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Abstract

We consider the networked multi-agent reinforcement learning (MARL) problem
in a fully decentralized setting, where agents learn to coordinate to achieve joint
success. This problem is widely encountered in many areas including traffic control,
distributed control, and smart grids. We assume each agent is located at a node
of a communication network and can exchange information only with its neigh-
bors. Using softmax temporal consistency, we derive a primal-dual decentralized
optimization method and obtain a principled and data-efficient iterative algorithm
named value propagation. We prove a non-asymptotic convergence rate ofO(1/T )
with nonlinear function approximation. To the best of our knowledge, it is the
first MARL algorithm with a convergence guarantee in the control, off-policy,
non-linear function approximation, fully decentralized setting.

1 Introduction

Multi-agent systems have applications in a wide range of areas such as robotics, traffic control,
distributed control, telecommunications, and economics. For these areas, it is often difficult or
simply impossible to predefine agents’ behaviour to achieve satisfactory results, and multi-agent
reinforcement learning (MARL) naturally arises [Bu et al., 2008, Tan, 1993]. For example, El-
Tantawy et al. [2013] model a traffic signal control problem as a multi-player stochastic game and
solve it with MARL. MARL generalizes reinforcement learning by considering a set of agents
(decision makers) sharing a common environment. However, multi-agent reinforcement learning
is a challenging problem since the agents interact with both the environment and each other. For
instance, independent Q-learning—treating other agents as a part of the environment—often fails
as the multi-agent setting breaks the theoretical convergence guarantee of Q-learning and makes
the learning process unstable [Tan, 1993]. Rashid et al. [2018], Foerster et al. [2018], Lowe et al.
[2017] alleviate such a problem using a centralized network (i.e., being centralized for training, but
decentralized during execution.). Its communication pattern is illustrated in the left panel of Figure 1.

Despite the great success of (partially) centralized MARL approaches, there are various scenarios,
such as sensor networks [Rabbat and Nowak, 2004] and intelligent transportation systems [Adler
and Blue, 2002] , where a central agent does not exist or may be too expensive to use. In addition,
privacy and security are requirements of many real world problems in multi-agent system (also in
many modern machine learning problems) [Abadi et al., 2016, Kurakin et al., 2016] . For instance,
in Federated learning [McMahan et al., 2016], the learning task is solved by a lose federation of
participating devices (agents) without the need to centrally store the data, which significantly reduces
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privacy and security risk by limiting the attack surface to only the device. In the agreement problem
[DeGroot, 1974, Mo and Murray, 2017], a group of agents may want to reach consensus on a subject
without leaking their individual goal or opinion to others. Obviously, centralized MARL violates
privacy and security requirements. To this end, we and others have advocated the fully decentralized
approaches, which are useful for many applications including unmanned vehicles [Fax and Murray,
2002], power grid [Callaway and Hiskens, 2011], and sensor networks [Cortes et al., 2004]. For
these approaches, we can use a network to model the interactions between agents (see the right panel
of Figure 1). Particularly, We consider a fully cooperative setting where each agent makes its own
decision based on its local reward and messages received from their neighbors. Thus each agent
preserves the privacy of its own goal and policy. At the same time, through the message-passing all
agents achieve consensus to maximize the averaged cumulative rewards over all agents; see Equation
(3).

Figure 1: Centralized network vs Decentralized
network. Each blue node in the figure corresponds
to an agent. In centralized network (left), the red
central node collects information for all agents,
while in decentralized network (right), agents ex-
changes information with neighbors.

In this paper, we propose a new fully decen-
tralized networked multi-agent deep reinforce-
ment learning algorithm. Using softmax tem-
poral consistency [Nachum et al., 2017, Dai
et al., 2018] to connect value and policy updates,
we derive a new two-step primal-dual decentral-
ized reinforcement learning algorithm inspired
by a primal decentralized optimization method
[Hong et al., 2017] 2. In the first step of each iter-
ation, each agent computes its local policy, value
gradients and dual gradients and then updates
only policy parameters. In the second step, each
agent propagates to its neighbors the messages
based on its value function (and dual function)
and then updates its own value function. Hence
we name the algorithm value propagation. It
preserves the privacy in the sense that no indi-
vidual reward function is required for the network-wide collaboration. We approximate the local
policy, value function and dual function of each agent by deep neural networks, which enables
automatic feature generation and end-to-end learning.

