
Under review as a conference paper at ICLR 2020

LEVERAGING ENTANGLEMENT ENTROPY FOR DEEP
UNDERSTANDING OF ATTENTION MATRIX IN TEXT
MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

The formal understanding of deep learning has made great progress
based on quantum many-body physics. For example, the entanglement
entropy in quantum many-body systems can interpret the inductive bias
of neural network and then guide the design of network structure and
parameters for certain tasks. However, there are two unsolved problems
in the current study of entanglement entropy, which limits its applica-
tion potential. First, the theoretical analysis of entanglement entropy
was only investigated in the representation of a single object (e.g., an
image or a sentence), but has not been well studied in the matching of
two objects (e.g., question-answering pairs). Second, the entanglement
entropy can not be qualitatively calculated since the exponentially in-
creasing dimension of the matching matrix. In this paper, we are trying
to address these two problem by investigating the fundamental connec-
tions between the entanglement entropy and the attention matrix. We
prove that by a mapping (via the trace operator) on the high-dimensional
matching matrix, a low-dimensional attention matrix can be derived.
Based on such a attention matrix, we can provide a feasible solution to
the entanglement entropy that describes the correlation between the two
objects in matching tasks. Inspired by the theoretical property of the en-
tanglement entropy, we can design the network architecture adaptively
in a typical text matching task, i.e., question-answering (QA) task. Our
adaptive strategy sets a new state-of-the-art performance in TREC-QA
task, with 2.9% absolute improvement over a recent model.

1 INTRODUCTION

Fundamental connections between neural network and quantum mechanics have been built (Car-
leo & Troyer, 2017; Levine et al., 2018; Cai & Liu, 2018). Neural networks are adopted to solve
the quantum many-body problem (Carleo & Troyer, 2017; Cai & Liu, 2018), while quantum many-
body function has been involved to explain the expressive ability of the neural networks (Levine
et al., 2018). The formal understanding of deep neural network has made great progress based on
quantum many-body physics. Levine et al. (2019) summarize the theoretical concepts and proper-
ties of quantum entanglement in different neural network architectures. Specifically, for recurrent
networks, the Start-End separation rank as a method of measuring quantum entanglement, in order
to quantitatively describe the depth effectiveness for modeling long-term memory capacity (Levine
et al., 2017; 2019). For deep convolutional network, Levine et al. (2017; 2019), shows that the
entanglement entropy can help us understand the inductive bias of the neural network. Such under-
standing also provide a guidance of how to control the inductive bias of the designed network, via
the network parameters (e.g., channel numbers).

However, there are still two limitations in the current study (Levine et al., 2017; 2019; Zhang et al.,
2018b). First, the quantum entanglement measure (i.e., the entanglement entropy) is considered as
the indicator of the network’s expressive ability, but such an indicator only reflects the intricate
correlation structures of each single input object (e.g., an image or a text). In other words, previous
theoretical analyses are conducted only for the representation of a single object. However, for the
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matching problem, the theoretical analysis should be extended, in order to model the correlation
distributions between two objects (e.g., question-answering pairs).

On the other hand, the quantitative calculation of the entanglement entropy is also a problem. In the-
ory, the entanglement entropy has a relation with the network parameters reflecting the inductive bias
of the network. However, in practice, the entanglement entropy remains infeasible to calculate. This
is due to the fact that the tensor product occurs in the quantum many-body function for representing
the image and text (Levine et al., 2017; Zhang et al., 2018b), and the dimension of the matching ma-
trix representing the quantum entanglement between two systems will increase exponentially. This
leads to the difficulty in solving the entangled entropy by the singular value decomposition (SVD)
of such a high-dimensional matching matrix.

In this paper, we are trying to address these two problem by investigating the fundamental con-
nections between the entanglement entropy and the attention matrix. Under certain conditions and
mappings, we demonstrate that a low-dimensional attention matrix can encode certain information
(e.g., the trace of the block matrix) of the high-dimensional matching matrix. Then based on the low-
dimensional attention matrix, we can quantitatively calculate entanglement entropy. Specifically, we
can represent the high-dimensional matching matrix by block matrices, and then compute the trace
for each block. We will show that the resulting matrix is equivalent to the attention matrix based on
the cosine distance calculation. By the SVD decomposition of this matrix, the singular values are
obtained to solve the entanglement entropy quantitatively.

