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Abstract

Many real-world data represent sequences of interdependent events unfolding over
time. They can be modeled naturally as realizations of a point process. Despite
many potential applications, existing point process models are limited in their
ability to capture complex patterns of interaction. Hawkes processes admit many
efficient inference algorithms, but are limited to mutually excitatory effects. Non-
linear Hawkes processes allow for more complex influence patterns, but for their
estimation it is typically necessary to resort to discrete-time approximations that
may yield poor generative models. In this paper, we introduce the first general
class of Bayesian point process models extended with a nonlinear component that
allows both excitatory and inhibitory relationships in continuous time. We de-
rive a fully Bayesian inference algorithm for these processes using Pólya-Gamma
augmentation and Poisson thinning. We evaluate the proposed model on single
and multi-neuronal spike train recordings. Results demonstrate that the proposed
model, unlike existing point process models, can generate biologically-plausible
spike trains, while still achieving competitive predictive likelihoods.

1 Introduction

Many natural phenomena and practical applications involve asynchronous and irregular events such
as social media dynamics, neuronal activity, or high frequency financial markets [1, 2, 3, 4, 5, 6, 7].
Modeling correlations between events of various types may reveal informative patterns, help predict
next occurrences, or guide interventions to trigger or prevent future events. Point Processes [8] are
models for the distribution of sequences of events.

Cox processes or doubly stochastic processes [9] are generalizations of Poisson Processes [10],
where the intensity function is a stochastic process itself. Although there are efficient inference
algorithms for some of their variants [11, 12], Cox processes do not capture explicitly temporal
correlations between historical and future events. On the other hand, the Hawkes Process (HP)
[13, 14] and its variants [15, 16, 17] constitute a class of point process models where past events
linearly combine to increase the probability of future events. However, purely excitatory effects are
incapable of characterizing physiological patterns such as neuronal activity where inhibitory effects
are present and crucial for self-regulation [18, 19, 20]. The work in [21] can support temporal effects
beyond mutual excitation that HP misses. However, capturing model uncertainty is critical in many
applications [22, 23, 24, 25], especially when the size of the available data is limited compared to
the model complexity. Rich literature exists on HP-based learning tasks [26, 27, 28, 29, 30, 31].

A nonlinear generalization of the HP allows for both excitatory and inhibitory interactions, but
evaluating the probability density of these models requires computing integrated intensity, which is
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generally intractable. Instead, we are forced to use discrete time approximations, which reduce to
a Poisson Generalized Linear Model (Poisson-GLM) [32, 3], making learning of these models from
data very efficient. However, the estimated regression coefficients may vary widely depending on the
boundaries chosen for aggregation [33]. Empirical evidence suggests that while suitable for one-step
predictions, such models may suffer stochastic instability and yield non-physical predictions [34].

There is currently limited statistical theory for point process models that support complex temporal
interactions in a continuous-time regime. To this end, we develop the first class of Bayesian point
process models—Mutually Regressive Point Processes (MR-PP)—that allow for nonlinear temporal
interactions while still admitting an efficient, fully-Bayesian inference algorithm in continuous time.

2 Proposed Model

2.1 Problem statement

We are interested in learning distributions over event sequences (point processes). These distri-
butions are mutually regressive in the sense that past event occurrences can influence the future
realization of the process in an arbitrary manner. A Point Process PP(λ(t)) is characterized by an
intensity function λ(t), so that in an infinitesimally wide interval [t, t + dt], the probability of the
arrival of a new event is λ(t)dt [35].

2.2 Classical Hawkes Process

A Hawkes process (HP) [13, 14] of N event types HPN (λ∗n(t)) is characterized by the intensity
functions λ∗n(t) for the events of type n defined as:

λ∗n(t) = λ∗n +

N∑
m=1

Km∑
i=1

λm,n(t, tmi )I(tmi < t), (1)

λm,n(t, tmi ) = αm,n e
−δm,n(t−tmi ), (2)

where λ∗n ≥ 0, αm,n ≥ 0, and δm,n > 0. tmi is the arrival time of the i-th event of typem andKm is
the number of events of typem. I is the indicator function. By the superposition theorem for Poisson
processes, the additive terms in Equation (1) can be viewed as the superposition of independent
non-homogeneous Poisson processes (with intensity function that varies in time) characterized by
the intensity functions λm,n(t, tmi ), triggered by the event i-th of type m that occurred before time
t, and an exogenous, homogeneous Poisson process characterized by the constant intensity function
λ∗n. The HP is a mutually exciting point process in the sense that past events can only raise the
probability of arrival of future events of the same or different type. Since λ∗n(t) depends on past
occurrences, it is a stochastic process itself.

