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ABSTRACT

Recent work has begun exploring neural acoustic word embeddings—fixed-
dimensional vector representations of arbitrary-length speech segments corre-
sponding to words. Such embeddings are applicable to speech retrieval and recog-
nition tasks, where reasoning about whole words may make it possible to avoid
ambiguous sub-word representations. The main idea is to map acoustic sequences
to fixed-dimensional vectors such that examples of the same word are mapped
to similar vectors, while different-word examples are mapped to very different
vectors. In this work we take a multi-view approach to learning acoustic word
embeddings, in which we jointly learn to embed acoustic sequences and their cor-
responding character sequences. We use deep bidirectional LSTM embedding
models and multi-view contrastive losses. We study the effect of different loss
variants, including fixed-margin and cost-sensitive losses. Our acoustic word em-
beddings improve over previous approaches for the task of word discrimination.
We also present results on other tasks that are enabled by the multi-view approach,
including cross-view word discrimination and word similarity.

1 INTRODUCTION

Word embeddings—continuous-valued vector representations of words—are an almost ubiquitous
component of recent natural language processing (NLP) research. Word embeddings can be learned
using spectral methods (Deerwester et al., [1990) or, more commonly in recent work, via neural
networks (Bengio et al., [2003; Mnih & Hinton, 2007; Mikolov et al., |2013; [Pennington et al.,
2014). Word embeddings can also be composed to form embeddings of phrases, sentences, or
documents (Socher et al., 2014 [Kiros et al., 2015; [Wieting et al.,|[2016; |Iyyer et al., 2015)).

In typical NLP applications, such embeddings are intended to represent the semantics of the cor-
responding words/sequences. In contrast, embeddings that represent the way a word or sequence
sounds are rarely considered. In this work we address this problem, starting with embeddings of in-
dividual words. Such embeddings could be useful for tasks like spoken term detection (Fiscus et al.}
2007), spoken query-by-example search (Anguera et al., [2014), or even speech recognition using
a whole-word approach (Gemmeke et al., 2011; Bengio & Heigold, 2014). In tasks that involve
comparing speech segments to each other, vector embeddings can allow more efficient and more ac-
curate distance computation than sequence-based approaches such as dynamic time warping (Levin
et al.,[2013}2015; Kamper et al.,[2016} [Settle & Livescul [2016; (Chung et al., 2016).

We consider the problem of learning vector representations of acoustic sequences and orthographic
(character) sequences corresponding to single words, such that the learned embeddings represent
the way the word sounds. We take a multi-view approach, where we jointly learn the embeddings
for character and acoustic sequences. We consider several contrastive losses, based on learning
from pairs of matched acoustic-orthographic examples and randomly drawn mismatched pairs. The
losses correspond to different goals for learning such embeddings; for example, we might want the
embeddings of two waveforms to be close when they correspond to the same word and far when they
correspond to different ones, or we might want the distances between embeddings to correspond to
some ground-truth orthographic edit distance.
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One of the useful properties of this multi-view approach is that, unlike earlier work on acoustic word
embeddings, it produces both acoustic and orthographic embeddings that can be directly compared.
This makes it possible to use the same learned embeddings for multiple single-view and cross-view
tasks. Our multi-view embeddings produce improved results over earlier work on acoustic word
discrimination, as well as encouraging results on cross-view discrimination and word similaritym

2 OUR APPROACH

In this section, we first introduce our approach for learning acoustic word embeddings in a multi-
view setting, after briefly reviewing related approaches to put ours in context. We then discuss
the particular neural network architecture we use, based on bidirectional long short-term memory
(LSTM) networks (Hochreiter & Schmidhuber, |{1997).

