the
reward functions, it is possible to derive highly specific desirable behavior (Peng et al., 2018; Mysore
et al., 2021b). Machine learning (ML) solutions to game-play AI can however represent a signifi-
cant increase in compute requirements over their heuristic-based counterparts, especially when using
deep learning techniques. If a learned control policy could represent multiple desirable styles and
offered a controllable way to transition between the learned styles, this could reduce the total com-
pute burden of the ML-based controller, making it more practically viable. Ideally, developing an
ML model would constitute learning a single, low-complexity policy that would model and transi-
tion smoothly between multiple behavior styles. Reduced model complexity and deploying just a
single policy network enables greater compute efficiency through hardware parallelism and reduced
memory costs, which is beneficial in resource-constrained applications, such as videogames.

We explore the problem of mutli-style RL, a special case of the more commonly explored prob-
lem of multi-task RL (MTRL). Whereas MTRL techniques typically seek to solve a wide array of
RL problems under a single learning campaign, multi-style RL adds the extra constraint that the
‘tasks’ in question all have identical system dynamics but would be characterized by different re-

1

Published as a conference paper at ICLR 2022

Critic
O

bs
er

va
tio

ns

&
 T

as
k

En
co

di
ng

Actor Env

Policy
Optimization

Action

State

Critic
Optimization

O
bs

er
va

tio
ns

&

 T
as

k
En

co
di

ng

Actor Env

Policy
Optimization

Action

State

Re
w

ar
ds

ve

ct
or

Multi-Critic
Optimization

Task/Style
Rewards

MultiCriticALTypical Actor-Critic RL

Critici
𝑖 ∈ [0, 𝑁!"#$%!]

Task/Style
Rewards

Re
w

ar
d

Se
le

ct
io

n

Figure 1: MultiCriticAL breaks from the common practice of using a single unified critic in MTRL
and instead uses separate critics for each task learned. The proposed method is used to successfully
train multiple distinct behavior styles in various games including Pong and UFC.

ward signals corresponding to the different desired styles of behavior. We focus specifically on
applications of Actor-Critic RL techniques, which, in addition to being compatible with continuous
action-space control, allow for reduced runtime computational cost as only the actor functions are
required for inference, while the critics can often be disregarded after training. Mysore et al. (2021a)
and Andrychowicz et al. (2021) have also demonstrated that it is possible to train compact and per-
formant policy networks through careful consideration of the actor and critic network architectures.

A common baseline approach to MTRL is to employ one-hot task encoding to delineate between
tasks. However, in a number of multi-style cases considered this was not sufficient to enable
successful multi-style policy-learning. We suspected that the similarity of game-play states visited
between each trained style interfered with each style’s value optimization. In surveying existing
MTRL literature for advancements in the field of multi-task Actor-Critic RL methods, we noticed a
surprising hole. There are studies that employ single actors and single critics (Finn et al., 2017; Yang
et al., 2020; Sodhani et al., 2021; Nichol et al., 2018), multiple actors and multiple critics (Andreas
et al., 2017; Teh et al., 2017; Rusu et al., 2015; 2016; Huang et al., 2017), or multiple actors and a
single critic (Yang et al., 2017; Dewangan et al., 2018). Curiously, seemingly no prior work explores
using a single policy with distinct, per-task value estimation, i.e. a single actor with multiple critics.

This paper proposes Multi-Critic Actor Learning (MultiCriticAL), a single-actor, multi-critic frame-
work for multi-task Actor-Critic optimization, and evaluates it on a variety of multi-style learning
problems. The core idea of MultiCriticAL is to maintain separate per-style (or task) critic functions
for each style being learned. By separating the critic MultiCriticAL would be able to avoid negative
interference in the learned values for different styles. Our results show that MultiCriticAL consis-
tently trains more performant policies, compared to its single-critic counterparts, succeeds in cases
where the single-critic methods fail and achieves between 20-45% improvement in more traditional
multi-task settings involving multi-level game-play. Additionally, we demonstrate the utility of Mul-
tiCriticAL in a use-case more reflective of real-world application, in an experimental build for EA’s
UFC Knockout Mode, where we train policies to act with multiple specific and distinct behavior
styles. This work is also amongst the first to study the efficacy of MTRL algorithms across a broad
range of multi-style problems, an aspect of MTRL receiving limited prior attention.

2 PRELIMINARIES

The core reinforcement learning (RL) problem is framed as a finite-horizon Markov decision pro-
cess, 〈S,A, P, r, γ〉, with state transition dynamics P : S,A → S, for states s ∈ S and actions
a ∈ A, and reward function r : S,A → R. The RL objective is to train a policy, π : S → A such
that the expected sum of discounted rewards, Eτπ

[∑
i γ

ir(si, ai)
]
, with discount factor γ, is max-

imized for all trajectories, τπ , sampled on policy π. RL typically assumes that both the transition
dynamics and reward dynamics are encompassed by a black-box environment. RL agents interact
with the environment to observe the state response and generated rewards, but where specific reward
functions and transition dynamics are not assumed known. Solving the RL optimization problem
requires estimating expected rewards and using these approximations to optimize the action policies.

Among the different techniques for tackling RL optimization, we mainly consider Actor-Critic meth-
ods, whose key characteristic is their separation of the ‘actors’, representing the RL policy, and the
‘critic’, representing the value-function estimator that learns to estimate future rewards. This sep-

2

Published as a conference paper at ICLR 2022

aration allows Actor-Critic RL to take advantage of the improved sample-efficiency of value-based
techniques, such as Q-learning (Watkins & Dayan, 1992) while taking advantage of policy-based
techniques, such as policy gradients (Sutton et al., 2000), for improved robustness to stochasticity
and to enable learning in continuous action domains. Examples of prominent contemporary algo-
rithms in this class of RL methods include TRPO (Schulman et al., 2015), PPO (Schulman et al.,
2017), DDPG (Lillicrap et al., 2016), TD3 (Fujimoto et al., 2018), and SAC (Haarnoja et al., 2018).

In algorithms based on Q-learning, such as DDPG, TD3, and SAC, the policy optimization criteria
Jπθ for a policy, π, parameterized by θ, is proportional to the Q-value:

Jπθ ∝ Qπθ (s, a) = E [R(τπθ)|s0 = s, a0 = a] = Es′ [r(s, a) + γQπθ (s′, πθ(s
′))] (1)

where s′ is the next state reached from state s in response to action a, andR(τ) is the discounted sum
of rewards over trajectory τ . For algorithms based on a more traditional policy gradient optimization,
such as TRPO and PPO, policies are optimized proportional to the advantage function, Aπθ and a
measure of policy divergence:

Jπθ ∝ log(πθ(a|s))Aπθ (s, a) = log(πθ(a|s)) (Qπθ (s, a)− V πθ (s)) (2)

where the value-function V π(s) = Eτπ [R(τπ)|s0 = s] = Es′ [r(s, π(s)) + γV π(s′)]. For critic
networks parameterized by φ, either a state-value estimator, Vφ, or Q-value (state-action-value)
estimator, Qφ are optimized with optimization criteria JV πφ or JQπφ respectively:

JV πφ ∝ ||V
π
φ (s)− (r(s, π(s)) + V πφ (s′ ∼ P (s, π(s)))|| (3)

JQπφ ∝ ||Q
π
φ(s, a)− (r(s, a) +Qπφ(s′ ∼ P (s, a), π(s′)))|| (4)

While specific details around how actors and critics are optimized vary between algorithms, the
above represents the fundamentals of optimization criteria upon which we shall build our discussion.

3 RELATED WORK

We broadly categorize multi-task RL (MTRL) techniques as either single-policy, if the same policy
function activations are used to determine actions over all tasks, or multi-policy, if more separate ac-
tivations (in the case of multi-headed policies) or policy functions are used. Multi-policy techniques
range from training multiple policies and selecting or mixing between them (Andreas et al., 2017;
Peng et al., 2018; Dewangan et al., 2018; Yang et al., 2017; Huang et al., 2017), to simultaneously
or iteratively training additional policies while sharing representation between policies (Rusu et al.,
2015; Teh et al., 2017; Rusu et al., 2016). Techniques requiring multiple policy networks are limited
by their storage and computational costs during inference, and multi-headed policies can limit our
ability to smoothly transition between behaviors, which makes them less attractive in the context of
RL for game-play. Therefore, we focus instead on single-policy learning.