2.3 Mutually Regressive Point Process: a generalization of the Hawkes Process

The intensity function λn(t), for events of type n occurring at times ṫni , of a Mutually Regressive
Point Process (MR-PP) is a HP intensity augmented with a probability term. It is defined as follows:

λn(t) = λ∗n(t)pn(t), (3)

λ∗n(t) = λ∗n +

N∑
m=1

Km∑
i=1

λm,n(t, ṫmi )I(ṫmi < t), (4)

pn(t) = σ(wT
nh(t)), (5)

hm(t) = c

Km∑
i=1

h(t, ṫmi )I(ṫim < t), (6)

h(t, ṫmi ) = e−γ(t−ṫ
m
i ), (7)

where λ∗n ≥ 0, c > 0, γ > 0, wn = [bn, w1,n, w2,n, . . . , wN,n]T , h(t) =
[1, h1(t), h2(t), . . . , hN (t)]T and λm,n(t, ṫmi ) defined in Equation (2). σ(x) = (1 + e−x)−1 is the
sigmoid function. The weight wm,n models the influence of type m on type n and hm(t) is the
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(a) Computational flow of the MR-PP intensity function described in Equations 3-7

(b) Poisson Thinning (c) HP vs MR-PP intensity function

Figure 1: Explanation of the MR-PP. The computation of the intensity function of a MR-PP at time t as a
function of the past events is explained in Figure 1a. Figure 1b shows the simulation of a MR-PP which can
be viewed as classification of events generated by a HP as either latent or observed. The point processes of
the observed and thinned events are characterized by the λ∗(t) intensity multiplied by the probability term
p(t) and 1 − p(t) respectively. The upper-bounding, mutually exciting, intensity and the thinned intensity
λ(t) = λ∗(t)× p(t) which generates the observed events is shown in 1c.

aggregated temporal influence of type m up to time t. The computational procedure is illustrated in
Figure 1a. The effect of the probability term on the upper-bounding intensity λ∗n(t) is demonstrated
in Figure 1c. We can simulate from this model via Poisson thinning [36, 11]. First, we sample N
sets of events tn1 , t

n
2 , . . . , for n = 1, 2, . . . , N , from aHPN (λ∗n(t)). Afterwards, we chronologically

proceed through the simulated events and accept them with probability λn(t)/λ∗n(t) = pn(t), the
relative intensity at that point in time (Figure 1b). In case an event at tni is rejected, its offsprings
(events generated by λn,m(t, tni )) are pruned so that the λ∗n(t) defined in Equation (4) depends only
on the realized events whose arrival times are notated as ṫmi . Importantly, the relative intensity pn(t)
and the intensity λ∗n(t) only depend on the preceding events that were accepted; rejected events have
no influence on the future intensity. Note that a negative weight wm,n means that events of type m
inhibit future events of type n since hm(t) decreases pn(t). The correctness of this procedure is
provided in the Supplementary Material.

Although λ∗n(t) could be replaced by a homogeneous Poisson intensity λ∗n so that any excitatory
relationships are captured by a positive weight wm,n, the upper bound λ∗n should be given a very
large value in cases where the underlying process exhibits sparse event bursts. This fact, in turn,
could yield a large number of latent events and hence render the learning of the model computa-
tionally intractable (see Section 3.1 for details). Moreover, MR-PP is not hardwired to exponential
kernels. Alternative kernel functions, such as the Power-Law or the Rayleigh function could be used
in Equations (2) and (7).