Contributions: [1] We propose the value propagation algorithm and prove that it converges with the
rate O(1/T ) even with the non-linear deep neural network function approximation. To the best of
our knowledge, it is the first deep MARL algorithm with non-asymptotic convergence guarantee. At
the same time, value propagation can use off-policy updates, making it data efficient. When it reduces
to the single agent case, it provides a proof of [Dai et al., 2018] in the realistic setting; see remarks of
algorithm 1 in Section 3.3. [2] The objective function in our problem is a primal-dual decentralized
optimization form (see (8)), while the objective function in [Hong et al., 2017] is a primal problem.
When our method reduces to pure primal analysis, we extend [Hong et al., 2017] to the stochastic
and biased gradient setting which may be of independent interest to the optimization community. In
the practical implementation, we extend ADAM into the decentralized setting to accelerate training.

2 Preliminaries

MDP Markov Decision Process (MDP) can be described by a 5-tuple (S,A,R,P, γ): S is the finite
state space, A is the finite action space, P = (P (s′|s, a))s,s′∈S,a∈A are the transition probabilities,
R = (R(s, a))s,s′∈S,a∈A are the real-valued immediate rewards and γ ∈ (0, 1) is the discount factor.
A policy is used to select actions in the MDP. In general, the policy is stochastic and denoted by π,
where π(st, at) is the conditional probability density at at associated with the policy. Define V ∗(s) =
maxπ E[

∑∞
t=0 γ

tR(st, at)|s0 = s] to be the optimal value function. It is known that V ∗ is the unique
fixed point of the Bellman optimality operator, V (s) = (T V )(s) := maxaR(s, a)+γEs′|s,a[V (s′)].
The optimal policy π∗ is related to V ∗ by the following equation: π∗(s, a) = argmaxa{R(s, a) +
γEs′|s,aV ∗(s′)}

2The objective in Hong et al. [2017] is a primal optimization problem with constraint. Thus they introduce a
Lagrange multiplier like method to solve it (so they call it primal-dual method ). Our objective function is a
primal-dual optimization problem with constraint.
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Softmax Temporal Consistency Nachum et al. [2017] establish a connection between value and
policy based reinforcement learning based on a relationship between softmax temporal value consis-
tency and policy optimality under entropy regularization. Particularly, the soft Bellman optimality is
as follows,

Vλ(s) = max
π(s,·)

(
Ea∼π(s,·)(R(s, a) + γEs′|s,aVλ(s′)) + λH(π, s)

)
, (1)

where H(π, s) = −
∑
a∈A π(s, a) log π(s, a) and λ ≥ 0 controls the degree of regularization. When

λ = 0, above equation reduces to the standard Bellman optimality condition. An important property
of soft Bellman optimality is the called temporal consistency, which leads to the Path Consistency
Learning.

Proposition 1. [Nachum et al., 2017]. Assume λ > 0. Let V ∗λ be the fixed point of (1) and
π∗λ be the corresponding policy that attains that maximum on the RHS of (1). Then, (V ∗λ , π

∗
λ)

is the unique (V, π) pair that satisfies the following equation for all (s, a) ∈ S × A : V (s) =
R(s, a) + γEs′|s,aV (s′)− λ log π(s, a).

A straightforward way to apply temporal consistency is to optimize the following problem,
minV,π Es,a

(
R(s, a) + γEs′|s,aV (s′) − λ log π(s, a) − V (s)

)2
. Dai et al. [2018] get around the

double sampling problem of above formulation by introduce a primal-dual form
min
V,π

max
ρ

Es,a,s′ [(δ(s, a, s′)− V (s))2]− ηEs,a,s′ [(δ(s, a, s′)− ρ(s, a))2], (2)

where δ(s, a, s′) = R(s, a) + γV (s′)− λ log π(s, a), 0 ≤ η ≤ 1 controls the trade-off between bias
and variance.

In the following discussion, we use ‖ · ‖ to denote the Euclidean norm over the vector, A′ stands for
the transpose of A, and � denotes the entry-wise product between two vectors.