Single-policy MTRL techniques train a single policy function to solve multiple tasks, without relying
on information from previously trained policies. Model-free meta-learning techniques have been
proposed to improve multi-task generalization, in the absence of task specificity (Finn et al., 2017;
Nichol et al., 2018), but where explicit task distinction can be exploited, a common approach has
been to exploit task encoding to distinguish between tasks. A simple, yet effective approach to this
problem has been to extend state representations with one-hot task encoding (Peng et al., 2018; Yu
et al., 2020; Yang et al., 2020), thus allowing policies to distinguish between individual tasks and
decide actions in a task-appropriate way. Recent work has also sought to enhance the performance
and generalizability of such single-policy techniques through automated task encoding (Sodhani
et al., 2021) or through soft-modularization (Yang et al., 2020), which encourages the development
of distinct information pathways per task within actor networks.

Our work considers the special MTRL case of multi-style learning. Multi-style learning requires
agents to learn different behaviors for highly similar states while providing potentially highly dis-
similar rewards for each style. This variability in the reward signals can have an adverse impact on
the quality of learned value-functions when using a single value estimator if the estimator cannot
sufficiently distinguish between styles. We hypothesize that negative interference more strongly im-
pacts value-function learning in multi-style tasks as task similarity may make specific style-values
harder to distinguish. Multi-style learning is however an aspect of MTRL that has not received much

3

Published as a conference paper at ICLR 2022

prior consideration. Peng et al. (2018) explore the most similar setting to our work – where agents
were required to learn different movement styles in animation tasks. Their work tested single-policy
MTRL and found that policies were only able to learn a limited number of styles, requiring the
authors to resort to a multi-policy approach.

Most works considering the Actor-Critic MTRL problem focus predominantly on how the actors,
i.e the policy-functions, are optimized, with less attention given to critics. The problem of negative
interference between tasks in the broader context of MTRL is one that has been highlighted and
studied before (Yang et al., 2020; Parisotto et al., 2015; Teh et al., 2017; Standley et al., 2020)
however, but has similarly been approached as a policy optimization problem. A number of multi-
policy techniques were noted to maintain separate valuations per policy (Teh et al., 2017; Andreas
et al., 2017; Peng et al., 2018), though some work has also suggested that sharing critics can allow
optimization to better capture useful shared knowledge to improve policy optimization (Dewangan
et al., 2018; Yang et al., 2017). A similar idea dominates single-policy techniques, where all the
studied methods maintain a single value-function estimator across all tasks (Nichol et al., 2018; Yu
et al., 2020; Peng et al., 2018; Yang et al., 2020; Sodhani et al., 2021). While task-encoding may
allow separate task-values to be learned implicitly by the critics, this was never found to be explicitly
designed. Our work alternatively frames the multi-style learning framework as one that explicitly
learns distinct per-style values to propose a value-learning optimization scheme that is better able to
accommodate disparate reward functions.

4 MULTI-CRITIC ACTOR LEARNING

The policy functions, i.e. the ‘actor’ part of Actor-Critic frameworks, represent the core decision-
making processes of RL agents and the success or failure of any algorithm rests on the policies’
abilities to learn useful mappings. The learned critics have limited utility after training and learned
value-function estimators are also known for being poor approximations of the true value-functions
they attempt to capture (Ilyas et al., 2020), so it makes sense that prior work has focused more on
how policies are constructed and trained. The limitations of value learning are however exactly
why the specifics of value-network constructions and optimization are important to consider. A
critical element in the performance of RL algorithms can be the representational capacity of the
learned value-functions (Mysore et al., 2021a; Andrychowicz et al., 2021). It, therefore, stands to
reason, that better structuring how value-networks represent the learned values can be an important
component of improving value-function learning and therefore policy performance.

A common formulation of single-critic MTRL optimization involves including a task-encoding, Ω,
to distinguish between learned tasks and to specify task rewards and updating the state representation
s̄ = 〈s,Ω〉. The optimization criteria in Equations 1-4 are correspondingly updated to use s̄ in place
of s. The resulting MTRL optimization criteria typically represent rewards and learned values by
scalar values. Practically, the value-functions are learned by a single network with a single output
node, regardless of the number of tasks. A single learned value-function representing multiple values
may enforce continuity between the learned values, which may not necessarily reflect the true value
functions and could compromise the quality of learned values and resulting policies.

Value Optimization for Multi-Critic Actor Learning By separating the learned values per style,
assumptions of continuity between style-values can be dismissed and style (or task) values can be
learned explicitly, without relying on the critics to inherently learn the distinctions. We propose
Multi-Critic Actor Learning (MultiCriticAL) with a style-conditioned value optimization criteria:

JVπ
φ |Ω ∝

∣∣∣∣∑
iωi
[
V πφi(s)− (ri(s, π(s̄)) + V πφi(s

′ ∼ P (s, π(s̄))
]∣∣∣∣ (5)

JQπ
φ|Ω ∝

∣∣∣∣∑
iωi
[
Qπφi(s, a)− (ri(s, a) +Qπφi(s

′ ∼ P (s, a), π(s̄′)))
]∣∣∣∣ (6)

where, for M styles, the task/style encoding, Ω = [ω0, . . . , ωM] and ωi ∈ [0, 1]. The policy op-
timization criteria requires the value functions to be continuous with respect to the states and task
encoding, and this property can be maintained by appropriately selecting the value functions when
computing the policy optimization criteria. The specifics of the exact formulation of the optimiza-
tion criteria would vary in accordance with the base Actor-Critic algorithm employed, with Equa-

4

Published as a conference paper at ICLR 2022

tions 1 and 2 respectively being updated as:

Jπθ ∝
∑
iωiQ

πθ
φi

(s, a) (7)

or Jπθ ∝ log(πθ(a|s̄))
∑
iωiA

πθ
φi

(s, a) (8)

Practically, multi-valued critics may be represented by separate independent critic networks – multi-
network (MN) MultiCriticAL – or a single base critic network with multiple heads, where each head
represents a different learned value – multi-headed (MH) MultiCriticAL. While the latter allows for
some learned representations to be shared between the value functions, the former may be more ben-
eficial when sharing is likely to lead to undesirable interference. This is visually shown in Figure 1
and extended in Figure 14 in Appendix C.

Relationship to MTRL and MORL DQNs MultiCriticAL shares theoretical underpinnings
with existing DQN techniques to tackle MTRL and multi-objective RL (MORL) by learning
task/objective-specific values (Parisotto et al., 2015; Moffaert & Nowé, 2014; D’Eramo et al., 2020;
Rusu et al., 2016). Learned DQN policies and value functions share a single combined architectural
backbone, forcing value estimation machinery to be retained at inference time. By extending the the-
ory to Actor-Critic methods, we both enable utility in continuous control and the practical benefits
of disentangling the representational complexity of the actors from the often greater representational
burden placed on the critics (Mysore et al., 2021a). (Additional discussion in Appendix B).

5 EVALUATION

We evaluate the proposed MultiCriticAL method in a series of multi-style RL problems. We first
test our method on two basic multi-style learning environments designed as simple and light-weight
demonstrations of the types of problems we seek to address: (i) learning to follow simple shapes,
where different styles correspond to different shapes, (ii) playing a modified game of Pong where the
player’s paddle is allowed to rotate and agents are trained to play aggressively or defensively against
a stock AI. While relatively simple, these environments help highlight the efficacy of MultiCriticAL
over the more typical single-critic MTRL framework. Additionally, we test MultiCriticAL on learn-
ing to play multiple levels of the Sega genesis games Sonic the Hedgehog, and Sonic the Hedge-
hog 2, where the agent is trained to play the different levels of each game, following the reward
structure devised for the Gym Retro contest (Nichol et al., 2018). Finally, we demonstrate a prac-
tical use-case for MultiCriticAL in an experimental build of EA’s UFC Knockout Mode fighting
game where RL agents are integrated into the game controls and trained with different fighting
styles. Appendix A provides learning curves and additional visualizations for the results discussed
in this section.