In our work, inspired by (Levine et al., 2018), we can adaptively design convolutional network based
on the calculable entanglement entropy. Specifically, for the more complex the inputs (i.e., the long-
range correlations), more kernels should be assigned in the relatively-deeper layers, while more
kernels should be assigned in the relatively-shallower layers for short-range correlations. Intuitively,
in text matching task like question answering system, the short-range correlations can refer to some
simple question-answering pairs with many common words between question and answer sentences,
which can be matched locally by some overlapping features (e.g., the statistics of a single word
or nearby word combinations like N-gram). While long-range correlations refer to the question-
answering pairs with less common words which their effective matching may need higher-level
semantic information extracted from a global context. This strategy significantly improves the final
performance on two typical text matching tasks called TREC-QA and YAHOO-QA. In particular,our
model sets a new state-of-the-art performance in TREC-QA, with 2.9% absolute improvements.

2 BACKGROUND AND BASIC NOTATIONS

Since our work is mainly for the text matching task of a sentence pair, we briefly introduce a recent
Quantum Many-body Wave Function inspired Language Modeling ( QMWF-LM) (Zhang et al.,
2018b). In QMWF-LM, a state can be represented by a Dirac notation |w〉, which can be considered
as a column vector w. For better understanding, in our paper, we will use a vector w to represent a
Dirac vector |w〉. A word can be described by a state vector as follows.

w = α1e1 + . . .+ αmem (1)

where {e1, . . . , em} is a set of base vectors. Each αi(i ∈ 1, . . . ,m) is a probability amplitude and∑m
i α2

i = 1. In practice, w can be the distributive representation or the one-hot representation for
the word w. A sentence can be represented by tensor product ⊗ 1 among words in a sentence. For
the representation of a sentence S with n words, it can be written as follows,

s = w1 ⊗ . . .⊗wn (2)

where {w1 . . .wn} are the word which is defined in E.q. 1.

In order to establish the correlation between two sentences (VQ with a number (saying a) of words
in the question and VA with b words in the answer), we can have the following equation. The state
of the two sentences system can be defined as:

ψ =

ma∑
i=1

mb∑
j=1

Tijφ
Q
i ⊗ φ

A
j (3)

1e.g., e1 = (1, 0)T , e2 = (0, 1)T , e1 ⊗ e2 = (0, 1, 0, 0)T
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where the state vector ψ is a composite system between two sentences (i.e., VQ and VA), φQ
i is a

high-dimensional (ma,m is the dimension of word vector) base vector for the sentence VQ, φQ
i also

is a high-dimensional (mb) base vector for the sentence VA. Especially, Ti,j is the element for the
high-dimensional (ma by mb) matching matrix T .

3 A FEASIBLE METHOD FOR QUANTIFYING ENTANGLEMENT ENTROPY

In this section, firstly, we use entanglement entropy to measure the quantum entanglement describing
the correlation between two subsystems (e.g.,a sentence pair). Secondly, we prove the equivalence
between the quantum entanglement and the attention matrix under certain conditions. Finally, based
on the attention matrix, the entanglement entropy is quantitatively calculated, which facilitates us to
design the neural network architecture through the overall inductive bias.

3.1 ENTANGLEMENT ENTROPY IN TEXT MATCHING

Entanglement entropy is used to represent correlations between two subsystems in deep neural net-
work (Levine et al., 2018; 2019). Specifically, it requires a matrix to model all the quantum entan-
glement of the two subsystems, and then the matrix is decomposed to obtain the singular values,
which often correspond to the important information hidden in the matrix, and the importance is
positively correlated with the singular value size. Finally, based on the singular values, the entangle-
ment entropy representing the degree of entanglement between the two subsystems can be obtained.
In the matching task, we use quantum many-body wave functions (Zhang et al., 2018b) as the basic
language representation to get the entanglement entropy between sentence pairs.