3 Value Propagation

In this section, we present our multi-agent reinforcement learning algorithm, i.e., value propagation.
To begin with, we extend the MDP model to the Networked Multi-agent MDP model following
the definition in [Zhang et al., 2018]. Let G = (N , E) be an undirected graph with |N | = N
agents (node). E represents the set of edges. (i, j) ∈ E means agent i and j can communicate
with each other through this edge. A networked multi-agent MDP is characterized by a tuple
(S, {Ai}i∈N ,P, {Ri}i∈N ,G, γ): S is the global state space shared by all agents (It could be partially
observed, i.e., each agent observes its own state Si, see our experiment). Ai is the action space
of agent i, A =

∏N
i=1Ai is the joint action space, P is the transition probability, Ri denotes

the local reward function of agent i. We assume rewards are observed only locally to preserve
the privacy of the each agent’s goal. At each time step, agents observe st and make the decision
at = (at1, a

t
2, ..., a

t
N ). Then each agent just receives its own reward Ri(st, at), and the environment

switches to the new state st+1 according to the transition probability. Furthermore, since each agent
make the decisions independently, it is reasonable to assume that the policy π(s, a) can be factorized,
i.e., π(s, a) =

∏N
i=1 π

i(s, ai) [Zhang et al., 2018]. We call our method fully-decentralized method,
since reward is received locally, the action is executed locally by agent, critic (value function) are
trained locally.

3.1 Multi-Agent Softmax Temporal Consistency

The goal of the agents is to learn a policy that maximizes the long-term reward averaged over the
agent, i.e.,

E
∞∑
t=0

1

N

N∑
i=1

γtRi(st, at). (3)

In the following, we adapt the temporal consistency into the multi-agent version. Let Vλ(s) =

E
(

1
N

∑N
i=1Ri(s, a)+γEs′|s,aVλ(s′)+λH(π, s)

)
, V ∗λ be the optimal value function and π∗λ(s, a) =∏N

i=1 π
i∗
λ (s, ai) be the corresponding policy. Apply the soft temporal consistency, we obtain that for
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all (s, a) ∈ S ×A, (V ∗λ , π
∗
λ) is the unique (V, π) pair that satisfies

V (s) =
1

N

N∑
i=1

Ri(s, a) + γEs′|s,aV (s′)− λ
N∑
i=1

log πi(s, ai). (4)

A optimization problem inspired by (4) would be

min
{πi}Ni=1,V

E
(
V (s)− 1

N

N∑
i=1

Ri(s, a)− γEs′|s,aV (s′) + λ

N∑
i=1

log πi(s, ai)
)2
. (5)

There are two potential issues of above formulation: First, due to the inner conditional expectation, it
would require two independent samples to obtain the unbiased estimation of gradient of V [Dann
et al., 2014]. Second, V (s) is a global variable over the network, thus can not be updated in a
decentralized way.

For the first issue, we introduce the primal-dual form of (5) as that in [Dai et al., 2018]. Using the
fact that x2 = maxν(2νx− ν2) and the interchangeability principle [Shapiro et al., 2009] we have,

min
V,{πi}Ni=1

max
ν

2Es,a,s′ [ν(s, a)
( 1
N

N∑
i=1

(Ri(s, a)+γV (s′)−V (s)−λN log πi(s, ai)
)
]−Es,a,s[ν2(s, a)].

Change the variable ν(s, a) = ρ(s, a)− V (s), the objective function becomes

min
V,{πi}Ni=1

max
ρ

Es,a,s′ [
( 1
N

N∑
i=1

(δi(s, a, s
′)− V (s))

)2
]− Es,a,s′ [

( 1
N

N∑
i=1

(δi(s, a, s
′)− ρ(s, a))

)2
],

(6)
where δi = Ri(s, a) + γV (s′)− λN log πi(s, ai).

3.2 Decentralized Formulation

So far the problem is still in a centralized form, and we now turn to reformulating it in a decentralized
way. We assume that policy, value function, dual variable ρ are all in the parametric function class.
Particularly, each agent’s policy is πi(s, ai) := πθπi (s, a

i) and πθ(s, a) =
∏N
i=1 πθπi (s, a

i). The
value function Vθv (s) is characterized by the parameter θv, while θρ represents the parameter of
ρ(s, a). Similar to [Dai et al., 2018], we optimize a slightly different version from (6).

min
θv,{θπi}

N
i=1

max
θρ

Es,a,s′ [
( 1
N

N∑
i=1

(δi(s, a, s
′)− V (s))

)2
]− ηEs,a,s′ [

( 1
N

N∑
i=1

(δi(s, a, s
′)− ρ(s, a))

)2
],

(7)

where 0 ≤ η ≤ 1 controls the bias and variance trade-off. When η = 0, it reduces to the pure primal
form.