Baselines We train MultiCriticAL with two popular contemporary actor-critic algorithms:
PPO (Schulman et al., 2017) and SAC (Haarnoja et al., 2018), which represent Actor-Critic al-
gorithms based on both value iteration and Q-learning respectively. These are compared against
Multi-task PPO (MTPPO) and Multi-task SAC (MTSAC), which augment the state information
with a one-hot task encoding and were also proposed as baselines by Yu et al. (2020). While we
recognize that these are not state-of-the-art MTRL algorithms, they share a common critic opti-
mization structure with more recent advancements in policy (actor) optimization (Sodhani et al.,
2021; Yang et al., 2020), and we aim to demonstrate the fundamental utility of MultiCriticAL in
the absence of additional policy optimization tricks. Training code is based on OpenAI’s Spinning
Up (Achiam, 2018) and is provided in the Supplementary Material for the multi-style environments.
As the Sonic the Hedgehog games require paid access and the development environment for UFC is
proprietary, game code is not provided, though Appendix D details how they were adapted.

Seeding To account for the variability in RL, performance is averaged over 15 random seeds.

5.1 PATH FOLLOWING

Environment Design and Reward Shaping In the path following environment, given its current
position in space, the current phase of motion ∈ [0, 1], and an indicator on which shape to reproduce,
the agent is expected to follow a trajectory that generates the desired shape. Three shapes are tested:

5

Published as a conference paper at ICLR 2022

SAC PPO

Figure 2: The path-following task requires agents to learn a Circular, Square, or Triangular path.
MultiCriticAL agents can learn to follow all 3 shapes with better performance compared to the more
typical single-critic multi-task value-learning frameworks of MTSAC and MTPPO.

Circle, Square and Triangle. This simple problem adds no additional complexity related to gener-
alization or complex system dynamics and simply expects policies to learn a mapping function that
encodes the desired shape. The multi-style objective is for the agents to accurately produce any of
the three required shapes, given the task encoding. Agents are rewarded based on the absolute error
between the agent’s current and desired position in space. The rewards are cast to be positive in the
range of [0, 1] per step. Appendix D offers further details, with code in Supplementary Material.

Results The pathing behavior learned for each algorithm over the three shapes is shown in Fig-
ure 5.1. While single-style SAC and PPO are able to learn to follow each shape, performances of
MTSAC and MTPPO in the multi-style setting are compromised. This is most prominent with MT-
SAC. MTPPO fares better but performance in the multi-style setting is still notably worse. Adapted
to both algorithms, MultiCriticAL more consistently learns to follow all three shapes. It should
also be noted that larger networks were needed for the PPO algorithm to solve this task, using two
hidden layers with 32 neurons each, as opposed to SAC’s 8 each. This likely contributes to the im-
proved performance of PPO in the multi-task setting as the networks being used have higher relative
representational capacity, but are still outperformed by MultiCriticAL.

5.2 PONG WITH ROTATABLE PADDLES
Ag
gr
es
si
ve

D
ef
en
si
ve

Figure 3: Behav-
ior samples for Ag-
gressive and Defen-
sive play in Pong.

Environment Design and Reward Shaping We use a modified game of
Pong to explore a multi-style learning problem where one style is represented
by a sparse reward, and the other a dense reward, anticipating that this might
be a case where single-critc value-function estimation may fail. Pong typi-
cally allows only a single degree of freedom for paddle movement and does
not normally command nuanced strategies. Adding an extra degree of free-
dom by allowing the player’s paddles to rotate introduces increased complex-
ity to the game and facilitates the training of different behavior styles. For
this game, we consider two primary styles of play: (i) aggressive – with the
objective of winning the game as quickly as possible, and (ii) defensive –
where the objective is to avoid losing while prolonging the game as long as
possible. In a real game setting, these could be analogous to hard- and easy-
mode AI respectively, where the former tries to give the opponent a challenge
and the latter may help the opponent learn to play. Our implementation is
based on the Pong environment provided by the Pygame Learning Environ-
ment (PLE) (Tasfi, 2016). For simplicity, the basic opponent AI cannot rotate
its paddle and uses a heuristic-based Pong controller provided by PLE. The Aggressive style rewards
winning as quickly as possible while the Defensive style encourages avoiding losing and ensuring
that the opponent can keep receiving the ball to prolong the game (additional details in Appendix D).

Results We first established baseline performance by training SAC and PPO on the Aggressive
and Defensive play-styles. Figure 3 shows samples of play strategies adopted for each style, where
the Aggressive agent exploits paddle rotation to bounce the ball off the side-wall to outmaneuver
the opponent. Conversely, Defensive agents attempt to return the ball directly to the opponent,
exploiting the paddle rotation to angle the ball back towards the opponent. As desired, aggressive
play yields high win-rates, with plays lasting significantly shorter than defensive play, which would
win approximately half of the games but play longer games (videos in Supplementary Material).

6

Published as a conference paper at ICLR 2022

Table 1: Learning different play-styles on Pong with rotatable player paddles
Agent Single-style MT w/ one-hot MN-MultiCriticAL MH-MultiCriticAL

SA
C

Aggressive-Setting→ Style = (1, 0)
Reward ↑ 0.89± 0.05 −0.20± 0.35 0.85± 0.01 0.80± 0.03
Win-rate ↑ 94± 2% 40± 13% 86± 3% 84± 8%
Play-time ↓ 280± 102 170± 51 255± 35 291± 55

Defensive-Setting→ Style = (0, 1)
Reward ↑ 162.75± 12.15 166.05± 13.04 176.60± 8.50 165.59± 13.01
Win-rate 51± 3% 50± 5% 30± 5% 41± 12%
Play-time ↑ 1536± 113 1571± 122 1661± 53 1560± 154

PP
O

Aggressive-Setting→ Style = (1, 0)
Reward ↑ 0.70± 0.12 −0.35± 0.36 0.83± 0.08 0.70± 0.19
Win-rate ↑ 81± 10% 32± 23% 79± 2% 80± 15%
Play-time ↓ 586± 98 241± 111 485± 44 330± 98

Defensive-Setting→ Style = (0, 1)
Reward ↑ 101.35± 17.90 35.85± 16.08 92.75± 12.39 72.60± 14.06
Win-rate 54± 7% 41± 3% 40± 3% 61± 8%
Play-time ↑ 993± 120 347± 132 841± 226 726± 121

Table 2: Interpolating between aggressive and defensive Pong play-styles→ Style = (0.5, 0.5)

Agent SAC PPO
MN-MultiCriticAL MH-MultiCriticAL MN-MultiCriticAL MH-MultiCriticAL

Training with Binary Style Selection
Win-rate 71± 3% 64± 13% 64± 4% 78± 5%
Play-time 770± 148 765± 113 615± 164 541± 67

Training with Explicit Style Interpolation
Win-rate 73± 6% 72± 8% 71± 3% 70± 2%
Play-time 834± 108 793± 120 621± 158 602± 106

Multi-style performance is tested by introducing a one-hot style encoder and randomly uniformly
sampling either defensive or aggressive play for each new training episode. We observed that both
MTSAC and MTPPO failed to learn to properly distinguish between play-styles. MTSAC agents
often defaulted to highly defensive play (likely due to the over-representation of the dense defensive
rewards in the replay buffers) while MTPPO agents tended to learn intermediate behavior that was
neither aggressive nor defensive. MultiCriticAL agents were however able to successfully learn to
distinguish between the styles with both base algorithms, with performance comparable to single-
style agents. Table 1 and Figure A.2.1, show performance statistics averaged over 20 test episodes
per seed for each algorithm.

We also test how MultiCriticAL agents would respond to changes in the style encoding at test time.
As shown in Table 2, when provided an intermediate (0.5,0.5) encoding, the agents presented with
behavior statistics that were almost halfway between that of their aggressive and defensive statis-
tics. This was even without explicit conditioning, when agents were trained with purely binary
style indicators. When explicitly interpolating between styles in training (by providing a multi-
dimensional style-reward, with aggressive and defensive rewards scaled by their encoding weight),
both MultiCriticAL SAC and PPO agents yielded performance statistics that more closely matched
the mid-points between their aggressive and defensive behaviors.