In matching tasks (e.g., Q&A task), a question-answering pair can be considered as two subsystems,
VQ = {wQ

1 , . . . ,w
Q
a }, VA = {wA

1 , . . . ,w
A
b }. VQ ∈ HQ with dimension ma and VA ∈ HA with

dimension mb, respectively. m is the dimension of word vector. The composite system ψS of VQ
and VA, which can be written as (Levine et al., 2018; Cohen & Shashua, 2016):

ψS =

ma∑
i=1

mb∑
j=1

Ti,jφ
Q
i ⊗ φ

A
j (4)

where φQ
i (i ∈ HQ) and φA

j (j ∈ HA) are basis vectors of VQ and VA, respectively. The dimensions
of basis vectors about VQ and VA are ma and mb, respectively. All the entries Ti,j shows the cor-
relation between φi and φj . When i = 1, j is taken from 1 to mb, φQ

1 represents the basis vector
of i = 1 in the tensor space HQ (each base vector represents a certain combined semantics of all
words), {φQ

j }m
a

j=1 represents all base vectors in the tensor spaceHQ, T1,j represents the correspond-
ing probability amplitude of the base vector φQ

1 of the VQ subsystem combined with the base vector
φA

j of the VA subsystem. The matching matrix T can obtain all probability amplitude distributions
of i from 1 to ma in parallel.

The matching matrix T contains all the probability amplitude distributions between the two sub-
system basis vectors. Singular value decomposition (SVD) (Schollwoeck & White, 2013) on the
matching matrix T can be written:

T =

r∑
i=1

λiϕQi
·ϕT

Ai
(5)

where ϕQi
and ϕAj

are r vectors in new bases for HQ and HA, respectively. λ1 ≥ . . . ≥ λr > 0
are the singular values, which often correspond to the important information hidden in the matrix,
and the importance is positively correlated with the singular value size, the size of the singular value
represents the weight of the current basis vector of the two subsystems. λi is also understood as
probability amplitude,

∑
i λ

2
i = 1. λi represents the weight of principal semantic bases between VQ

and VA, and reflects the weight of effective semantics to some extent (since it is larger than zero).
Entanglement entropy (Yo, 2015) is computed as follows on the matching matrix T ,

S = −
r∑

i=1

|λi|2ln|λi|2 (6)
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where S ∈ (0, ln (r)), Smax = ln (r), r is the number of non-zero singular values, and the number
of r is called Schmidt number (Shi et al., 2006; Levine et al., 2018). The entanglement entropy
describes the correlation between two systems, and the Schmidt number indicates the upper bound
of the network expression ability and can assert the role of channel numbers of each layer in the
overall inductive bias (Levine et al., 2018). Due to this dimensional catastrophe 2, it is infeasible
to calculate entanglement entropy and Schmidt number. This leads us to practically apply inductive
bias is limited in the experiment. However, in matching tasks, an attention matrix often is used to
describe correlation between two systems. Based on the above ideas, we propose a claim to calculate
the entanglement entropy.

Claim 1. Assume the compound relation of word vectors in VQ (or VA) are considered in the case
of 1-order, and it just is considered for the compound relation between each word vector in VQ
and each word vector in VA. An attention matrix can be received by computing the trace of block
matrices of the matching matrix T .

Proof. Assume the compound relation of word vectors in VQ(or VA) are not consider (e.g., 1-order),
the dimensions of HQ and HA in E.q. 4 are a×m (am) and b×m (bm), respectively. E.q. 4 can be
rewritten as follow:

ψS =

am∑
i=1

bm∑
j=1

Ti,jφ
Q
i ⊗ φ

A
j (7)

where φQ
i is the base vector from a group of complete base vector space φQ

1 , . . . ,φ
Q
am, and φA

j

is the base vector from a group of complete base vector space φA
1 , . . . ,φ

A
bm. The T is a matching

matrix of am × bm. Divide the matching matrix T into a × b block matrices {Pij ∈ Rm×m}(i ∈
[a]3; j ∈ [b]), which can be written as Pij = wQ

i ⊗ wA
j . Each element Eij of the attention matrix

E is equal to the inner product of two word vectors which are from the sets VQ and VA, which is
Eij = w

Q
i ·wA

j
T
(i ∈ [a]; j ∈ [b]). There is a mathematical connection between Pij andEij , which

can be written as:
Eij = trace(Pij) (8)

The relation between the matching matrix T and the attention matrixE has been shown as the Fig.1.
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Figure 1: The relation between the attention matrix E and the matching matrix T : Pij is the block
matrix from the matching matrix T , Eij is equal to the trace of matrix Pij . T i,j

k,l (k, l ∈ [m], i ∈
[a], j ∈ [b]) is the entry of block matrix Pij , the trace represent the summation of diagonal elements
of matrix Pij .