2.1 MULTI-VIEW LEARNING OF ACOUSTIC WORD EMBEDDINGS

Previous approaches have focused on learning acoustic word embeddings in a “single-view” setting.
In the simplest approach, one uses supervision of the form “acoustic segment x is an instance of
the word y”, and trains the embedding to be discriminative of the word identity. Formally, given a
dataset of paired acoustic segments and word labels {(x;, y;)}2,, this approach solves the follow-
ing optimization:

N
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where network f maps an acoustic segment into a fixed-dimensional feature vector/embedding, h is
a classifier that predicts the corresponding word label from the label set of the training data, and the
loss ¢ measures the discrepancy between the prediction and ground-truth word label (one can use
any multi-class classification loss here, and a typical choice is the cross-entropy loss where h has a
softmax top layer). The two networks f and h are trained jointly. Equivalently, one could consider
the composition h( f(x)) as a classifier network, and use any intermediate layer’s activations as the
features. We refer to the objective in (1)) as the “classifier network™ objective, which has been used in
several prior studies on acoustic word embeddings (Bengio & Heigold, 2014; [Kamper et al., 2016;
Settle & Livescul, [2016)).

This objective, however, is not ideal for learning acoustic word embeddings. This is because the
set of possible word labels is huge, and we may not have enough instances of each label to train
a good classifier. In downstream tasks, we may encounter acoustic segments of words that did not
appear in the embedding training set, and it is not clear that the classifier-based embeddings will
have reasonable behavior on previously unseen words.

An alternative approach, based on Siamese networks (Bromley et al., [ 1993)), uses supervision of the
form “segment x! is similar to segment x2, and is not similar to segment x>”, where two segments
are considered similar if they have the same word label and dissimilar otherwise. Models based
on Siamese networks have been used for a variety of representation learning problems in NLP (Hu
et al., 2014; [Wieting et al., 2016), vision (Hadsell et al., [2006)), and speech (Synnaeve et al., 2014;
Kamper et al., 2015)) including acoustic word embeddings (Kamper et al., 2016 |Settle & Livescu,
2016). A typical objective in this category enforces that the distance between (x!, x?) is larger than

the distance between (x!, x?) by some margin:

N
min objjamese = % > max (0, m+dis (F(x}), F(x7)) = dis (f()), J(1))), @)

where the network f extracts the fixed-dimensional embedding, the distance function dis (-, -) mea-
sures the distance between the two embedding vectors, and m > 0 is the margin parameter. The term
“Siamese” (Bromley et al., 1993} |Chopra et al., 2005) refers to the fact that the triplet (x!, x2, x3)
share the same embedding network f.

Unlike the classification-based loss, the Siamese network loss does not enforce hard decisions on
the label of each segment. Instead it tries to learn embeddings that respect distances between word

!Our tensorflow implementation is available at
https://github.com/opheadacheh/Multi-view—-neural-acoustic-words—embeddings
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pairs, which can be helpful for dealing with unseen words. The Siamese network approach also uses
more examples in training, as one can easily generate many more triplets than (segment, label) pairs,
and it is not limited to those labels that occur a sufficient number of times in the training set.

The above approaches treat the word labels as discrete classes, which ignores the similarity between
different words, and does not take advantage of the more complex information contained in the
character sequences corresponding to word labels. The orthography naturally reflects some aspects
of similarity between the words’ pronunciations, which should also be reflected in the acoustic
embeddings. One way to learn features from multiple sources of complementary information is
using a multi-view representation learning setting. We take this approach, and consider the acoustic
segment and the character sequence to be two different views of the pronunciation of the word.

While many deep multi-view learning objectives are applicable (Ngiam et al., 2011} |Srivastava &
Salakhutdinov} 2014} |Sohn et al.| 2014} |Wang et al.,[2015), we consider the multi-view contrastive
loss objective of (Hermann & Blunsom, 2014), which is simple to optimize and implement and
performs well in practice. In this algorithm, we embed acoustic segments x by a network f and
character label sequences c by another network g into a common space, and use weak supervi-
sion of the form “for paired segment xT and its character label sequence c¥, the distance between
their embedding is much smaller than the distance between embeddings of x* and an unmatched
character label sequence c~”. Formally, we optimize the following objective with such supervision:

N
1
min obj’ := — max (0, m + dis (f(x), g(c)) — dis (f(x), g(c;))), 3
jin by s= 7 3 max( (FG), glel)) = dis (fx). 9(e))), @)
where c; is a negative character label sequence of xf to be contrasted with the positive/correct

character sequence c;, and m is the margin parameter. In this paper we use the cosine distance,

dis (a,b) =1 — <ﬁ’ ﬁ>

Note that in the multi-view setting, we have multiple ways of generating triplets that contain one
positive pair and one negative pair each. Below are the other three objectives we explore in this

paper:

N
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g

N
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x; in and @ refers to a negative acoustic feature sequence, that is one with a different label

from xj. We note that obj' and obj® contain distances between same-view embeddings, and are
less thoroughly explored in the literature. We will also consider combinations of obj” through obj®.