5.3 SONIC THE HEDGEHOG

Training Setup To test MultiCriticAL in a more established multi-task setting, we tested two
Sonic the Hedgehog games, using the Gym-retro wrappers designed for the games during the Gym-
retro contest (Nichol et al., 2018), using the same setup configuration developed for the competition.
MultiCriticAL is set up to maintain a separate critic for each trained level. Sufficient experimen-
tation for statistical rigor on this benchmark required hardware parallelism, which our code only
supports for PPO. SAC is therefore omitted for this benchmark.
Results Performance on 17 of the main levels for each game, averaged over 10 tests per agent,
per level, are presented in Figure A.2.2, with per-level tabulated numerical rewards provided in Ap-
pendix A. Sonic the Hedgehog appears to be a game where learning shared representations over
multiple levels helps overall performance, for both MultiCriticAL and MTPPO, though this obser-
vation does not hold for Sonic the Hedgehog 2, where MTPPO agents perform worse on average
than agents trained on single-levels. MultiCriticAL agents tend to perform comparable or better
than independently trained and MTPPO agents in almost all cases, however, with 35% and 20%
improvements on Sonic the Hedgehog and 56% and 40% improvement on Sonic the Hedgehog 2 of
MN-MultiCriticAL and MH-MultiCriticAL over MTPPO respectively.

7

Published as a conference paper at ICLR 2022

!"#$%&'&()*+,-* !"#$%&.&()*+,-*

/*
0
,+
1

!

"

#!

#"

$!

$"

%!

%"

!"#$%&'(&)&%*+,%"-. /0++1 /2'/3%4"56"4"-7(/8'/3%4"56"4"-7(

So
ni

c
1

Le
ve

l S
am

pl
es

So
ni

c
2

Le
ve

l S
am

pl
es

Figure 4: Evaluated over two Sonic games with 17 training levels per game, where levels function
similarly but have significantly different layouts and visual design, MultiCriticAL offers consistently
superior performance to the single-critic baseline and achieves comparable, if not better performance
to agents trained specifically for each level – additional data and visualization in Appendix A.2.2.

Ag
gr
es
si
ve

D
ef
en
si
ve

N
eu
tra
l

Bl
oc
ki
ng

M
ov
in
g

Figure 5: We show 8 seconds of play with one representative frame per second for the different
styles of play for the MultiCriticAL agent trained to play UFC. The RL agent has black hair while
the stock AI has white hair. All styles are captured for the same RL agent, trained to play with
multiple behavior styles. As desired, the agent more frequently goes on the offensive when set to
Aggressively, prioritizes constant blocking and avoiding damage on Defensive, standing its ground
and blocking incoming attacks on Blocking and moving around the ring for Moving.

5.4 UFC ENVIRONMENT

For a use case more reflective of real-world application, we trained AI fighters in an experimental
build of UFC Knockout Mode. A gym-like (Brockman et al., 2016) wrapper was built for the game
environment to enable an RL agent to play against the game’s stock AI. Note that this is not a feature
of the commercially released game but is a modification made for research purposes.

Environment design and Reward Shaping The RL agent observes information about the player’s
and opponent’s position, velocity, health, and actions being taken, stacked over 8 steps. The RL-
agent is able to control 11 basic discrete high-level actions including forward and backward move-
ment, high or low blocking, left or right attacking (with straights, uppercuts, or hooks), and is also
allowed to take no action. The RL-agent is conditioned over 2 sets of 2 playing styles: aggressive
or defensive and blocking or moving. During training, aggression vs. defensiveness, and blocking
vs. moving are set on [0, 1] scales with (0.5, 0.5) representing a neutral style which is meant to
balance behavior from both scales. For all styles, the agent is rewarded for winning and is penalized
for every strike request. For the aggressive style, the agent is additionally rewarded for reducing
opponent health. For the defensive style, the agent gets a small positive reward for each step that it
remains alive, is penalized for losing health, and is rewarded for reducing opponent health (though
not as much as with the aggressive style). For the blocking style, the agent is rewarded for every
successful block, and for the moving style, the agent is rewarded for maintaining a positive velocity.
Details are provided on the state and action spaces, reward tuning, and training in Appendix D.4.

8

Published as a conference paper at ICLR 2022

Table 3: MTPPO vs. Multi-headed MultiCriticAL-PPO on UFC
Dominant Style Normalized Per-Action Style Rewards ×103

Style Setting MTPPO MH-MultiCriticAL PPO
Aggression Defensiveness Blocking Moving Aggression Defensiveness Blocking Moving

Aggressive (0.0, 0.5) 7.08 ± 1.04 0.00 0.10 ± 0.05 1.77 ± 0.15 7.15 ± 1.51 0.00 0.05 ± 0.02 2.19 ± 0.21
Defensive (1.0, 0.5) 0.00 20.08 ± 0.30 4.31 ± 0.41 1.19 ± 0.12 0.00 20.80 ± 0.07 4.27 ± 0.37 2.33 ± 0.17

Neutral (0.5, 0.5) 2.84 ± 0.90 14.15 ± 0.74 1.32 ± 0.50 1.93 ± 0.07 2.16 ± 0.15 10.80 ± 0.12 1.68 ± 1.68 2.24 ± 0.15
Blocking (0.5, 0.0) 2.25 ± 1.25 18.86 ± 1.07 3.10 ± 3.78. 0.00 3.00 ± 1.14 11.56 ± 1.32 1.97 ± 2.32 0.00
Moving (0.5, 1.0) 3.07 ± 1.01 14.78 ± 1.13 0.00 4.19 ± 0.43 1.75 ± 1.25 10.13 ± 0.88 0.00 4.50 ± 0.20

Results MultiCriticAL allows PPO agents to successfully learn and smoothly transition between
the different fighting styles. The behavior styles are distinguished visually and Figure 5 attempts
to capture this through frames from captured gameplay with videos included in the Supplementary
Material. Reward statistics for each style are presented in Table 3 and Figure A.2.3. Aggressive and
defensive plays are the most distinct but there are also observable differences between control that
prioritizes blocking and moving, with the blocking-style conditioning agents to hold their ground
while moving prompts agents to move around the ring more. When comparing MultiCriticAL to
MTPPO, we note that, while rewards at the extremes of style distinction are similar, MultiCriticAL
appears to be better at more consistently maintaining intermediate styles (when a setting is at 0.5).
Visually, it appears that MTPPO also tended to favor blocking and defense over learning more
nuanced behavior (Table 6).

5.5 DISCUSSION

While explicit separation of the learned value functions per style under the MultiCriticAL framework
offers a demonstrable and consistent improvement over the single-critic baselines, it must be noted
that MTSAC and MTPPO baselines do not necessarily reflect the state-of-the-art in MTRL, but they
do reflect how value optimization is typically handled in contemporary literature. It is likely that
utilizing some of the improvements to policy optimization techniques discussed in Section 3, may
contribute to improved performance of policies trained using single-critic value-optimization, how-
ever the same may also further improve the performance of agents trained with MultiCriticAL and
remains to be studied. Curiously, MN-MultiCriticAL consistently outperformed MH-MultiCriticAL
on all the tested tasks, which calls into question the idea that shared representation is important
and/or useful (Dewangan et al., 2018; Yang et al., 2017) and is an aspect that may warrant further
study. An interesting extension could be to extend modularization (Yang et al., 2020; Andreas et al.,
2017) to value-function optimization. Learning with curricula (Bengio et al., 2009; Graves et al.,
2017; Mysore et al., 2019; Andreas et al., 2017) has also been demonstrated to (sometimes dramat-
ically) improve RL performance and multi-style/task curricula also seem like a potential natural fit
for multi-critic optimization. Recent work (Mysore et al., 2021a; Andrychowicz et al., 2021; Ilyas
et al., 2020) has also demonstrated that value function capacity can be a key bottleneck in RL perfor-
mance. Increasing the network capacity of a single-critic value-function may improve the efficacy of
the critic, but this is not guaranteed and there are few principled ways to determine what a sufficient
network capacity may be. Significantly increased computational resources may be required for the
learnability of the multi-style problems under a single-critc framework. MultiCriticAL also requires
increased compute during training, particularly MN-MultiCriticAL, but MH-MultiCriticAL allows
for a bounded increase to computational load (< 3% as tested - see Appendix E) with an acceptable
compromise in relative performance while still outperforming single-critic value learning.