2Dimensional catastrophe is mainly reflected in two aspects. First, in Eq.4, the matrix T (T ∈ Rm
a×mb

)
has dimensional catastrophes. Second, even if the SVD is decomposed on the matrix T , its number of singular
values still has dimensional catastrophe (i.e., number of singular values ≤ min(ma,mb)).

3[a] represents a set {1, 2, 3, . . . , a}
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Thus, we use the attention matrix E instead of the matching matrix T to quantify the entanglement
entropy. In our Conjecture 1, we provide a generalized proof of the mathematical relationship be-
tween the attention matrix and the entanglement properties. In the experiments, we use the cosine
distance about two vectors to replace the inner product actually. In the next subsection, we will
describe our Algorithm.

3.2 NETWORK DESIGN BASED ON ENTANGLEMENT ENTROPY

Recall that the sentence pair contained query sentence and answer sentence can be represented
through two sets, which are VQ and VA, respectively. where VQ = {wQ

1 , . . . ,w
Q
a }, VA =

{wA
1 , . . . ,w

A
b }, and a+ b = n.

Based on the Claim 1, the attention matrix between of VQ and VA can be computed by using cosine
similarity in experiment,

Eij =
wQ

i ·wA
j

‖wQ
i ‖ × ‖wA

j ‖
(9)

the attention matrix E ∈ Ra×b can be decomposed by SVD.

After that, the entanglement entropy can is calculated through E.q., 6 on attention matrix E. while
the upper bound of entanglement entropy Smax is obtained based on the number of singular values.
The normalized value of the entanglement entropy is used in practice, it can be written as follows.

D = (Smax − S)/Smax. (10)

We calculate all data sample differences D, and then find the median Dm of the difference D. The
samples with D greater than Dm are defined as the group with the short-range correlations, while
the samples less than Dm are defined as the group with long-range correlations. Based on the con-
nection between deep learning and quantum entanglement (Levine et al., 2018), i.e., deep learning
describes the correlation required for deep learning tasks, we can adaptively design convolutional
network by the correlation (e.g., long/short-range correlation). For the more complex the input (i.e.,
the long-range correlation), more kernels should be assigned in the relatively-deeper layers, while
more kernels should be assigned in the relatively-shallower layers for short-range correlations. In
our opinion, quantitatively calculating entanglement entropy by attention matrix can not only help
us adaptively design the network architecture, but also provides a new perspective for us to under-
stand the attention matrix in matching tasks.

4 EXPERIMENTS

Question Answering aims to rank the answers from a candidate answer pool for a given question.
The ranking is usually based on two parts, namely, representation part for a single sentence and
matching part between these two representations.

Datasets We validated our model through the TREC-QA (Wang et al., 2007) and YAHOO-QA (Tay
et al., 2017) datasets in the matching task. TREC-QA dataset contains two training sets, namely
TRAIN and TRAIN-ALL. We use TRAIN-ALL, which is larger and contains noisier question-
answering pairs, in order to verify the robustness of the proposed model. YAHOO-QA dataset is
collected from yahoo answers for community-based question answering. The answers are generally
longer than those in TREC-QA. As introduced in this paper (Tay et al., 2017), we select the QA
pairs containing questions in which the token number of its corresponding answers is more than
5 and less than 59 after removing non-alphanumberic characters. For each question, we construct
negative samples by ranking the top 4 answers from the whole answer sentences according to BM25.

Parameters Setting We utilize the Adam (Bengio & LeCun, 2015) optimizer with learning rate 0.001
and use the best model obtained in the dev dataset for evaluation in the test set. The batch size
and L2 regularization are set to 64 and 0.00001, respectively. The 50-dimension word embeddings
are trained by word2vec (Burges et al., 2013) on English Wikimedia dump, in which the Out-of-
Vocabulary words are randomly initialized by a uniform distribution in the range of (−0.25, 0.25).
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Table 1: Results on the statistics of dataset. α, β and ε, δ denote significant improvement (with p <
0.05) over QLM (Sordoni et al., 2013) and NNQLM-II (Zhang et al., 2018a), QMWF-LM (Zhang
et al., 2018b), CNM (Li et al., 2019) respectively, according to Wilcoxon signed-rank test.