2.4 Hierarchical MR-PP for relational constraints

A dependence between the parameters of the intensity λ∗n(t) and the thinning procedure pn(t) can be
imposed so that an interaction between typesm and n is either inhibitory or excitatory (but not both)
in a probabilistic manner. To this end, we define a Sparse Normal-Gamma prior for the weights,
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which fosters an inverse relationship between the excitatory effect αm,n and the repulsive effect
wm,n of type m on type n. It is motivated by the framework of Sparse Bayesian Learning [37, 38],
in the sense that it associates an individual precision τm,n and mean µm,n with each weight wm,n.
µm,n and τm,n follow a Normal-Gamma distribution that depends on αm,n. It is defined as follows:

τm,n ∼ Gamma(ντφτ (αm,n) + ατ , βτ ), (8)

µm,n ∼ N (−(νµφµ(αm,n) + αµ)−1, (λµτm,n)−1), (9)

wn ∼ N
(
µn,Σn

)
, (10)

where ντ > 0, ατ > 0, βτ > 0, νµ > 0, αµ ≥ 0, λµ > 0, µn = [µ0, µ1,n, µ2,n, . . . , µN,n]T ,
τn = [1/σ0

2
, τ1,n, τ2,n, . . . , τN,n]T , and Σn = diag(τn)−1. φτ (x) and φµ(x) are monotonically

increasing positive activation functions.

A suggested activation function for τm,n and µm,n is a shifted and scaled sigmoid function which
has a soft-thresholding effect:

φ(αm,n) =
1

1 + e−δ0(αm,n−α0)
. (11)

α0 > 0 can be viewed as the excitation threshold (so that values of αm,n above α0 indicate an
excitatory relationship) and δ0 > 0 regulates the smoothness of the thresholding.

Note that when αm,n is large (there is excitatory relationship from type m on type n), the precision
τm,n becomes large (approximately drawn from Gamma(ντ , βτ )) assuming ντ >> ατ and ντ >>
βτ . Therefore, the variance τ−1m,n has a value close to zero with high probability. A similar scenario
holds for µm,n if νµ >> αµ. A small mean and variance for wm,n implies that any additional
(possibly inhibitory) effect of type m on type n is suppressed. A numerical example is given in
Figure 2a. On the other hand, when αm,n is small, the precision of τm,n will take a small value
approximately drawn from Gamma(ατ , βτ ) (assuming that ντφτ (αm,n) << ατ and ατ < βτ ).
Similarly, µm,n can take large negative values coming approximately from a Normal distribution
with mean −α−1µ . As a consequence, inhibitory effects from type m on type n are enabled. A
numerical example is given in Figure 2b.

Due to the inverse relationship between the inhibitory coefficients wm,n and the endogenous inten-
sity rates αm,n, relational constraints on pairs of types are established. Intuitively, the constants ντ ,
νµ control the strength of these constraints, so that wm,n is close to zero for a large αm,n with an
adjustable probability. A traditional Hawkes process can be obtained by setting ντ , νµ λµ, ατ , αµ,
µ0 and τ0 to a very large value.

(a) Hierarchical prior for an excitatory relationship

(b) Hierarchical prior for an inhibitory relationship

Figure 2: Illustration of the behavior of the hierarchical prior for enforcing relational constraints. In 2a the
excitatory coefficient α is above the threshold value (0.05) indicating an excitatotry relationship. The prior
drives the weights to a value close to zero. In 2b the coefficient is below the threshold indicating an inhibitory
relationship. The prior steers the weights to a large negative value. The parameters of the hierarchical prior
were set as follows: ντ = 100, ατ = 0.01, βτ = 1, αµ = 0.001, νµ = 100, λµ = 100.
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3 Bayesian Inference via Augmentation and Poisson Thinning

Here, we provide the description of the main components of the Bayesian inference for learning a
MR-PP. It is also summarized in Algorithm 1. Full technical details are relegated to the Supplemen-
tary Material.

3.1 Generating latent events for tractability

The likelihood of the sequence T , {ti}Ki=1 of K events generated by a point process PP(λ(t))
with intensity function λ(t) in the time window [0, T ] is [35]:

p(T | λ(t)) = exp

{
−
∫ T

0

λ(t) dt

}
K∏
i=1

λ(ti). (12)

However, due to the sigmoid term in the intensity function described in Equations (3), (5), the inte-
gral and therefore sampling from posteriors which contain it, is intractable [11, 12]. This difficulty
can be overcome by data augmentation [11], in which we jointly consider observed and thinned
events akin to the Poisson thinning based sampling procedure mentioned in Section 2.3.