6 CONCLUSION

We study Actor-Critic optimization in multi-style RL problems, where agents are required to behave
with different styles in the same environments, our work represents one of the first explorations of
the application of RL to a wider array of multi-style problems. We hypothesized that limitations
of single-actor, single-critic MTRL frameworks may result in interference between the reward sig-
nals for different styles due to high similarity in visited states and to mitigate this, we proposed
Multi-Critic Actor Learning (MultiCriticAL), which separates critics into per-task value-function
estimators, thus avoiding interference between style rewards and reduces learning complexity by
not requiring critics to learn to distinguish between tasks. MultiCriticAL consistently outperforms
the single-critic MTRL baselines, achieving up to 56% improvement in multi-task performance and
successfully learning multiple behavior styles where single-critic methods would fail.

9

Published as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

As noted in Section 5, training code is based upon the open-source OpenAI Spinning Up code-
base (Achiam, 2018), with modifications made to support MultiCriticAL for PPO and SAC. The
modified code-base is included in the Supplementary Material for this paper, along with the code
for the custom environments for Path Following (presented in Section 5.1) and Pong with rotatable
paddles (presented in Section 5.2). The README files included with the code detail installation and
use of the code. For the Sonic the Hedgehog games, reproducing results would require acquiring
the games’ ROM files and linking them to an install of gym-retro, as detailed by Nichol et al.
(2018). Also included in Appendices D and E are additional details for the setup of the training
environments discussed in the main body of the paper as well as training configurations used. We
recognize that tests on the UFC environment may not be independently reproducible due to requiring
access to proprietary development software and we therefore mainly discuss it as a demonstration
of the practical utility for our proposed MultiCriticAL method, rather than as a benchmark task.

REFERENCES

Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

Eloi Alonso, Maxim Pete, David Goumard, and Joshua Romoff. Deep reinforcement learning for
navigation in aaa video games. NeuriPS Workshop on Challenges of Real-World RL, 2020.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In International Conference on Machine Learning, pp. 166–175. PMLR, 2017.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël
Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly,
and Olivier Bachem. What matters for on-policy deep actor-critic methods? a large-scale study.
In International Conference on Learning Representations, 2021.

S. Ariyurek, A. Betin-Can, and E. Surer. Automated video game testing using synthetic and human-
like agents. IEEE Transactions on Games, 13(1):50–67, 2021. doi: 10.1109/TG.2019.2947597.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Christopher Berner et al. Dota 2 with large scale deep reinforcement learning. CoRR,
abs/1912.06680, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv:1606.01540, 2016.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Sharing knowl-
edge in multi-task deep reinforcement learning. In International Conference on Learning Repre-
sentations, 2020. URL https://openreview.net/forum?id=rkgpv2VFvr.

Parijat Dewangan, S Phaniteja, K Madhava Krishna, Abhishek Sarkar, and Balaraman Ravindran.
Digrad: Multi-task reinforcement learning with shared actions. arXiv preprint arXiv:1802.10463,
2018.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135. PMLR,
2017.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596, 2018.

Linus Gisslén, Andy Eakins, Camilo Gordillo, Joakim Bergdahl, and Konrad Tollmar. Adversarial
reinforcement learning for procedural content generation. IEEE Conference on Games, 2021.

10

https://openreview.net/forum?id=rkgpv2VFvr
https://github.com/openai/baselines
https://github.com/openai/baselines

Published as a conference paper at ICLR 2022

Camilo Gordillo, Joakim Bergdahl, Konrad Tollmar, and Linus Gisslén. Improving playtesting
coverage via curiosity driven reinforcement learning agents. IEEE Conference on Games, 2021.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In international conference on machine learning, pp.
1311–1320. PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. International Conference
on Machine Learning (ICML), 2018.

Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23:2613–
2621, 2010.

Zhewei Huang, Shuchang Zhou, BoEr Zhuang, and Xinyu Zhou. Learning to run with actor-critic
ensemble. arXiv preprint arXiv:1712.08987, 2017.

Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. A closer look at deep policy gradients. In International Con-
ference on Learning Representations, 2020.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. Interna-
tional Conference on Learning Representations, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of pareto
dominating policies. Journal of Machine Learning Research, 15(107):3663–3692, 2014. URL
http://jmlr.org/papers/v15/vanmoffaert14a.html.

Siddharth Mysore, Robert Platt, and Kate Saenko. Reward-guided curriculum for robust reinforce-
ment learning. In Workshop on Multi-task and Lifelong Reinforcement Learning at ICML, 2019.

Siddharth Mysore, Bassel Mabsout, Renato Mancuso, and Kate Saenko. Honey, i shrunk the actor:
A case study on preserving performance with smaller actors in actor-critic rl. IEEE Conference
on Games, 2021a.

Siddharth Mysore, Bassel Mabsout, Kate Saenko, and Renato Mancuso. How to train your quadro-
tor: A framework for consistently smooth and responsive flight control via reinforcement learning.
ACM Transactions on Cyber-Physical Systems (TCPS), 5(4):1–24, 2021b.

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gotta learn fast: A
new benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29:4026–4034, 2016.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Transactions on
Graphics (TOG), 37(4):1–14, 2018.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy distil-
lation. arXiv preprint arXiv:1511.06295, 2015.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

11

http://jmlr.org/papers/v15/vanmoffaert14a.html

Published as a conference paper at ICLR 2022

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning,
Lille, France, 07–09 Jul 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. arXiv preprint arXiv:2102.06177, 2021.

Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In International Conference on
Machine Learning, pp. 9120–9132. PMLR, 2020.

Denis Steckelmacher, Hélène Plisnier, Diederik M Roijers, and Ann Nowé. Sample-efficient model-
free reinforcement learning with off-policy critics. arXiv preprint arXiv:1903.04193, 2019.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural informa-
tion processing systems, 2000.

Norman Tasfi. Pygame learning environment. https://github.com/ntasfi/
PyGame-Learning-Environment, 2016.

Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirkpatrick, Raia
Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning.
arXiv preprint arXiv:1707.04175, 2017.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003. PMLR, 2016.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. arXiv preprint arXiv:2003.13661, 2020.

Zhaoyang Yang, Kathryn E Merrick, Hussein A Abbass, and Lianwen Jin. Multi-task deep rein-
forcement learning for continuous action control. In IJCAI, volume 17, pp. 3301–3307, 2017.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, pp. 1094–1100. PMLR, 2020.

Y. Zhao, I. Borovikov, F. de Mesentier Silva, A. Beirami, J. Rupert, C. Somers, J. Harder, J. Kolen,
J. Pinto, R. Pourabolghasem, J. Pestrak, H. Chaput, M. Sardari, L. Lin, S. Narravula, N. Aghdaie,
and K. Zaman. Winning is not everything: Enhancing game development with intelligent agents.
IEEE Transactions on Games, 12(2), 2020. doi: 10.1109/TG.2020.2990865.

12

https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment

Published as a conference paper at ICLR 2022

A ADDITIONAL DATA AND RESULTS

A.1 LEARNING CURVES

A.1.1 PATH FOLLOWING

Figure 6: Learning Curves for all tested SAC variants on the Path Following benchmark.

Figure 7: Learning Curves for all tested PPO variants on the Path Following benchmark.

A.1.2 PONG

Figure 8: Learning Curves for all tested SAC variants on the Pong benchmark.

13

Published as a conference paper at ICLR 2022

Figure 9: Learning Curves for all tested PPO variants on the Pong benchmark.