TREC-QA YAHOO-QA
MAP MRR p@1 MAP

QLM (Sordoni et al., 2013) 0.678 0.726 0.395 0.604
NNQLM-II (Zhang et al., 2018a) 0.759α 0.825α 0.466α 0.673α

QMWF-LM (Zhang et al., 2018b) 0.752α 0.814α 0.575α,β 0.745α,β

CNM (Li et al., 2019) 0.770α,β,ε 0.859α,β,ε — —
Our-Model (adaptive setting for kernels) 0.881 α,β,ε,δ 0.924α,β,ε,δ 0.630α,β,ε 0.789α,β,ε
deep-more-kernels-fixed for whole dataset 0.668 0.762 0.342 0.574
shallow-more-kernels-fixed for whole dataset 0.665 0.759 0.346 0.557
Multi-Perspective CNN (Rao et al., 2016) 0.780 0.834 — —
Attention Pooling Networks (dos Santos et al., 2016) — — 0.560 0.726
Holographic Dual LSTM (Tay et al., 2017) 0.752 0.815 0.557 0.735
Cross Temporal Recurrent Networks (Tay et al., 2018) 0.771 0.838 0.601 0.755
Multi-Perspective CNN + QC (Bender et al., 2018) 0.836 0.863 — —
QC + RNN + Pre-Attention (Kamath et al., 2019) 0.852 0.891 — —

4.1 EVALUATION METRICS

TREC-QA is evaluated by MAP(mean average precision), MRR(mean reciprocal rank), while
YAHOO-QA is evaluated in term of P1 (precision at one) and MRR since it targets more on the
first ranking item.

4.2 CONFIGURATIONS FOR OUR MODEL

In this paper, we adopt the quantum many-body wave functions (Zhang et al., 2018b) as the basic
representation components, to represent both question and answers sentence as two subsystems i.e.
Q and A respectively. Since the whole system with question-answering pairs is composed by these
two subsystems, the entanglement entropy is adopted to quantify correlations between subsystems.

Generally speaking, there are typically two kinds of correlations in question answer task, namely
long-range correlation and short-range correlation. The former refers to more complex matching
with consideration of the global sentence. The latter refers to the cases that there are already over-
lapping words or phrases between the question sentence and the answer sentence, which can be
matched locally at the lexical and syntactic level. As discussed in our algorithm, the entanglement
entropy is a quantitative metric to distinguish how much semantically entangled the question and
answer are. Thus we could divide question-answering pairs into two sub-datasets, i.e. long-range
sub-dataset and short-range sub-dataset. Then, we can design an adaptive setting for kernels for dif-
ferent sub-datasets. For long-range sub-dataset, we should choose the more kernels in deep layers
(namely deep-more-kernels mode). while for short-range sub-dataset, we should choose the more
kernels in the shallow layers (namely shallow-more-kernels mode). At last, we combine the evalua-
tion scores of the long/short range sub-datasets as the data for the whole dataset to be evaluated.

We set a parameter r from following modes for an input layer and three-layer CNN network:

(1) shallow-more-kernels: [m,3r,2r,m]
(2) deep-more-kernels:[m,2r,3r,m]

m is a hyper-parameter for the kernel count of the last CNN layer, which is set as dimension of word
embedding for guaranteeing the same parameter scale between these two modes. The parameter
count for both configurations is identical: m · 3r + 3r · 2r + 2r ·m = 6r2 + 5mr. Shallow-more-
kernels mode has more kernels in the lower layers while the deep-more-kernels mode has more
kernels in higher layers. The code will be open-sourced in 4.