Finally, thus far we have considered losses that do not explicitly take into account the degree of
difference between the positive and negative pairs (although the learned embeddings may implicitly
learn this through the relationship between sequences in the two views). We also consider a cost-
sensitive objective designed to explicitly arrange the embedding space such that word similarity is
respected. In @]) instead of a fixed margin m, we use:

n min (tmax, editdis(ct, c¢7))

m(c , C_) = Mmax * P , @)

where ¢, > 0 1is a threshold for edit distances (all edit distances above ¢,,,,x are considered equally
bad), and M4, is the maximum margin we impose. The margin is set to M., if the edit distance
between two character sequences is above t,,x; Otherwise it scales linearly with the edit distance
editdis(ct, c¢7)). We use the Levenshtein distance as the edit distance. Here we explore the cost-
sensitive margin with objo, but it could in principle be used with other objectives as well.

?In experiments, we use the unit-length vector ﬁ as the embedding. It tends to perform better than f(x)

and more directly reflects the cosine similarity. This is equivalent to adding a nonlinear normalization layer on
top of f.
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Figure 1: Illustration of our embedding architecture and contrastive multi-view approach.

2.2 RECURRENT NEURAL NETWORK ARCHITECTURE

Since the inputs of both views have a sequential structure, we implement both f and g with recur-
rent neural networks and in particular long-short term memory networks (LSTMs). Recurrent neu-
ral networks are the state-of-the-art models for a number of speech tasks including speech recogni-
tion Graves et al.|(2013), and LSTM-based acoustic word embeddings have produced the best results
on one of the tasks in our experiments (Settle & Livescul 2016).

As shown in Figure [I} our f and ¢ are produced by multi-layer (stacked) bidirectional LSTMs.
The inputs can be any frame-level acoustic feature representation and vector representation of the
characters in the orthographic input. At each layer, two LSTM cells process the input sequence from
left to right and from right to left respectively. At intermediate layers, the outputs of the two LSTMs
at each time step are concatenated to form the input sequence to the next layer. At the top layer, the
last time step outputs of the two LSTMs are concatenated to form a fixed-dimensional embedding
of the view, and the embeddings are then used to calculate the cosine distances in our objectives.

3 RELATED WORK

We are aware of no prior work on multi-view learning of acoustic and character-based word embed-
dings. However, acoustic word embeddings learned in other ways have recently begun to be studied.
Levin et al.| (2013) proposed an approach for embedding an arbitrary-length segment of speech as
a fixed-dimensional vector, based on representing each word as a vector of dynamic time warping
(DTW) distances to a set of template words. This approach produced improved performance on a
word discrimination task compared to using raw DTW distances, and was later also applied success-
fully for a query-by-example task (Levin et al., 2015). One disadvantage of this approach is that,
while DTW handles the issue of variable sequence lengths, it is computationally costly and involves
a number of DTW parameters that are not learned.