A.1.3 SONIC THE HEDGEHOG

Figure 10: Average Learning Curves the Sonic the Hedgehog benchmark games. Represented
here is the averaged reward over the 17 levels of the game as training progresses. We chose this
representation in the interest of providing a more compact representation instead of including 34
separate figures, with one for each level, as that would both require a lot of space and be more
difficult to parse.

14

Published as a conference paper at ICLR 2022

A.2 ALTERNATIVE RESULTS REPRESENTATION

A.2.1 PONG

SAC PPO
0

50

100

150

200

250

PONG DEFENSIVE - REWARDS

Single-style MT w/ one-hot MN-MultiCriticAL MH-MultiCriticAL

SAC PPO
-1.5

-1

-0.5

0

0.5

1

1.5

PONG AGGRESSIVE - REWARDS

Single-style MT w/ one-hot MN-MultiCriticAL MH-MultiCriticAL

SAC PPO
0

200
400
600
800

1000
1200
1400
1600
1800
2000

PONG DEFENSIVE - EP ISODE LENGTH

Single-style MT w/ one-hot MN-MultiCriticAL MH-MultiCriticAL

SAC PPO
0

200

400

600

800

1000

1200

1400

1600

PONG AGGRESSIVE - EP ISODE LENGTH

Single-style MT w/ one-hot MN-MultiCriticAL MH-MultiCriticAL

Figure 11: Box and Whisker plots for Pong Results presented in Section 5.

A.2.2 SONIC THE HEDGEHOG

Table 4: Rewards achieved on Sonic the Hedgehog (1)
Abbreviation Level Single-level Policy MTPPO MN-MultiCriticAL MH-MultiCriticAL

GHZ1 GreenHillZone.Act1 37.41± 15.84 38.70± 23.41 42.30± 5.32 40.72± 6.04
GHZ2 GreenHillZone.Act2 17.60± 9.66 26.40± 10.62 42.26± 2.07 32.63± 6.01
GHZ3 GreenHillZone.Act3 7.22± 4.07 9.37± 6.58 38.85± 25.18 12.02± 5.54
MZ1 MarbleZone.Act1 28.03± 5.45 26.20± 11.30 39.93± 13.30 40.40± 8.45
MZ2 MarbleZone.Act2 18.86± 5.23 16.79± 6.60 22.84± 1.70 22.92± 0.11
MZ3 MarbleZone.Act3 27.31± 2.36 22.64± 7.04 29.82± 0.68 28.50± 0.17
SYZ1 SpringYardZone.Act1 6.29± 2.73 7.82± 6.50 10.02± 5.34 9.16± 5.14
SYZ2 SpringYardZone.Act2 5.55± 3.71 11.59± 2.85 18.65± 3.41 13.47± 6.06
SYZ3 SpringYardZone.Act3 19.67± 2.19 17.17± 1.58 22.82± 4.97 26.14± 2.37
LZ1 LabyrinthZone.Act1 22.50± 3.18 22.04± 5.00 22.00± 6.40 25.16± 12.77
LZ2 LabyrinthZone.Act2 29.52± 0.40 29.65± 0.19 29.59± 0.31 29.46± 0.06
LZ3 LabyrinthZone.Act3 25.70± 4.02 26.04± 0.09 26.33± 0.13 25.82± 0.19

SLZ1 StarLightZone.Act1 35.03± 0.51 35.15± 1.06 47.80± 12.38 39.79± 4.38
SLZ2 StarLightZone.Act2 6.76± 0.14 13.05± 4.62 18.25± 0.30 17.04± 3.21
SLZ3 StarLightZone.Act3 14.47± 6.95 26.37± 5.01 30.40± 6.39 30.20± 1.00
SBZ1 ScrapBrainZone.Act1 8.03± 1.65 10.73± 4.52 9.92± 4.13 11.68± 6.11
SBZ2 ScrapBrainZone.Act2 12.52± 0.00 8.54± 4.27 11.61± 1.99 11.25± 1.51

Average 19.42± 2.03 20.48± 2.24 27.39± 2.65 24.73± 1.31

15

Published as a conference paper at ICLR 2022

Table 5: Rewards achieved on Sonic the Hedgehog 2
Abbreviation Level Single-level Policy MTPPO MN-MultiCriticAL MH-MultiCriticAL

EHZ1 EmeraldHillZone.Act1 48.98± 10.01 43.72± 17.08 65.82± 15.48 44.03± 6.07
EHZ2 EmeraldHillZone.Act2 21.82± 2.37 18.43± 10.09 28.31± 6.27 23.65± 13.28
CPZ1 ChemicalPlantZone.Act1 26.58± 3.29 28.21± 2.01 37.48± 10.18 33.65± 11.64
CPZ2 ChemicalPlantZone.Act2 28.82± 4.32 18.84± 8.90 24.60± 9.85 27.01± 5.00
ARZ1 AquaticRuinZone.Act1 15.30± 7.31 5.85± 0.00 24.28± 5.56 19.18± 9.24
ARZ2 AquaticRuinZone.Act2 37.40± 6.89 24.12± 2.85 39.41± 7.30 33.15± 10.23
CNZ CasinoNightZone.Act1 17.12± 0.97 12.02± 3.51 20.34± 5.01 15.65± 1.99
HTZ1 HillTopZone.Act1 7.82± 0.20 6.36± 2.72 7.76± 0.85 5.65± 0.57
HTZ2 HillTopZone.Act2 6.44± 4.23 4.22± 2.81 19.89± 2.96 21.30± 3.08
MCZ1 MysticCaveZone.Act1 10.25± 0.34 7.42± 1.14 9.74± 1.44 10.23± 0.17
MCZ2 MysticCaveZone.Act2 8.57± 2.31 5.47± 0.00 8.75± 3.32 11.96± 1.59
OOZ1 OilOceanZone.Act1 14.95± 3.87 8.65± 4.18 19.14± 2.58 13.04± 4.28
OOZ2 OilOceanZone.Act2 10.20± 0.90 9.92± 2.11 13.72± 4.16 14.06± 3.22
MZ1 MetropolisZone.Act1 14.64± 3.25 6.07± 1.94 14.39± 2.58 14.03± 3.52
MZ2 MetropolisZone.Act2 12.79± 2.68 11.50± 2.53 13.12± 0.37 16.90± 7.06
MZ3 MetropolisZone.Act3 6.49± 2.27 10.31± 1.59 11.75± 2.29 17.34± 5.16
WFZ WingFortressZone 27.43± 0.88 8.74± 0.41 24.81± 3.98 21.29± 5.53

Average 18.90± 1.71 13.73± 1.06 21.11± 2.44 19.22± 1.95

EHZ1 EHZ2 CPZ1 CPZ2 ARZ1 ARZ2 CNZ1 HTZ1 HTZ2 MCZ1 MCZ2 OOZ1 OOZ2 MZ1 MZ2 MZ3 WFZ Average

Re
w
ar
d

0

20

40

60

80

100

120 SONIC THE HEDGEHOG 2

GHZ1 GHZ2 GHZ3 MZ1 MZ2 MZ3 SYZ1 SYZ2 SYZ3 LZ1 LZ2 LZ3 SLZ1 SLZ2 SLZ3 SBZ1 SBZ2 Average

Re
w
ar
d

0

20

40

60

80

100

120 SONIC THE HEDGEHOG

Single-level Training MTPPO MN-MultiCriticAL MH-MultiCriticAL

Figure 12: Sonic Results from Tables 4 and 5 visualized

A.2.3 UFC REWARD AND ACTION STATISTICS

Table 6: Action probabilities for MTPPO and MH-MultiCriticAL-PPO on UFC
Dominant Style No-action Strike Block Move Win Rate (%)

MTPPO
Aggressive 3.80 32.99 3.60 59.61 96
Defensive 7.48 5.42 73.86 13.22 4 (48% ties)

Neutral 7.48 20.97 24.12 47.42 100
Blocking 8.31 20.89 27.21 43.59 96
Moving 6.46 26.75 15.91 50.89 88

MH-MultiCriticAL-PPO
Aggressive 0.27 15.04 15.78 68.91 96
Defensive 0.52 4.94 30.20 64.34 12 (56% ties)

Neutral 0.57 11.30 22.88 65.25 88 (4% ties)
Blocking 0.49 14.88 23.92 60.71 88
Moving 0.59 8.70 20.88 69.82 64 (8% ties)

We observe from Figure A.2.3 and Table 6 that MultiCriticAL more consistently learns delineated
styles that are consistent with the behaviors that the rewards try to encourage. Note that, with our
method, it is, in fact, the aggressive style that wins most fights consistently and the defensive style
learns to block and move to not lose as quickly, whereas MTPPO tends seems to equate defensive
play with just blocking, and this also contributes to a higher rate of losing. We see as well that the
intermediate settings correspond to a more balanced blend of action probabilities between extremes
when compared to MTPPO.