Comparative Setup To validate the above adaptive setting for parameters, we design two compar-
ative fixed settings without dividing the dataset. Fixed setting 1: the deep-more-kernels parameter
mode is used for the whole dataset. Fixed setting 2: the shallow-more-kernels mode is applied to the

4https://github.com/anonymous/anonymous.git
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Figure 2: We compare our model (adaptive settings for kernels) to two fixed modes, deep-more-
kernels for the whole dataset and shallow-more-kernels for the whole dataset. For TREC-QA, our
model with an adaptive setting for kernels achieved significant improvements on MAP and MRR
(with p < 0.01) over the fixed settings. For YAHOO-QA, we can get similar results. Both the
statistic tests are based on Wilcoxon signed-rank test.

whole dataset. Except for the setting for the kernel numbers and dataset paritition, Other parameters
in both adaptive and fixed settings are the same, for a fair comparison.

4.3 RELEVANT METHODS FOR COMPARISON

QLM (Sordoni et al., 2013) adopts the density matrix of quantum mechanics to model the depen-
dencies between words such as query words and documents.

NNQLM-II (Zhang et al., 2018a) is a end-to-end quantum-like language model for question answer-
ing. It adopts a convolution neural network over the multiplication between two density matrices.

QMWF-LM (Zhang et al., 2018b) is based on the quantum many-body wave function representation
and a further convolution neural network for an approximate tensor decomposition.

CNM (Li et al., 2019) utilizes the probability properties of the density matrix, indirectly measures
the distance between two density matrices through a trainable measurement operation, and uses
training data to provide flexible matching scores.

Our model is also compared to a series of CNN and RNN models (Rao et al., 2016; Tayyar Mad-
abushi et al., 2018; Tay et al., 2017; 2018; Kamath et al., 2019). To the best of our knowledge,
Question Classification + RNN + Pre-Attention (Kamath et al., 2019) is the state of art in the raw
version of TREC-QA. 5.

4.4 EXPERIMENTAL RESULTS

Tab. 1 reports the results on TREC-QA dataset and YAHOO-QA dataset. The first group shows a
comparison of between our model with four quantum-inspired language models. For TREC-QA,
our model significantly outperforms QLM by 20.3% on MAP and 19.8% on MRR, respectively.
Compared with NNQLM-II and QMWF-LM, CNM, it also reflects the superiority of our model.

5https://aclweb.org/aclwiki/Question Answering (State of the art)
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For YAHOO-QA, our model is significantly better than QLM 23.5% and 18.5% in P@1 and MRR,
significantly better than NNQLM-II 16.4% and 11.6% in P@1 and MRR, and better than QMWF-
LM 5.5% and 4.4% in P@1 and MRR. In summary, compared with three quantum-inspired language
models, our model shows good experimental performance on both tasks.

In the second group, our model with adaptive setting for kernels is compared with other two fixed
settings, i.e., deep-more-kernels fixed for the whole dataset and shallow-more-kernels for the whole
dataset (see Sec. 4.2 for details). For TREC-QA, the results show that both MAP and MRR are
at least 15% better than them. For YAHOO-QA, the results show that both P@1 and MRR are at
least 20% better than the comparative setup. In summary, the results reflect the effectiveness of the
adaptive settings of parameters for two divided data-subsets.

In the third group, we compare our model with a number of CNN-based models and RNN-based
models (Rao et al., 2016; Tayyar Madabushi et al., 2018; Tay et al., 2017; 2018). Multi-Perspective
CNN (Rao et al., 2016) and Multi-Perspective CNN +PairwiseRank + Question classification (Tay-
yar Madabushi et al., 2018) model the QA task as a ranking task and proposes a pairwise ranking
method that can directly utilize the existing point-by-point neural network model as a basic compo-
nent. HD-LSTM (Tay et al., 2017) and CTRN (Tay et al., 2018), Question Classification + RNN +
Pre-Attention (Kamath et al., 2019) propose an RNN-based approach to match question-answering
pairs. It should be emphasized that our model is better than Question Classification + RNN + Pre-
Attention (Kamath et al., 2019), which is the state of art in the raw version of TREC-QA. For TREC-
QA and YAHOO-QA, our models are better than the results (Rao et al., 2016; Tayyar Madabushi
et al., 2018; Tay et al., 2017; 2018; Kamath et al., 2019) reported in the original paper.