Kamper et al.| (2016) and |Settle & Livescu| (2016) later improved on Levin et al.’s word discrimi-
nation results using convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
trained with either a classification or contrastive loss. [Bengio & Heigold| (2014) trained convolu-
tional neural network (CNN)-based acoustic word embeddings for rescoring the outputs of a speech
recognizer, using a loss combining classification and ranking criteria. |Maas et al.| (2012)) trained
a CNN to predict a semantic word embedding from an acoustic segment, and used the resulting
embeddings as features in a segmental word-level speech recognizer. Harwath and Glass |Harwath
& Glass| (2015); Harwath et al.[ (2016); Harwath & Glass| (2017) jointly trained CNN embeddings
of images and spoken captions, and showed that word-like unit embeddings can be extracted from
the speech model. CNNs require normalizing the duration of the input sequences, which has typ-
ically been done via padding. RNNs, on the other hand, are more flexible in dealing with very
different-length sequences. [Chen et al.[(2015) used long short-term memory (LSTM) networks with
a classification loss to embed acoustic words for a simple (single-query) query-by-example search
task. [Chung et al.| (2016) learned acoustic word embeddings based on recurrent neural network
(RNN) autoencoders, and found that they improve over DTW for a word discrimination task similar
to that of |Levin et al.| (2013)). |Audhkhasi et al.|(2017) learned autoencoders for acoustic and written
words, as well as a model for comparing the two, and applied these to a keyword search task.
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Evaluation of acoustic word embeddings in downstream tasks such as speech recognition and search
can be costly, and can obscure details of embedding models and training approaches. Most eval-
uations have been based on word discrimination — the task of determining whether two speech
segments correspond to the same word or not — which can be seen as a proxy for query-by-example
search (Levin et al., 2013} [Kamper et al., 2016} Settle & Livescul 2016} |Chung et al., 2016). One
difference between word discrimination and search/recognition tasks is that in word discrimination
the word boundaries are given. However, prior work has been able to apply results from word dis-
crimination [Levin et al.|(2013) to improve a query-by-example system without known word bound-
aries |Levin et al.|(2015)), by simply applying their embeddings to non-word segments as well.

The only prior work focused on vector embeddings of character sequences explicitly aimed at repre-
senting their acoustic similarity is that of (Ghannay et al.[(2016), who proposed evaluations based on
nearest-neighbor retrieval, phonetic/orthographic similarity measures, and homophone disambigua-
tion. We use related tasks here, as well as acoustic word discrimination for comparison with prior
work on acoustic embeddings.

4 EXPERIMENTS AND RESULTS

The ultimate goal is to gain improvements in speech systems where word-level discrimination is
needed, such as speech recognition and query-by-example search. However, in order to focus on the
content of the embeddings themselves and to more quickly compare a variety of models, it is desir-
able to have surrogate tasks that serve as intrinsic measures of performance. Here we consider three
forms of evaluation, all based on measuring whether cosine distances between learned embeddings
correspond well to desired properties.

In the first task, acoustic word discrimination, we are given a pair of acoustic sequences and
must decide whether they correspond to the same word or to different words. This task has been
used in several prior papers on acoustic word embeddings Kamper et al.| (2015, 2016); |Chung et al.
(2016)); Settle & Livescul (2016) and is a proxy for query-by-example search. For each given spoken
word pair, we calculate the cosine distance between their embeddings. If the cosine distance is
below a threshold, we output “yes” (same word), otherwise we output “no” (different words). The
performance measure is the average precision (AP), which is the area under the precision-recall
curve generated by varying the threshold and has a maximum value of 1.

In our multi-view setup, we embed not only the acoustic words but also the character sequences.
This allows us to use our embeddings also for tasks involving comparisons between written and
spoken words. For example, the standard task of spoken term detection (Fiscus et al., 2007) involves
searching for examples of a given text query in spoken documents. This task is identical to query-
by-example except that the query is given as text. In order to explore the potential of multi-view
embeddings for such tasks, we design another proxy task, cross-view word discrimination. Here
we are given a pair of inputs, one a written word and one an acoustic word segment, and our task
is to determine if the acoustic signal is an example of the written word. The evalution proceeds
analogously to the acoustic word discrimination task: We output “yes” if the cosine distance be-
tween the embeddings of the written and spoken sequences are below some threshold, and measure
performance as the average precision (AP) over all thresholds.