Let T̃n , {t̃ni }
Mn
i=1 be the sequence of Mn latent (thinned) events of type n and Ṫn , {ṫni }

Kn
i=1 be

the Kn observed events generated by thinning the process PP(λ∗n(t)) defined in Equation (4) by
the probability 1− pn(t) and pn(t) respectively, where pn(t) is defined in Equation (5). Define the
merged event sequence to be the ordered set:

Tn , Ṫn ∪ T̃n = {tni }
Kn+Mn
i=1 . (13)

The joint likelihood of the arrival times along with the outcome of the Poisson thinning is then:

p(Tn, {sni }
Kn+Mn
i=1 | λ∗n(t), pn(t)) =

exp

{
−
∫ T

0

λ∗n(t) dt

}
×
Kn+Mn∏
i=1

λ∗n(tni )×
Mn+Kn∏
i=1

pn(tni )s
n
i (1− pn(tni ))1−s

n
i , (14)

where sni , I(tni ∈ Ṫn)∈ {0, 1} is the label indicating whether the event at tni is realized (belongs
to Ṫn) or thinned (belongs to T̃n). Given Equation (14), the integral in the exponential term does not
involve the sigmoidal term induced by pn(t). Therefore, efficient inference for the model parameters
is feasible and it is reduced to the joint task of learning a Bayesian HP [39] and solving a Bayesian
binary logistic regression (see Section 3.2).

3.2 Learning the nonlinear temporal interactions via Pólya-Gamma augmentation

The inference of the weights wm,n of the thinning procedure dictated by pn(t) amounts to solving
a binary logistic regression problem for classifying the events as realized or thinned. From Equa-
tions (5), (10) and (14), and by keeping only the terms of the likelihood which contain wn, the
posterior is obtained:

p(wn | . . . ) ∝ N (wn;µn,Σn) ×
Kn+Mn∏
i=1

e(wn
Th(tni ))×s

n
i

ew
T
nh(tni ) + 1

, (15)

where we have used the property 1 − σ(x) = σ(−x). Sampling from this posterior can be done
effeciently via Pólya-Gamma augmentation as in [e.g. 40, 41, 42, 12]. According to Theorem 1
in [40], the likelihood contribution of the thinning acceptance/ rejection of an event at time tni can
be rewritten as:

e(wn
Th(tni ))×s

n
i

ew
T
nh(tni ) + 1

∝ exp(νni wn
Th(tni )) ×

∫ ∞
0

exp

{
−1

2
ωni (wT

nh(tni ))2
}
PGm(ωni ; 1, 0) dωni ,

(16)
where νni = sni − 1/2, and PGm(ωni ; 1, 0) is the density of a Pólya-Gamma distribution with pa-
rameters (1, 0). Combined with a prior onwn, the integrand in Equation (16) defines a joint density
on (sni , ω

n
i ,wn), where ωni is a latent Pólya-Gamma random variable. The posterior conditioned on
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Algorithm 1 Bayesian Inference for Mutually Regressive Point Processes

1. Input: Sequences of observed events {Ṫn}Nn=1.

2. Output: Samples from p
(
c, γ, {λ∗n,wn, {αm,n, δm,n}Nm=1}Nn=1 | {Ṫn}Nn=1

)
.

3. Initialize randomly the model parameters from the priors.
4. Repeat

(a) Sample the thinned events of type n via Poisson thinning, for n = 1, 2, . . . , N :
i. from the exogenous intensity: T̃n ∼ PP(λ∗n (1− pn(t))), and

ii. from the Poisson processes triggered by the observed events:{
{T̃n ∼ PP

(
λm,n(t− ṫmi ) (1− pn(t))

)
}Km
i=1

}N
m=1

.
(b) Sample the latent Pólya-Gamma variables of the observed and latent events:{

{ωni ∼ PGm(1,wT
nh(tni ))}Kn+Mn

i=1

}N
n=1

(Eq 21).
(c) Jointly sample the weight prior parameters and the excitation coefficients
{αm,n, µm,n, τm,n}Nm,n=1 via collapsed Metropolis-Hastings.