We now consider the second issue that V (s) is a global variable. To address this problem, we introduce
the local copy of the value function, i.e., Vi(s) for each agent i. In the algorithm, we have a consensus
update step, such that these local copies are the same, i.e., V1(s) = V2(s) = ... = VN (s) = V (s), or
equivalently θv1 = θv2 = ... = θvN , where θvi are parameter of Vi respectively. Notice now in (7),
there is a global dual variable ρ in the primal-dual form. Therefore, we also introduce the local copy
of the dual variable, i.e., ρi(s, a) to formulate it into the decentralized optimization problem. Now
the final objective function we need to optimize is

min
{θvi ,θπi}

N
i=1

max
{θρi}

N
i=1

L(θV , θπ, θρ) = Es,a,s′ [
( 1
N

N∑
i=1

(δi(s, a, s
′)− Vi(s))

)2
]

− ηEs,a,s′ [
( 1
N

N∑
i=1

(δi(s, a, s
′)− ρi(s, a))

)2
],

s.t. θv1 =, ...,= θvN , θρ1 =, ...,= θρN , (8)

where δi = Ri(s, a)+γVi(s
′)−λN log πi(s, ai).We are now ready to present the value propagation

algorithm. In the following, for notational simplicity, we assume the parameter of each agent is a
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scalar, i.e., θρi , θπi , θvi ∈ R. We pack the parameter together and slightly abuse the notation by
writing θρ = [θρ1 , ..., θρN ]

′, θπ = [θπ1 , ..., θπN ]
′, θV = [θv1 , ..., θvN ]

′. Similarly, we also pack the
stochastic gradient g(θρ) = [g(θρ1), ..., g(θρn)]

′, g(θV ) = [g(θv1), ..., g(θvn)]
′.

3.3 Value propagation algorithm

Solving (8) even without constraints is not an easy problem when both primal and dual parts are
approximated by the deep neural networks. An ideal way is to optimize the inner dual problem and
find the solution θ∗ρ = argmaxθρ L(θV , θπ, θρ), such that θρ1 = ... = θρN . Then we can do the
(decentralized) stochastic gradient decent to solve the primal problem.

min
{θvi ,θπi}

N
i=1

L(θV , θπ, θ
∗
ρ) s.t. θv1 = ... = θvN . (9)

However in practice, one tricky issue is that we can not get the exact solution θ∗ρ of the dual problem.
Thus, we do the (decentralized) stochastic gradient for Tdual steps in the dual problem and get an
approximated solution θ̃ρ in the Algorithm 1. In our analysis, we take the error ε generated from this
inexact solution into the consideration and analyze its effect on the convergence. Particularly, since
∇θV L(θV , θπ, θ̃ρ) 6= ∇θV L(θV , θπ, θ∗ρ), the primal gradient is biased and the results in [Dai et al.,
2018, Hong et al., 2017] do not fit this problem.

In the dual update we do a consensus update θt+1
ρ = 1

2D
−1L+θtρ −

αρ
2 D

−1A′µtρ +
αρ
2 D

−1g(θtρ)
using the stochastic gradient of each agent, where µρ is some auxiliary variable to incorporate the
communication, D is the degree matrix, A is the node-edge incidence matrix, L+ is sign-less graph
Laplacian. We defer the detail definition and the derivation of this algorithm to Appendix A.1 and
Appendix A.5 due to space limitation. After updating the dual parameters, we optimize the primal
parameters θv , θπ . Similarly, we use a mini-batch data from the replay buffer and then do a consensus
update on θv. The same remarks on ρ also hold for the primal parameter θv. Notice here we do not
need the consensus update on θπ , since each agent’s policy πi(s, ai) is different than each other. This
update rule is adapted from a primal decentralized optimization algorithm [Hong et al., 2017]. Notice
even in the pure primal case, Hong et al. [2017] only consider the batch gradient case while our
algorithm and analysis include the stochastic and biased gradient case. In practicals implementation,
we consider the decentralized momentum method and multi-step temporal consistency to accelerate
the training; see details in Appendix A.2 and Appendix A.3.