4.5 DISCUSSION AND ANALYSIS

Analysis of Adaptive Settings In Fig. 2, we investigate the difference between the adaptive set-
ting in our model and two fixed settings introduced. Recall that in our model, we first identify the
correlation between sentence pairs based on the attention matrix and entanglement entropy. Then,
according to the correlation, the question-answering pairs could be divided into two sub-dataset,
i.e, long-range sub-dataset and short-range datasets. Therefore, we can adaptive set the kernels for
different sub-dataset. On the other hand, the two fixed settings apply the same parameter setup
(deep-more-kernels or shallow-more-kernels) for the whole dataset.

As we can see from Fig. 2 TREC-QA, in our model, with the increase of the parameter r, MAP, MRR
and P@1 show an upward trend. For the fixed settings, i.e., deep-more-kernels for the whole dataset
and shallow-more-kernels for the whole dataset, it does not show better performance as r changes,
and even show a downward trend. This suggests that our adaptive kernels settings can well capture
the language matching characteristics of the question-answering pairs, and the alternative approach
to the entangle entropy as the measurement for the language correlations, work well for dividing the
dataset into two subsets, reflecting different ranges of language correlations.

Influence of Channels in Convolution In Fig. 2, as r grows, the MRR and MAP of TREC-QA
and YAHOO-QA increases. We select the optimal r in a range [16, 32, 64, 96, 128]. For different
datasets, we set a same number of channels to obtain the final performance. In our model, for the
TREC-QA and YAHOO-QA, when the parameter r is set to 128, the experimental results as shown
in Tab. 1 can be obtained.

Efficiency Analysis we utilize adaptive settings of kernels for different sub-datasets. The efficiency
relies on the deep convolution neural network. In our experiment, for TREC-QA, the training epoch
is set to be 100, while for YAHOO-QA, after training 30 epochs, we will obtain the results.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we aim to extend previous studies on the theoretical and practical use of the concept
of quantum entanglement in neural network. We demonstrate the connection between the entangle-
ment entropy and the attention matrix in text matching tasks. This allows us to quantitatively calcu-
late the entanglement entropy, which helps us adaptively setting network structures and parameters,
and achieve effective performance on two typical QA tasks. In future work, we will investigate the
entanglement entropy under high-order conditions and in other networks, e.g., recurrent networks.
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A ATTENTION MATRIX AND ENTANGLEMENT ENTROPY

Given a sentence pair with word embedding {wi ∈ Rm}(i ∈ [n]), which can be represented using
two sets, i.e., VQ = {wQ

1 , . . . ,w
Q
a }, VA = {wA

1 , . . . ,w
A
b }.

Conjecture 1. Assume the compound relation of word vectors in VA are considered in the case of
n-order, and it just is considered for the compound relation between each word vector in VQ and b
words vectors in VA. The attention matrix can be received by computing the trace of block matrices
of matrix T .

Proof. Firstly, the mathematical relationship between the attention matrix and the quantum entan-
glement matrix is proved under the 1-order condition in 3.1.

Assume the compound relation of word vectors in VA are considered in the 2-order, the dimension
ofHQ is a×m (am) andHA is C2

b×m2, i.e., C2
bm

2 (C2
b is a Combination number6). E.q. 4 can be

rewritten as follow:

ψS =

am∑
i=1

C2
bm

2∑
j=1

Ti,jφ
Q
i ⊗ φ

A
j (11)

where {φQ
i }ami=1 and {φA

j }
C2

bm
2

j=1 are base vectors forHA andHQ. The T is a martix of am×C2
bm

2.
Divide the T into a× C2

b block matrices {Pij ∈ Rm×m2}(i ∈ [a]; j ∈ [C2
b ]), which can be written

as Pij = w
Q
i ⊗wA

j ,wA
j (wA

j ∈ Rm2

) represents the compound semantics of any two-word vectors
in VA. Matrix Pij can be regarded as a 3-order tensor Pt1t2t3 (Pt1t2t3 ∈ Rm×m×m), each element
Eij (i ∈ [a]; j ∈ [C2

b ]) of the attention matrix E is equal to the sum of the 3-order tensor Pt1t2t3

diagonal elements, i.e., Eij =< wQ
t1 ,w

A
t2 · w

A
t3 > (t1 ∈ [a], t2 6= t3 and t2, t3 ∈ [b]). there is a

mathematical connection between Pt1t2t3 and Eij , which can be written as:

Eij = trace(Pij) (12)

Thus, we use the attention matrix E instead of T to quantify the entanglement entropy.