Finally, we also would like to obtain a more fine-grained measure of whether the learned embeddings
capture our intuitive sense of similarity between words. Being able to capture word similarity may
also be useful in building query or recognition systems that fail gracefully and produce human-
like errors. For this purpose we measure the rank correlation between embedding distances and
character edit distances. This is analogous to the evaluation of semantic word embeddings via the
rank correlation between embedding distances and human similarity judgments (Finkelstein et al.,
20015 Hill et al.; 2015)). In our case, however, we do not use human judgments since the ground-truth
edit distances themselves provide a good measure. We refer to this as the word similarity task,
and we apply this measure to both pairs of acoustic embeddings and pairs of character sequence
embeddings. Similar measures have been proposed by |(Ghannay et al.| (2016) to evaluate acoustic
word embeddings, although they considered only near neighbors of each word whereas we consider
the correlation across the full range of word pairs.
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In the experiments described below, we first focus on the acoustic word discrimination task for pur-
poses of initial exploration and hyperparameter search, and then largely fix the models for evaluation
using the cross-view word discrimination and word similarity measures.

4.1 DATA

We use the same experimental setup and data as in |[Kamper et al.| (2015, [2016); |Settle & Livescu
(2016). The task and setup were first developed by (Carlin et al., [2011). The data is drawn from
the Switchboard English conversational speech corpus (Godfrey et al., [1992). The spoken word
segments range in duration from 50 to 200 frames (0.5 - 2 seconds). The train/dev/test splits
contain 9971/10966/11024 pairs of acoustic segments and character sequences, corresponding to
1687/3918/3390 unique words. In computing the AP for the dev or test set, all pairs in the set are
used, yielding approximately 60 million word pairs.

The input to the embedding model in the acoustic view is a sequence of 39-dimensional vectors
(one per frame) of standard mel frequency cepstral coefficients (MFCCs) and their first and second
derivatives. The input to the character sequence embedding model is a sequence of 26-dimensional
one-hot vectors indicating each character of the word’s orthography.

4.2 MODEL DETAILS AND HYPERPARAMETER TUNING

We experiment with different neural network architectures for each view, varying the number of
stacked LSTM layers, the number of hidden units for each layer, and the use of single- or bidirec-
tional LSTM cells. A coarse grid search shows that 2-layer bidirectional LSTMs with 512 hidden
units per direction per layer perform well on the acoustic word discrimination task, and we keep
this structure fixed for subsequent experiments (see Appendix [A|for more details). We use the out-
puts of the top-layer LSTMs as the learned embedding for each view, which is 1024-dimensional if
bidirectional LSTMs are used.

In training, we use dropout on the inputs of the acoustic view and between stacked layers for both
views. The architecture is illustrated in Figure[I] For each training example, our contrastive losses
require a corresponding negative example. We generate a negative character label sequence by uni-
formly sampling a word label from the training set that is different from the positive label. We
perform a new negative label sampling at the beginning of each epoch. Similarly, negative acoustic
feature sequences are uniformly sampled from all of the differently labeled acoustic feature se-
quences in the training set.

The network weights are initialized with values sampled uniformly from the range [—0.05, 0.05].
We use the Adam optimizer (Kingma & Bal |2015) for updating the weights using mini-batches of
20 acoustic segments, with an initial learning rate tuned over {0.0001, 0.001}. Dropout is used at
each layer, with the rate tuned over {0, 0.2, 0.4, 0.5}, in which 0.4 usually outperformed others.
The margin in our basic contrastive objectives 0-3 is tuned over {0.3, 0.4, 0.5, 0.6, 0.7}, out of
which 0.4 and 0.5 typically yield best results. For obj® with the cost-sensitive margin, we tune the
maximum margin mya, over {0.5, 0.6, 0.7} and the threshold ¢,,x over {9, 11, 13}. We train
each model for up to 1000 epochs. The model that gives the best AP on the development set is used
for evaluation on the test set.

4.3 EFFECTS OF DIFFERENT OBJECTIVES

We presented four contrastive losses (3)—(6) and potential combinations in Section We now
explore the effects of these different objectives on the word discrimination tasks.