Remarks on Algorithm 1. (1) In the single agent case, Dai et al. [2018] assume the dual problem
can be exactly solved and thus they analyze a simple pure primal problem. However such assumption
is unrealistic especially when the dual variable is represented by the deep neural network. Our
multi-agent analysis considers the inexact solution. This is much harder than that in [Dai et al., 2018],
since now the primal gradient is biased. (2) The update of each agent just needs the information of
the agent itself and its neighbors. See this from the definition of D, A, L+ in the appendix. (3) The
topology of the Graph G affects the convergence speed. In particular, the rate depends on σmin(A

′A)
and σmin(D), which are related to spectral gap of the network.

4 Theoretical Result

In this section, we give the convergence result on Algorithm 1. We first make two mild assumptions
on the function approximators f(θ) of Vi(s), πi(s, ai), ρi(s, a).
Assumption 1. i) The function approximator f(θ) is differentiable and has Lipschitz continuous
gradient, i.e., ‖∇f(θ1)−∇f(θ2)‖ ≤ L‖θ1 − θ2‖,∀θ1, θ2 ∈ RK . This is commonly assumed in the
non-convex optimization. ii) The function approximator f(θ) is lower bounded. This can be easily
satisfied when the parameter is bounded, i.e., ‖θ‖ ≤ C for some positive constant C.

In the following, we give the theoretical analysis for Algorithm 1 in the same setting of [Antos et al.,
2008, Dai et al., 2018] where samples are prefixed and from one single β-mixing off-policy sample
path. We denote L̂(θV , θπ) = maxθρ L(θV , θπ, θρ), s.t., θρ1 =, ...,= θρN

Theorem 1. Let the function approximators of Vi(s), πi(s, ai) and ρi(s, a) satisfy Assumption 1,
snd denote the total training step be T . We solve the inner dual problem with a approximated
solution θ̃ρ = (θ̃ρ1 , ..., θ̃ρN )

′, such that ‖∇θV L(θV , θπ, θ̃ρ) − ∇θV L(θV , θπ, θ∗ρ)‖ ≤ c1/
√
T , and

‖∇θπL(θV , θπ, θ̃ρ)−∇θπL(θV , θπ, θ∗ρ)‖ ≤ c2/
√
T . Assume the variance of the stochastic gradient
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Algorithm 1 Value Propagation

Input: Environment ENV, learning rate απ , αv , αρ, discount factor γ, number of step Tdual to train
dual parameter θρi , replay buffer capacity B, node-edge incidence matrix A ∈ RE×N , degree
matrix D, signless graph Laplacian L+.
Initialization of θvi , θπi , θρi , µ0

ρ = 0, µ0
V = 0.

for t = 1, ..., T do
sample trajectory s0:τ ∼ π(s, a) =

∏N
i=1 π

i(s, ai) and add it into the replay buffer.
1. Update the dual parameter θρi
Do following dual update Tdual times:
Random sample a mini-batch of transition (st, {ait}Ni=1, st+1, {rit}Ni=1) from the replay buffer.
for agent i = 1 to n do

Calculate the stochastic gradient g(θtρi) of −η(δi(st, at, st+1)− ρi(st, at))2 w.r.t. θtρi .
end for
// Do consensus update on θρ := [θρ1 , ..., θρN ]

′

θt+1
ρ = 1

2D
−1L+θtρ −

αρ
2 D

−1A′µtρ +
αρ
2 D

−1g(θtρ), µ
t+1
ρ = µtρ +

1
αρ
Aθt+1

ρ

2. Update primal parameters θvi , θπi
Random sample a mini-batch of transition (st, {ait}Ni=1, st+1, {rit}Ni=1) from the replay buffer.
for agent i = 1 to n do

Calculate the stochastic gradient g(θtvi),g(θ
t
πi) of (δi(st, at, st+1) − Vi(st))

2 −
η(δi(st, at, st+1)− ρi(st, at))2, w.r.t. θtvi , θ

t
πi

end for
// Do gradient decent on θπi : θ

t+1
πi = θtπi − απg(θ

t
πi) for each agent i.

// Do consensus update on θV := [θv1 , ..., θvN ]
′ :

θt+1
V = 1

2D
−1L+θtV −

αv
2 D

−1A′µtV −
αv
2 D

−1g(θtV ), µ
t+1
V = µtV + 1

αv
Aθt+1

V .
end for

g(θV ), g(θπ) and g(θρ) (estimated by a single sample) are bounded by σ2, the size of the mini-batch
is
√
T , the step size απ, αv, αρ ∝ 1

L . Then value propagation in Algorithm 1 converges to the
stationary solution of L̂(θV , θπ) with rate O(1/T ).