16

Published as a conference paper at ICLR 2022

Dominant style

Aggressive Defensive Neutral Blocking Moving

N
or

m
al

iz
e

pe
r-

st
yl

e
re

w
ar

d

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

AGGRESS ION SCORES

MTPPO MH-MultiCriticAL

Dominant Style

Aggressive Defensive Neutral Blocking Moving

N
or

m
al

iz
ed

 p
er

-s
ty

le
 re

w
ar

d

0

0.005

0.01

0.015

0.02

0.025

0.03

DEFENSIVENESS SCORES

MTPPO MH-MultiCriticAL

Dominant Style

Aggressive Defensive Neutral Blocking Moving

N
or

m
al

iz
ed

 p
er

-s
te

p
re

w
ar

d

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

BLOCKING SCORES

MTPPO MH-MultiCriticAL

Dominant Style

Aggressive Defensive Neutral Blocking Moving

N
or

m
al

iz
ed

 p
er

-s
te

p
re

w
ar

d

0

0.001

0.002

0.003

0.004

0.005

0.006

MOVEMENT SCORES

MTPPO MH-MultiCriticAL

Figure 13: Box and Whisker plots for UFC style rewards presented in Section 5.

A.3 PONG ACTION INTERPOLATION WITH MULTI-POLICY COMPOSITION

As an exercise in curiosity, we also consider what would happen if we attempted to derive interme-
diate styles by interpolating between actions in the Pong game. This was meant to test an approach
similar to the multi-policy action composition technique used by Peng et al. (2018). Unlike in their
case where actions were weighted according to each actor’s estimated critic value, we instead di-
rectly interpolate between actions proposed by pre-trained aggressive and defensive agents. We take
this approach as the training for either style would not offer the value functions any meaningful
information about the other unseen style(s), prohibiting the form of value comparison employed by
Peng et al. We hypothesized that it is possible and even likely that policies would destructively
interfere with each other if the longer-term goals of constituent policies conflict with each other and
this is exactly what was observed in testing. Except for intermediate styles very close to the learned
extremes, interpolating between actions proposed by the aggressive and defensive agents caused a
near-complete failure in the composite policy’s control.

Composite policies were built by pairing a randomly selected pre-trained aggressive policy with
a randomly selected defensive policy. On a (0.5,0.5) ‘middle’ setting, SAC composite policies
achieved an average win-rate of 30% ± 5% (compared to the approximately 95% and 50% of the
constituent policies) with an average Play-time of 213 ± 89 steps (often losing the game quickly).
Similarly, composite PPO also achieves a low average win-rate of 15% ± 3% and similarly lose
the game quickly. A high win-rate would not be expected, as the defensive policies are explicitly
trained to avoid winning, but both policy classes are trained to avoid losing. Given the high loss-rate,
composing policies in this way, for this multi-style task, can only be regarded as a failure. By con-
trast however, as we showed in Table 2, MultiCriticAL is capable of learning to interpolate between
styles, both when and not explicitly trained to do so.

This experiment, by no means, constitutes exhaustive testing, and cannot be used to claim that
all, or even most, forms of multi-policy policy composition would be ineffective and is therefore not
included in the main body of the paper. We do believe however that it helps highlight a circumstance
where policy composition can fail in cases where long-term strategies for different target behavior
styles may interfere. Considered more generally, there are no guarantees that actions proposed by
distinct policies would be similar enough, that a weighted sum over them would even make sense, as
cooperation between policies is not something that is explicitly trained for. One might benefit from
explicit conditioning, though this was outside the scope of our work.

17

Published as a conference paper at ICLR 2022

B RELATING MULTICRITICAL TO DQNS AND MULIT-Q LEARNING

The idea of using multiple Q functions to guide the training of a single policy is not strictly new to
the broader context of RL and has been used in notably single-task RL for improving the stability
of learned value functions. These include techniques such as Double Q-learning (Hasselt, 2010;
Van Hasselt et al., 2016), Dueling Q-networks (Wang et al., 2016), and Bootstrapped DQNs (Os-
band et al., 2016; Steckelmacher et al., 2019). There are also applications in multi-task learning,
though we only encountered them in works considering DQN frameworks that, in effect, learn task-
specific Q values for a single policy in DQN architectures (Rusu et al., 2016; 2015; D’Eramo et al.,
2020). As DQNs jointly encode both the action policies and the value representation in the same
network, however, they do not share the practical benefits offered by Actor-Critic methods (and con-
sequently MultiCriticAL) in separating the actors and critics. We believe that, practically, this is a
meaningful distinction as DQN methods are (i) limited to discrete action spaces and (ii) need the full
representational and computational complexity of the value estimation to be preserved at inference
time after training, which is computationally inefficient. As shown by Andrychowicz et al. (2021)
and Mysore et al. (2021a), oftentimes, it appears that the value function often bears the higher bur-
den of required complexity to enable successful policy learning. Noting this, there is a significant
practical advantage to being able to just train smaller, less computationally expensive actor-networks
of actor-critic methods and disregard the value estimation networks at inference time. Given that our
work is largely motivated by application to video games, where runtime resource use is an important
consideration, this was an important distinction.

C MULTI-NETWORK VS. MULTI-HEADED TRAINING FRAMEWORK
OVERVIEW

Critic

O
bs

er
va

tio
ns

Actor Env

Policy
Optimization

Action

State

Re
w

ar
d

Critic
Optimization

Style Critics

O
bs

er
va

tio
ns

Actor Env

Policy
Optimization

Action

State

St
yl

e
Re

w
ar

ds

Multi-Critic
Optimization

Style
Selector

Style Critic

O
bs

er
va

tio
ns

Actor Env

Policy
Optimization

Action

State
St

yl
e

Re
w

ar
ds

Multi-Critic
Optimization

Style
Selector

Multi-network MultiCriticAL Multi-headed MultiCriticALTypical Actor-Critic RL

Figure 14: MN-MultiCriticAL and MH-MultiCriticAL frameworks compared. The main differ-
ences between the multi-network (MN) and multi-headed (MH) is in how the critic functions are
ultimately represented by the neural network(s). In the MN case, separate and independent net-
works are maintained for each style/task value function, whereas the MH configuration allows value
functions to share a common backbone and instead utilizes different network heads (i.e. output
nodes) for each learned value. While the former appears to offer superior performance in most of
the tested cases, the latter can be less computationally expensive and may incur reduced training
costs. It should be noted, however, that neither architecture needs to impact the actor, thus preserv-
ing run-time inference cost.

18

Published as a conference paper at ICLR 2022

D ADDITIONAL ENVIRONMENT SETUP DETAILS

D.1 PATH FOLLOWING

Observed State Agents observe a 4-dimensional state with the current (x, y) coordinates of the
agent in space and the current phase ρ ∈ [0, 1] represented by [sin(2ρπ), cos(2ρπ)]

Goal generation Goals, g are generated based on the current phase of motion. They are as follows:

• Circle: g(ρ) = [sin(2ρπ), cos(2ρπ)] ∀ρ ∈ [0, 1]

• Square: g(ρ) =

[4ρ− 0.5, 0.5] ρ ≤ 0.25

[0.5, 1.5− 4ρ] 0.25 ≤ ρ ≤ 0.5

[2.5− 4ρ,−0.5] 0.5 ≤ ρ ≤ 0.75

[−0.5, 4ρ− 3.5] 0.75 ≤ ρ ≤ 1

• Triangle: g(ρ) =

[1.5ρ, 0.5− 3ρ] ρ ≤ 1/3

[1.5− 3ρ,−0.5] 1/3 ≤ ρ ≤ 2/3

[−1.5 + 1.5ρ, 1.5ρ− 1.5] 2/3 ≤ ρ ≤ 1

Reward design For current state s and desired state g: r = 1− log(|s−g|)/ log(max(∆s)) where
max(∆s) is the difference between the extents of the space bounds.