(d) Sample the weights for n = 1, . . . , N : wn ∼ N (Σ̃n, µ̃n) (Eq 17, 18, 19 & 20).
(e) Sample the rest of the parameters c, γ, {λ∗n, {δm,n}Nm=1}Nn=1.

the latent ωni random variables becomes:

p(wn | . . . ) = N (wn; Σ̃n, µ̃n), (17)

where Σ̃n =
(
Σ−1n +HT

nΩnHn

)−1
, µ̃n = Σ̃n

(
Σ−1n µn +HT

n ,Ωnzn
)
, (18)

and Hn = [h(tn1 ), . . . ,h(tnKn+Mn
)]T , Ωn = diag(ωn1 , . . . , ω

n
Kn+Mn

), (19)

zn =

[
νn1
ωn1

, . . . ,
νnKn+Mn

ωnKn+Mn

]T
. (20)

From Theorem 1 in [40], for α = 1 and β = 1, the posterior for sampling ωni is

p(ωni | . . . ) = p(ωni | {Ṫn′}Nn′=1,wn, c, γ) = PGm(ωni ; 1,wT
nh(tin)). (21)

3.3 Gibbs updates for the weights’ prior mean and precision, and the intensity parameters

Since only one samplewm,n for sampling the mean µm,n and the precision τm,n is available, directly
sampling from the posterior p(µm,n, τm,n|wm,n, αm,n) would lead to poor mixing. This is also the
case for sampling αm,n from p(αm,n|µm,n, τm,n, . . . ). Therefore, a joint collapsed Metropolis-
Hastings update is used for sampling the excitation coefficient αm,n and the weights’ prior parame-
ters µm,n and τm,n, where the weight wm,n is collapsed. This is a similar in spirit to the technique
in [37], where a collapsed likelihood is maximized. The collapsed Metropolis-Hastings ratio is
derived in the Supplementary Material.

Given the observed and thinned events, conjugate updates are possible for the exogenous intensities
λ∗n assuming a Gamma prior, a cluster-based Hawkes process representation [14] and by incorpo-
rating latent parent variables for the observed events [43, 44]. This is also the case for αm,n in
case of a flat MR-PP (defined in Section 2.3). The rest of the parameters are updated via adaptive
Metropolis similar to [39]. The suggested proposal distributions and the Metropolis-Hastings ratios
are given in the Supplementary Material.

4 Experimental Results 1

4.1 Synthetic validation

We test our model and inference algorithm on synthetic data to ensure that we can recover the
underlying interactions. We generated a MR-PP of two event types with parameters drawn from
their priors (see Supplementary Material for the details) and we simulated it in the interval [0, 20000].

1The library is written in C++. Our code is available at https://github.com/ifiaposto/
Mutually-Regressive-Point-Processes
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(a) Excitation from Type I (b) Inhibition from Type I (c) Excitation from Type II (d) Inhibition from Type II
Effects on Type I

(e) Excitation from Type I (f) Inhibition from Type I (g) Excitation from Type II (h) Inhibition from Type II
Effects on Type II

Figure 3: Posterior distributions of the parameters of the synthetic MR-PP. There is self-excitation and mutual
inhibition for both types. The self-excitation is indicated by the large endogenous intensity rates a1,1(3a) and
a2,2(3g) and the small weights w1,1(3b) and w2,2(3h). The mutual inhibition is indicated by the small a2,1(3c)
and a1,2(3e) and the large negative w2,1(3d) and w1,2(3f). The correct interactions were discovered.

Figure 4: Testing of the learned MR-
PP on the synthetic data.The scatterplot
compares the log-likelihood for 1000
held-out event sequences of the true vs
the learned MR-PP.

The derived synthetic dataset consists of 269 observed events
that were used for the training. Type I excites events of Type
I and inhibits events of Type II. Similarly, Type II inhibits
events of Type I and excites events of Type II.