Remarks: (1) The convergence criteria and its dependence on the network structure are involved. We
defer the definition of them to the proof section in the appendix (Equation (44)). (2) We require that
the approximated dual solution θ̃ρ are not far from θ∗ρ such that the estimation of the primal gradient
of θv and θπ are not far from the true one (the distance is less than O(1/

√
T )). Once the inner

dual problem is concave, we can get this approximated solution easily using vanilla decentralized
stochastic gradient method after at most T steps. If the dual problem is non-convex, we still can show
the dual problem converges to some stationary solution with rate O(1/T ) by our proof. (3) In the
theoretical analysis, the stochastic gradient estimated from the mini-batch (rather than the estimation
from a single sample ) is common in non-convex analysis, see the work [Ghadimi and Lan, 2016]. In
practice, a mini-batch of samples is commonly used in training deep neural network.

5 Related work

Among related work on MARL, the setting of [Zhang et al., 2018] is close to ours, where the authors
proposed a fully decentralized multi-agent Actor-Critic algorithm to maximize the expected time-
average reward limT→∞

1
T E
∑T
t=1

1
n

∑n
i=1 r

t
i . They provide the asymptotic convergence analysis

on the on-policy and linear function approximation setting. In our work, we consider the discounted
reward setup, i.e., Equation (3). Our algorithm includes both on-policy and off-policy setting thus
can exploit data more efficiently. Furthermore, we provide a convergence rate O( 1

T ) in the non-
linear function approximation setting which is much stronger than the result in [Zhang et al., 2018].
Littman [1994] proposed the framework of Markov games which can be applied to collaborative
and competitive setting [Lauer and Riedmiller, 2000, Hu and Wellman, 2003]. These early works
considered the tabular case thus can not apply to real problems with large state space. Recent works
[Foerster et al., 2016, 2018, Rashid et al., 2018, Raileanu et al., 2018, Jiang et al., 2018, Lowe
et al., 2017] have exploited powerful deep learning and obtained some promising empirical results.
However most of them lacks theoretical guarantees while our work provides convergence analysis.
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Figure 2: Results on randomly sampled MDP. Left: Value function of different agents in value
propagation. In the figure, value functions of three agents are similar, which means agents get
consensus on value functions. Middle: Cumulative reward of value propagation (with different η)
and centralized PCL with 10 agents. Right : Results with 20 agents.
We emphasize that most of the research on MARL is in the fashion of centralized training and
decentralized execution. In the training, they do not have the constraint on the communication, while
our work has a network decentralized structure.

6 Experimental result

The goal of our experiment is two-fold: To better understand the effect of each component in the
proposed algorithm; and to evaluate efficiency of value propagation in the off-policy setting. To
this end, we first do an ablation study on a simple random MDP problem, we then evaluate the
performance on the cooperative navigation task [Lowe et al., 2017]. The settings of the experiment
are similar to those in [Zhang et al., 2018]. Some implementation details are deferred to Appendix
A.4 due to space constraints.

6.1 Ablation Study

In this experiment, we test effect of several components of our algorithm such as the consensus update,
dual formulation in a random MDP problem. Particularly we answer following three questions: (1)
Whether an agent can get consensus through message-passing in value propagation even when each
agent just knows its local reward. (2) How much performance does the decentralized approach
sacrifice comparing with centralized one? (3) What is the effect of the dual part in our formulation
(0 ≤ η ≤ 1 and η = 0 corresponds to the pure primal form)?

We compare value propagation with the centralized PCL. The centralized PCL means that there is
a central node to collect rewards of all agent, thus it can optimize the objective function (5) using
the single agent PCL algorithm [Nachum et al., 2017, Dai et al., 2018]. Ideally, value propagation
should converges to the same long term reward with the one achieved by the centralized PCL. In the
experiment, we consider a multi-agent RL problem with N = 10 and N = 20 agents, where each
agent has two actions. A discrete MDP is randomly generated with |S| = 32 states. The transition
probabilities are distributed uniformly with a small additive constant to ensure ergodicity of the MDP,
which is P(s′|a, s) ∝ pass′ + 10−5, pass′ ∼ U [0, 1]. For each agent i and each state-action pair (s, a),
the reward Ri(s, a) is uniformly sampled from [0, 4].