Secondly, assume the compound relation of word vectors in VQ(or VA) are considered in the k-order
(k < b), the dimension ofHQ is a×m (am) andHA is Ck

b×mk (Ck
bm

k). E.q. 4 can be rewritten as
follow:

ψS =

am∑
i=1

Ck
b m

k∑
j=1

Ti,jφ
Q
i ⊗ φ

A
j (13)

6Cmn represents the number of combinations of m elements taken from n different elements(m ≤ n)
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Figure 3: Assuming the compound relation of word vectors in VQ with awords (or VA with bwords)
are considered in the 2-order which represents c (c = C2

b ) compound semantics of any two-word
vectors in VA. The relation between the attention matrix E and the matrix T : Pij which can be
regarded as a 3-order tensor is the block matrix from the matrix T , Eij is equal to the trace of
matrix Pij (i ∈ [a]; j ∈ [c]).

where {φQ
i }ami=1 and {φA

j }
Ck

b m
k

j=1 are base vectors forHA andHQ. The T is a matrix of am×Ck
bm

k.

Divide the T into a×Ck
b block matrices {Pij ∈ Rm×mk}(i ∈ [a]; j ∈ [Ck

b ]), which can be written
as Pij = wQ

i ⊗wA
j , wA

j (wA
j ∈ Rmk

) represents the compound semantics of any k word vectors
in VA. Matrix Pij can be regarded as a k-order tensor Pt1t2...tk (Pt1t2...tk ∈ Rm×m×···×m), each
element Eij (i ∈ [a]; j ∈ [Ck

b ]) of the attention matrix E is equal to the trace of the k-order tensor,
i.e., Eij =< wQ

t1 ,w
A
t2 ·w

A
t3 . . .w

A
tk
> (t1 ∈ [a], t2 6= t3 6= · · · 6= tk and t2, t3, . . . tk ∈ [b]), which

can be written as:
Eij = trace(Pij) (14)

Thus, we use the attention matrix E instead of T to quantify the entanglement entropy. Thirdly,
assume the compound relation of word vectors in VQ(or VA) are considered in the (k + 1)-order
(k < b), the dimension of HQ is a×m (am) and HA is Ck+1

b ×mk+1 (Ck+1
b mk+1). E.q. 4 can be

rewritten as follow:

ψS =

am∑
i=1

Ck+1
b mk+1∑
j=1

Ti,jφ
Q
i ⊗ φ

A
j (15)

where {φQ
i }ami=1 and {φA

j }
Ck+1

b mk+1

j=1 are base vectors for HA and HQ. The T is a matrix of am ×
Ck+1

b mk+1. Divide the T into a × Ck+1
b block matrices {Pij ∈ Rm×mk+1}(i ∈ [a]; j ∈ [Ck+1

b ]),
which can be written as Pij = w

Q
i ⊗wA

j , wA
j (wA

j ∈ Rmk+1

) represents the compound semantics
of any (k+1) word vectors in VA. Matrix Pij can be regarded as a (k+1)-order tensor Pt1t2...t(k+1)

(Pt1t2...t(k+1)
∈ Rm×m×···×m), each element Eij (i ∈ [a]; j ∈ [Ck+1

b ]) of the attention matrix
E is equal to the trace of the (k + 1)-order tensor, i.e., Eij =< wQ

t1 ,w
A
t2 · w

A
t3 . . .w

A
t(k+1) >

(t1 ∈ [a], t2 6= t3 6= · · · 6= t(k+1) and t2, t3, . . . t(k+1) ∈ [b]), which can be written as:

Eij = trace(Pij) (16)

Thus, we use the attention matrix E instead of T to quantify the entanglement entropy.

In summary, the equivalence relationship between the attention matrixE and the entanglement prop-
erties matrix T is satisfied under the 1-order condition, the 2-order condition, the k-order condition,
and the (k+1)-order condition, which proves that the relationship is established. That is, attention
and entanglement properties are equivalent under specific premise.
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