In Figures 3a-3d, we plot the posterior distribution, as well as
the posterior mode and mean point estimates for the param-
eters α1,1, w1,1 (temporal effect from Type I on Type I), and
α2,1, w2,1 (temporal effect from Type II on Type I). Both the
real and the point estimates for the excitatory effect α1,1 (Fig-
ure 3a) from Type I are large (above the α0 = 0.015 thresh-
old) compared to the suppressed, close to zero, weight w1,1

(Figure 3b) indicating an excitatory relationship relationship.
On the other hand, as shown in Figure 3d, the weightw2,1 has
a large negative value in contrast to α2,1 (Figure 3c), which
has a close to zero value, indicating a repulsive relationship.
A symmetric case of self-excitation (Figures 3g, 3h) and in-
hibition from the other type (Figures 3e, 3f) holds for Type II.
Figure 4 shows the predictive log-likelihood for 1,000 held-
out event sequences with the real model parameters in contrast to that achieved by the posterior
mode estimates, and the mean absolute error (MAE). The autocorrelation plots, the values of the
hyperparameters and the learning parameters are provided in the Supplementary Material.

4.2 Experimental results on the stability of single neuron spiking dynamics

In this section, we study the quality of the MR-PP as a generative model. Although Point Process -
Generalized Linear Models (PP-GLMs) have been extensively applied to a wide variety of spiking
neuron data [3, 32, 45], they may yield non-physiological spiking patterns when simulated and used
as generative models because of explosive firing rates although they pass goodness-of-fit tests [34,
46]. This could be potentially attributed to the fact that the excitatory properties are captured by non-
linear terms in the model [47]. On the other hand, MR-PP inherently circumvents this by decoupling
the linear excitatory portion from the non-linear but unit-bounded, inhibitory portion of the model.
We repeat the analysis on two datasets (Figure 2.b and Figure 2.c in [34]) for which PP-GLMs have
failed in generating stable spiking dynamics.
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(a) Real spike patterns (b) Goodness-of-fit test (c) Observed simulated activity (d) Thinned simulated activity
Stability analysis of the MR-PP for spike patterns from monkey cortex

(e) Real spike patterns (f) Goodness-of-fit test (g) Observed simulated activity (h) Thinned simulated activity
Stability analysis of the MR-PP for spike patterns from human cortex

Figure 5: Stability analysis of the MR-PP for cortex spike patterns. In Figures 5a- 5d, we repeat the analysis of
Figure 2.c for monkey cortex spike trains, and in Figures 5e- 5h, we repeat the analysis of Figure 2.b for human
cortex spike train in [34]. In contrast to the PP-GLM, MR-PP both passes the goodness-of-fit test (5b),(5f) and
generates stable spike trains (5c),(5g) similar to those used for the learning (5a),(5e).

Figure 5a illustrates ten 1-second observations of single-neuron activity from monkey area PMv
cortical recordings used in [34]. We fit the MR-PP and we applied the time-rescaling theorem [48,
49] on the learned intensities and the real spike sequences. According to it, the realization of the
general temporal point process can be transformed to one of a homogeneous Poisson process with
unit intensity rate. Therefore, the well-studied Kolmogorov-Smirnov (KS) test can be capitalized
for the comparison of the rescaled interspike arrivals to the exponential. Figure 5b shows the KS
plot as in [48] for comparison of the empirical with the exponential distribution. The MR-PP passes
the goodness-of-fit test (p− value > 0.05). Finally, we simulated the learned MR-PP for 1 second.
Figure 5c shows the observed events of the process. The simulated activity of the learned MR-PP
shown in Figure 5c remains physiological and similar to the one used for the training in Figure 5a.
Figure 5d shows the rejected (thinned) events of the process (but not their pruned offsprings), whose
realization could have potentially yielded explosive rates.

It should be noted that the learned MR-PP exhibits a fuzzy behavior: it is both self-excitatory and
after some time self-inhibitory capturing a phenomenon of self-regulation [18] in this way. This
fact could justify the choice of the soft relational constraints induced by the Sparse Normal-Gamma
prior instead of a hard, Bernoulli-dictated constraint (for capturing a purely excitatory or purely
inhibitory effect). Figures 5e-5g present a similar analysis for single-neuron activity from human
cortex [34]. Note that the learned model in Figure 5g was simulated for a longer period (80 seconds)
than the observation in Figure 5e (10 seconds). We plot only the last 10 seconds. The full simulated
spike train for Figure 5g, the learned intensity functions, the values of the hyperparameters and the
parameters of the learning algorithm are provided in the Supplementary Material.