In the left panel of Figure 2, we verify that the value function vi(s) in value propagation reaches
the consensus through message-passing in the end of the training. Particularly, we randomly choose
three agent i, j, k and draw their value functions over 20 randomly picked states. It is easy to see
that value functions vi(s), vj(s), vk(s) over these states are almost same. This is accomplished by
the consensus update in value propagation. In the middle and right panel of Figure 2, we compare
the result of value propagation with centralized PCL and evaluate the effect of the dual part of value
propagation. Particularly, we pick η = 0, 0.01, 0.1, 1 in the experiment, where η = 0 corresponds to
the pure primal formulation. When η is too large (η = 1), the algorithm would have large variance
while η = 0 the algorithm has some bias. Thus value propagation with η = 0.1, 0.01 has better result.
We also see that value propagation (η = 0.1, 0.01) and centralized PCL converge to almost the same
value, although there is a gap between centralized and decentralized algorithm. The centralized PCL
converges faster than value propagation, since it does not need time to diffuse the reward information
over the network.
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Figure 3: Results on Cooperative Navigation task. Left: value functions of three random picked
agents (totally 16 agents) in value propagation. They get consensus. Middle : cumulative reward
of value propagation (eta=0.01 and eta=0.1), MA-AC and PCL without communication with agent
number N=8. Right: Results with agent number N=16. Our algorithm outperforms MA-AC and PCL
without communication. Comparing with the middle panel, the number of agent increases in the
right panel. Therefore, the problem becomes harder (more collisions). We see agents achieve lower
cumulative reward (averaged over agents) and need more time to find a good policy.
6.2 Cooperative Navigation task

The aim of this section is to demonstrate that the value propagation outperforms decentralized multi-
agent Actor-Critic (MA-AC)[Zhang et al., 2018], independent Q learning [Tan, 1993], the Multi-agent
PCL without communication. Here PCL without communication means each agent maintains its own
estimation of policy πi(s, ai) and value function V i(s) but there is no communication Graph. Notice
that this is different from the centralized PCL in Section 6.1, where centralized PCL has a central
node to collect all reward information and thus do not need further communication. Note that the
original MA-AC is designed for the averaged reward setting thus we adapt it into the discounted case
to fit our setting. We test the value propagation in the environment of the Cooperative Navigation task
[Lowe et al., 2017], where agents need to reach a set of L landmarks through physical movement.
We modify this environment to fit our setting. A reward is given when the agent reaches its own
landmarks. A penalty is received if agents collide with other agents. Since the position of landmarks
are different, the reward function of each agent is different. Here we test the case the state is globally
observed and partially observed. In particular, we assume the environment is in a rectangular region
with size 2× 2. There are N = 8 or N = 16 agents. Each agent has a single target landmark, i.e.,
L = N , which is randomly located in the region. Each agent has five actions which corresponds to
going up, down, left, right with units 0.1 or staying at the position. The agent has high probability
(0.95) to move in the direction following its action and go in other direction randomly otherwise.
The maximum length of each epoch is set to be 500 steps. When the agent is close enough to the
landmark, e.g., the distance is less than 0.1, we think it reaches the target and gets reward +5. When
two agents are close to each other (with distance less than 0.1), we treat this case as a collision and
a penalty −1 is received for each of the agents. The state includes the position of the agents. The
communication graph is generated as that in Section 6.1 with connectivity ratio 4/N . In the partially
observed case, the actor of each agent can only observe its own and neighbors’ states. We report the
results in Figure 3.

In the left panel of Figure 3, we see the value function vi(s) reaches consensus in value propagation.
In the middle and right panel of Figure 3, we compare value propagation with PCL without commu-
nication, independent Q learning and MA-AC. In PCL without communication, each agent maintains
its own policy, value function and dual function, which is trained by the algorithm SBEED [Dai et al.,
2018] with η = 0.01. Since there is no communication between agents, intuitively agents may have
more collisions in the learning process than those in value propagation. Similar augment holds for
the independent Q learning. Indeed, In the middle and right panel, we see value propagation learns
the policy much faster than PCL without communication. We also observe that value propagation
outperforms MA-AC. One possible reason is that value propagation is an off-policy method thus we
can apply experience replay which exploits data more efficiently than the on-policy method MA-AC.
We also test the performance of value propagation (result labeled as partial value propagation in
Figure 3) when the state information of actor is partially observed. Since the agent has limited
information, its performance is worse than the fully observed case. But it is better than the PCL
without communication (fully observed state).
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