Table [I] shows the development set AP for acoustic and cross-view word discrimination achieved
using the various objectives. We tuned the objectives for the acoustic discrimination task, and then
used the corresponding converged models for the cross-view task. Of the simple contrastive objec-
tives, ob j0 and ob j2 (which involve only cross-view distances) slightly outperform the other two on
the acoustic word discrimination task. The best-performing objective is the “symmetrized” objective
ob jO + 0bj2, which significantly outperforms all individual objectives (and the combination of the
four). Finally, the cost-sensitive objective is very competitive as well, while falling slightly short
of the best performance. We note that a similar objective to our obj" + obj* was used by [Vendrov
et al.| (2016)) for the task of caption-image retrieval, where the authors essentially use all non-paired
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Figure 2: Development set AP for several objec- Table 1: Word discrimination performance

tives on acoustic word discrimination. with different objectives.
Method Test AP Test AP
(acoustic)  (cross-view)
MFCCs + DTW (Kamper et al., [2016) 0.214
Correspondence autoencoder + DTW (Kamper et al.| 2015) 0.469
Phone posteriors + DTW (Carlin et al.,[2011) 0.497
Siamese CNN (Kamper et al.,[2016) 0.549
Siamese LSTM (Settle & Livescu, |2016) 0.671
Our multi-view LSTM obj” + obj” 0.806 0.892

Table 2: Final test set AP for different word discrimination approaches. The first line is a baseline
using no word embeddings, but rather applying dynamic time warping (DTW) to the input MFCC
features. The second and third lines are prior results using no word embeddings (but rather using
DTW with learned correspondence autoencoder-based or phone posterior features, trained on larger
external (in-domain) data). The remaining prior work corresponds to using cosine similarity between
acoustic word embeddings.

examples from the other view in the minibatch as negative examples (instead of random sampling
one negative example as we do) to be contrasted with one paired example.

Figure 2| shows the progression of the development set AP for acoustic word discrimination over
1000 training epochs, using several of the objectives, where AP is evaluated every 5 epochs. We
observe that even after 1000 epochs, the development set AP has not quite saturated, indicating that
it may be possible to further improve performance.

Overall, our best-performing objective is the combined obj® 4+ obj?, and we use it for reporting final
test-set results. Table [2) shows the test set AP for both the acoustic and cross-view tasks using our
final model (“multi-view LSTM”). For comparison, we also include acoustic word discrimination
results reported previously by [Kamper et al.| (2016); |Settle & Livescu| (2016). Previous approaches
have not addressed the problem of learning embeddings jointly with the text view, so they can not
be evaluated on the cross-view task.

4.4 WORD SIMILARITY TASKS

Table [3| gives our results on the word similarity tasks, that is the rank correlation (Spearman’s p) be-
tween embedding distances and orthographic edit distance (Levenshtein distance between character
sequences). We measure this correlation for both our acoustic word embeddings and for our text
embeddings. In the case of the text embeddings, we could of course directly measure the Leven-
shtein distance between the inputs; here we are simply measuring how much of this information the
text embeddings are able to retain.
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Objective p (acoustic embedding) p (text embedding)
fixed-margin (obj”) 0.179 0.207
cost-sensitive margin (ob jo) 0.240 0.270

Table 3: Word similarity results using fixed-margin and cost-sensitive objectives, given as rank
correlation (Spearman’s p) between embedding distances and orthographic edit distances.

Interestingly, while the cost-sensitive objective did not produce substantial gains on the word dis-
crimination tasks above, it does greatly improve the performance on this word similarity measure.
This is a satisfying observation, since the cost-sensitive loss is trying to improve precisely this rela-
tionship between distances in the embedding space and the orthographic edit distance.

Although we have trained our embeddings using orthographic labels, it is also interesting to con-
sider how closely aligned the embeddings are with the corresponding phonetic pronunciations. For
comparison, the rank correlation between our acoustic embeddings and phonetic edit distances is
0.226, and for our text embeddings it is 0.241, which are relatively close to the rank correlations
with orthographic edit distance. A future direction is to directly train embeddings with phonetic
sequence supervision rather than orthography; this setting involves somewhat stronger supervision,
but it is easy to obtain in many cases.