4.3 Experimental results on multi-neuron spike train data

In this section, we apply the proposed model to a data set consisting of spike train recordings from
25 neurons in the cat primary visual cortex (area 17) under spontaneous activity. The data is pub-
licly available and can be downloaded from the NSF-funded CRCNS data repository [50]. The
dataset was acquired with multi-channel silicon electrode arrays that enable simultaneous recording
from many single units at once. This is of utmost importance because recordings from multiple
neurons at a time are necessary if conclusions about cortical circuit function or network dynamics
are to be derived. In Figure 6a, we visualize the spike train used in the experiment. We used the
spikes that are contained in the time-window [0, 13000] msec for learning a MR-PP and those in
[13000, 26000]msec for testing it. Both the training and the testing spike sequences contain roughly
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(a) Multi-neuronal spontaneous activity in cat visual cortex (b) MR-PP Learning Curve

Figure 6: Multi-neuronal spike train analysis. 6a visualizes the spike trains for a population of 25 neurons that
were used for fitting and testing the multivariate MR-PP. 6b shows the training log-likelihood of the MR-PP
with mode point posterior estimates for an increasing number of MCMC batches of 100 samples. The training
log-likelihood reaches this of the fitted PP-GLM. However, the log-likelihood for the held-out, second half of
the spike train in 6b, is larger for the MR-PP and close to the training log-likelihood.

3,000 spikes each. In Figure 6b, we plot the learning curve (the training data log-likelihood of the
spike stream realized with respect to the total number of Markov Chain Monte Carlo (MCMC) sam-
ples - the 2000 burn-in samples are also included). The predictive log-likelihood (normalized by the
number of spikes) achieved by the posterior mode estimates (from the last 3000 MCMC samples) for
the second half of Figure 6a is −5.374. We also fit a Poisson-GLM with log link function assuming
intensities of the same form as in [32] provided by the statistical python package StatsModels. We
adjusted the time discretization interval needed to get the spike counts and the order of the regres-
sion (∆t = 0.1 msec and Q = 1, respectively), so that the predictive log-likelihood for the spikes
in [13000, 26000] is maximized. StatsModels uses Iteratively Reweighted Least Squares (IRLS)
for efficiently fitting GLMs. No regularization was incorporated in the model. Assuming that ∆t is
small enough so that there is at most one spike in each one of theB = T/∆t time bins in the interval
[0, T ], the discrete-time log-likelihood of the Jb spike counts in the time bins Tb, for b = 1, 2, . . . , B
is given by

log p(J1:B |θ) =

B∑
b=1

log(λ(Tb|θ, Hb)∆t)Jb −
B∑
b=1

λ(Tb|θ, Hb)∆t+ J log(∆t), (22)

where J =
∑B
b=1 Jb is the total number of spikes, θ the Poisson-GLM parameters and Hb the

spiking count history in the last Q time bins before the b-th time bin. For sufficiently small ∆t, it
can be proved [32] that Equation (22) is a discrete time approximation of the continuous time log-
likelihood in Equation (12). For fair comparison, in Figure 6b we are subtracting the term Jlog(∆t)
from the log-likelihood reported by the StatsModels (Equation (22)). The hyperparameters, the
learning parameters, and the inference time are given in the Supplementary Material.

5 Discussion

In this paper, we have presented the first Bayesian, continuous time, point process model which
can capture nonlinear, potentially inhibitory, temporal dependencies. A joint prior for the model
parameters was designed so that soft relational constraints between types of events are established.
The model has managed to recover physiological, single-neuronal dynamics, unlike prevalent alter-
natives, while still achieving competitive forecasting capacity for multi-neuronal recordings.

There are several avenues for practical utility of the proposed model, such as analyses of physiolog-
ical mechanisms which are abundant of complex temporal interactions between events of various
types and are characterized by relative data scarcity. For example, vital signs monitoring [51, 52],
dynamic modeling of biological networks [53, 54] or temporal modeling of clinical events [55],
where inhibitory effects may e.g. represent medical therapies or treatments, could be potential ap-
plication domains of mutually regressive point processes.

There is a multitude of learning tasks that can be augmented with the use of ‘signed’ relationships,
so that they can leverage both the excitatory and the inhibitory interactions that MR-PP can describe
such as discovering causality [30] or network structure [56, 44]. Finally, prior sensitivity analysis,
a design strategy for hyperparameters selection and development of stochastic variational inference
algorithms [43] for large-scale MR-PPs are left for future research.
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