D.2 PONG

Observed State Agents observe an 8-dimensional state with the current vertical y positions of
both the player and opponent, the player’s velocity, the paddle angle, and the ball’s (x, y) position
and velocity.

Reward design Aggressive play is conditioned with a sparse reward: +1 on a win and -1 on loss.
Agents are meant to learn that the best way to maximize cumulative discounted rewards is to win as
quickly as possible. Defensive play is conditioned with dense rewards: -1 on loss, -1 for bouncing
the ball against walls, +0.5 for receiving the ball, +0.1 if the opponent successfully receives the ball,
and +0.1 for every time-step of play. Defensive rewards encourage avoiding losing and ensuring that
the opponent can receive the ball in order to prolong the game.

D.3 SONIC THE HEDGEHOG

Reward scaling As recommended by Nichol et al. (2018), we scale rewards by a factor of 0.01 in
order to encourage more stable learning with PPO.

D.4 EA UFC DEVELOPMENT ENVIRONMENT

Environment The UFC environment is an experimental build of UFC. During training simula-
tion, superfluous elements of the game, such as audio, spectators, etc. are disabled. Socket com-
munication is used to interface between the game-code and the python-based RL algorithms. The
environment wrapper controls the game simulation and extracts and processes state information be-
fore communicating it through the socket to the python RL code and interprets requests from the
python code to trigger inputs in the game. During training, agents are trained for 240 epochs with
4000 sample interactions collected per epoch. Training is run in increments of 30 epochs to improve
simulation and memory management stability. Episodes are terminated when the agent runs out the
max episode length or if the health differential between the agent and opponent is over 40 units.

19

Published as a conference paper at ICLR 2022

State and Action Space for the UFC environment The environment returns the following data
as 30-dimensional observations for the RL agent:

• Position: (X,Z) coordinates in the ring
• Velocity: scalar of trajectory velocity
• Health: [0,100] float value
• Action active: high-level action indicator
• Strike type: indicator of type of strike performed
• Strike segment: indicates the current stage of striking
• Ticks to event: time until next event in game ticks
• Target hit location: the region of the opponent’s body the agent is targeting (upper or lower)
• Block successful: indicates when a strike is successfully blocked

The agent is allowed to take the following actions:

• No action
• (Strike) Straight: left or right, single request
• (Strike) Uppercut: left or right, single request
• (Strike) Hook: left or right, single request
• Block: high or low, needs to be held to sustain blocking
• Move: forward or backward relative to current opponent position

Reward Design The reward breakdown for the environment is as follows:

• Standard to all styles – Victory reward: +1; Strike request penalty: -0.001
• Aggressive style – successful attack reward: +|∆Healthopponent|/100

• Defensive style – survival reward: +0.02 per step; attack reward: +|∆Healthopponent|/200,
health loss penalty: −∆Healthagent/50

• Blocking style – block reward: +0.01 per successful block
• Movement style – velocity reward: +0.05v

E TRAINING CONFIGURATION

Training code is based on OpenAI’s Spinning Up (Achiam, 2018) and is provided in the zip folder
included as additional supplementary material with our main paper submission.

With the exception of hidden layer configuration, we use the same default hyperparameters for each
of the algorithms used. Different hidden layer configurations were selected for each environment
such that they would not be needlessly large but would consistently solve the problem in the single-
style cases

Network Configuration Hidden layer configurations for both the actors and critics per environ-
ment:

• Path following: PPO [64,64], SAC [8,8]
• Pong: PPO [64,64], SAC [32,32]
• Sonic the Hedgehog 1 and 2: PPO [256,256]. Note additionally that the CNN feature ex-

tractor is shared between the actors and all critics in any particular training run, though they
are not shared between separate training runs. The CNN feature extractor was configured
based on the the extractor used by Mnih et al. (2015) as it is the same configuration used in
the Retro-contest (Nichol et al., 2018).

The above network configurations correspond to the following numbers of trainable weights for each
of the critic network(s).

20

Published as a conference paper at ICLR 2022

Table 7: Trainable Critic parameters per task
Task Single-style MT w/ one-hot MN-MultiCriticAL MH-MultiCriticAL MH-MultiCriticAL vs. MT (%)

SAC
Path Following 137 161 483 163 ↑ 1.24%

Pong 5061 7109 14218 7164 ↑ 0.77%

PPO
Path Following 4545 4737 14211 4867 ↑ 2.74%

Pong 68353 76545 153090 76802 ↑ 0.33%
Sonic 197377 201729 3429393 205841 ↑ 2.04%

Misc. details Additionally, a frame wrapper is used with Pong and the Sonic games to augment
state information with information from the last 4 observed states. This wrapper is based on the
FrameStack wrapper provided in OpenAI Baselines (Dhariwal et al., 2017).

Training time was determined by running training until performance plateaued, with an additional
buffer given to multi-task training to account for the multi-task problem setting, with initial tests
conducted to ensure that performance indeed plateaued.

Run configurations Configurations for training per environment are as follows:

Path following

• Single-style PPO – Trained for 100 epochs with 4000 steps per epoch and 90 steps per
episode

• Single-style SAC – Trained for 50 epochs with 4000 steps per epoch and 90 steps per
episode

• Multi-style MTPPO – Trained for 300 epochs with 4000 steps per epoch and 90 steps per
episode

• Multi-style MTSAC – Trained for 150 epochs with 4000 steps per epoch and 90 steps per
episode

• Multi-style MultiCriticAL-PPO – Trained for 300 epochs with 4000 steps per epoch and
90 steps per episode

• Multi-style MultiCriticAL-SAC – Trained for 150 epochs with 4000 steps per epoch and
90 steps per episode

Pong with rotatable paddles

• Single-style PPO – Trained for 150 epochs with 4000 steps per epoch and variable length
episodes

• Single-style SAC – Trained for 50 epochs with 4000 steps per epoch and variable length
episodes

• Multi-style MTPPO – Trained for 250 epochs with 4000 steps per epoch and variable length
episodes

• Multi-style MTSAC – Trained for 150 epochs with 4000 steps per epoch and variable length
episodes

• Multi-style MultiCriticAL-PPO – Trained for 250 epochs with 4000 steps per epoch and
variable length episodes

• Multi-style MultiCriticAL-SAC – Trained for 150 epochs with 4000 steps per epoch and
variable length episodes

Sonic the Hedgehog (both 1 and 2)

• Single-style PPO – Trained for 30 epochs with 10000 steps per epoch and up to 2500 steps
per episode, or until Sonic’s death, whichever occurs first

• Multi-style MTPPO – Trained for 300 epochs with 10000 steps per epoch and up to 2500
steps per episode, or until Sonic’s death, whichever occurs first

• Multi-style MultiCriticAL-PPO – Trained for 300 epochs with 10000 steps per epoch and
up to 2500 steps per episode, or until Sonic’s death, whichever occurs first

21

	Introduction
	Preliminaries
	Related Work
	Multi-Critic Actor Learning
	Evaluation
	Path Following
	Pong with rotatable paddles
	Sonic the Hedgehog
	UFC Environment
	Discussion

	Conclusion
	Additional Data and Results
	Learning Curves
	Path Following
	Pong
	Sonic the Hedgehog

	Alternative Results Representation
	Pong
	Sonic the Hedgehog
	UFC Reward and Action Statistics

	Pong Action Interpolation with Multi-Policy Composition

	Relating MultiCriticAL to DQNs and Mulit-Q learning
	Multi-Network vs. Multi-Headed Training Framework Overview
	Additional Environment Setup Details
	Path Following
	Pong
	Sonic the Hedgehog
	EA UFC Development Environment

	Training Configuration