Another interesting point is that the performance is not a great deal better for the text embeddings
than for the acoustic embeddings, even though the text embeddings have at their disposal the text
input itself. We believe this has to do with the distribution of words in our data: While the data
includes a large variety of words, it does not include many very similar pairs. In fact, of all pos-
sible pairs of unique training set words, fewer than 2% have an edit distance below 5 characters.
Therefore, there may not be sufficient information to learn to distinguish detailed differences among
character sequences, and the cost-sensitive loss ultimately does not learn much more than to separate
different words. In future work it would be interesting to experiment with data sets that have a larger
variety of similar words.

4.5 VISUALIZATION OF LEARNED EMBEDDINGS

Figure E] gives a 2-dimensional t-SNE (van der Maaten & Hinton| 2008)) visualization of selected
acoustic and character sequences from the development set, including some that were seen in the
training set and some previously unseen words. The previously seen words in this figure were
selected uniformly at random among those that appear at least 15 times in the development set
(the unseen words are the only six that appear at least 15 times in the development set). This
visualization demonstrates that the acoustic embeddings cluster very tightly and are very close to
the text embeddings, and that unseen words cluster nearly as well as previously seen ones.

While Figure 3| shows the relationship among the multiple acoustic embeddings and the text em-
beddings, the words are all very different so we cannot draw conclusions about the relationships
between words. Figure ] provides another visualization, this time exploring the relationship among
the text embeddings of a number of closely related words, namely all development set words end-

ing in “-ly”, “-ing”, and “-tion”. This visualization confirms that related words are embedded close
together, with the words sharing a suffix forming fairly well-defined clusters.

5 CONCLUSION

We have presented an approach for jointly learning acoustic word embeddings and their orthographic
counterparts. This multi-view approach produces improved acoustic word embedding performance
over previous approaches, and also has the benefit that the same embeddings can be applied for both
spoken and written query tasks. We have explored a variety of contrastive objectives: ones with a
fixed margin that aim to separate same and different word pairs, as well as a cost-sensitive loss that
aims to capture orthographic edit distances. While the losses generally perform similarly for word
discrimination tasks, the cost-sensitive loss improves the correlation between embedding distances
and orthographic distances. One interesting direction for future work is to directly use knowledge
about phonetic pronunciations, in both evaluation and training. Another direction is to extend our
approach to directly train on both word and non-word segments.
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Figure 3: Visualization via t-SNE of acoustic word embeddings (colored markers) and correspond-
ing character sequence embeddings (text), for a set of development set words with at least 15 acoustic
tokens. Words seen in training are in lower-case; unseen words are in upper-case.
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Figure 4: Visualization via t-SNE of character sequence embeddings for words with the suffixes
“-ly” (blue), “-ing” (red), and “-tion” (green).
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A ADDITIONAL ANALYSIS

We first explore the effect of network architectures for our embedding models. We learn embeddings
using objective obj” and evaluate them on the acoustic and cross-view word discrimination tasks.
The resulting average precisions on the development set are given in Table @ All of the models
were trained for 1000 epochs, except for the 1-layer unidirectional models which converged after
500 epochs. It is clear that bidirectional LSTMs are more successful than unidirectional LSTMs
for these tasks, and two layers of LSTMs are much better than a single layer of LSTMs. We did
not observe significant further improvement by using more than two layers of LSTMs. For all other
experiments, we fix the architecture to 2-layer bidirectional LSTMs for each view.

Architecture Dev AP Dev AP
(acoustic word discrimination) (cross-view word discrimination)
1-layer unidirectional 0.379 0.616
1-layer bidirectional 0.466 0.690
2-layer bidirectional 0.659 0.791

Table 4: Average precision (AP) for acoustic and cross-view word discrimination tasks on the de-
velopment set, using embeddings learned with objective ob j° and different LSTM architectures.
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Figure 5: Precision-recall curve (left: two-layer bidirectional LSTM trained with obj" 4 obj? for
word discrimination task) and scatter plot of embedding distances vs. orthographic distances (right:
cost-sensitive margin model for word similarity task), for our best embedding models.

In Figure [5| we also give the precision-recall curve for our best models, as well as the scatter plot of
cosine distances between acoustic embeddings vs. orthographic edit distances.
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