
Bridging HMMs and RNNs through
Architectural Transformations

Jan Buys1 Yonatan Bisk1 Yejin Choi1,2
Paul G. Allen School of Computer Science & Engineering, University of Washington1

Allen Institute for Artificial Intelligence2
{jbuys, ybisk, yejin}@cs.washington.edu

Abstract

A distinct commonality between HMMs and RNNs is that they both learn hidden
representations for sequential data. In addition, it has been noted that the backward
computation of the Baum-Welch algorithm for HMMs is a special case of the
back-propagation algorithm used for neural networks [6]. Do these observations
suggest that, despite their many apparent differences, HMMs are a special case of
RNNs? In this paper, we show that that is indeed the case, and investigate a series of
architectural transformations between HMMs and RNNs, both through theoretical
derivations and empirical hybridization. In particular, we investigate three key
design factors—independence assumptions between the hidden states and the
observation, the placement of softmaxes, and the use of non-linearities—in order
to pin down their empirical effects. We present a comprehensive empirical study to
provide insights into the interplay between expressivity and interpretability in this
model family with respect to language modeling and parts-of-speech induction.

1 Introduction

The sequence is a common structure among many forms of naturally occurring data, including speech,
text, video, and DNA. As such, sequence modeling has long been a core research problem across
several fields of machine learning and AI. By far the most widely used approach for decades is Hidden
Markov Models [2, 11], which assumes a sequence of discrete latent variables to generate a sequence
of observed variables. When the latent variables are unobserved, unsupervised training of HMMs
can be performed via the Baum-Welch algorithm (which, in turn, is based on the forward-backward
algorithm), as a special case of Expectation-Maximization (EM) [5]. Importantly, the discrete nature
of the latent variables has the benefit of interpretability, as they recover contextual clustering of the
output variables. In contrast, Recurrent Neural Networks (RNNs) [12, 7] introduced later assume
continuous latent representations. Their hidden states have no probabilistic interpretation, regardless
of many different architectural variants, such as LSTMs [10], GRUs [4] and RANs [14].

Despite their many apparent differences, both HMMs and RNNs model hidden representations for
sequential data. At the heart of both models are: a state at time t, a transition function f : ht−1 → ht
in latent space, and an emission function g : ht → xt. In addition, it has been noted that the backward
computation in the Baum-Welch algorithm is a special case of back-propagation for neural networks
[6]. Therefore, a natural question arises as to the fundamental relationship between HMMs and RNNs.
Might HMMs be a special case of RNNs?

In this paper, we investigate a series of architectural transformations between HMMs and RNNs—
both through theoretical derivations and empirical hybridization. In particular, we demonstrate
that forward marginal inference for an HMM—accumulating forward probabilities to compute the
marginal emission and hidden state distributions at each time step—can be reformulated as equations
for computing an RNN cell. In addition, we investigate three key design factors—independence

32nd Conference on Neural Information Processing Systems (NIPS 2018), IRASL workshop, Montréal, Canada.

Figure 1: Above each of the models we indicate the type of transition and emission cells used. H for
HMM, R for RNN/Elman and F is a novel Fusion defined in §3.3. It is particularly important to track
when a vector is a distribution (resides in a simplex) versus in the unit cube (e.g. after a sigmoid
non-linearity). These are indicated by c4i and c�i, respectively. SM stands for softmax rows.

assumptions between the hidden states and observations, the placement of softmaxes, and the use of
non-linearities—in order to pin down their empirical effects. While we focus on HMMs with discrete
outputs, our analysis framework could be extended to HMMs over continuous observations.

Our work builds on earlier work that have also noted the connection between RNNs and HMMs
[24, 26] (see §7). Our contribution is to provide the first thorough theoretical investigation into the
model variants, carefully controlling for every design choices, along with comprehensive empirical
analysis over the spectrum of possible hybridization between HMMs and RNNs.

We find that the key elements to better performance of the HMMs are the use of a sigmoid instead of
softmax linearity in the recurrent cell, and the use of an unnormalized output distribution matrix in
the emission computation. On the other hand, multiplicative integration of the previous hidden state
and input embedding, and intermediate normalizations in the cell computation are less consequential.
We also find that HMMs outperform other RNNs variants for unsupervised prediction of the next
POS tag, demonstrating the advantages of discrete bottlenecks for increased interpretability.

The paper is structured as follows. First, we present the derivation of HMM marginal inference as
a special case of RNN computation (§2). Next we explore a gradual transformation of HMMs into
RNNs (§3), followed by the reverse transformation of Elman RNNs back to HMMs (§4). Finally
we provide empirical analysis in §5 and §6 to pin point the effects of varying design choices over
possible hybridizations between HMMs and RNNs.

2 Formulating HMMs as Recurrent Neural Networks

We start by defining HMMs as discrete sequence models, together with the forward-backward
algorithm which is used for inference. Then we show that, by rewriting the forward algorithm, the
computation can be viewed as updating a hidden state at each time step by feeding the previous word
prediction, and then computing the next word distribution, similar to the way RNNs are structured.
The resulting architecture corresponds to the first cell in Figure 1.

2.1 Model definition

Let x(1:n) = {x(1), . . . , x(n)} be a sequence of random variables, where each x is drawn from a
vocabulary V of size v, and an instance x is represented as an integer w or a one-hot vector e(w),
where w corresponds to an index in V. 1 We also define a corresponding sequence of hidden
variables h(1:n) = {h(1), . . . , h(n)}, where h ∈ {1, 2, . . .m}. The distribution P (x) is defined by

1Our notation follows [9]. Sequences are notated as x or w.

2

marginalizing over h, and factorizes as follows:

P (x) =
∑
h

P (x,h) =
∑
h

P (h(1))p(x(1)|h(1))
n∏

i=2

P (h(i)|h(i−1))P (x(i)|h(i)) (1)

We define the hidden state distribution, referred to as the transition distribution, and the the emission
(output) distribution as

P (h(i)|h(i−1) = l) = softmax(Wl,: + b),W ∈ Rm×m, b ∈ Rm (2)

P (h(1)) = softmax(
∑
l

W>
l,: + b), (3)

p(x(i)|h(i) = k) = softmax(Ek,: + d),E ∈ Rm×v,d ∈ Rv. (4)

2.2 Inference

Inference for HMMs (marginalizing over the hidden states to compute the observed sequence proba-
bilities) is performed with the forward-backward algorithm. The backward algorithm is equivalent to
automatically differentiating the forward algorithm [6]. Therefore, while traditional HMM implemen-
tations had to implement both the forward and backward algorithm, and train the model with the EM
algorithm, we only implement the forward algorithm in standard deep learning software, and perform
end-to-end minibatched SGD training, efficiently parallelized on a GPU.

Let w = {w(1), . . . , w(n)} be the observed sequence, and w(i) the one-hot representation of w(i).
The forward probabilities a are defined recurrently (i.e., sequentially recursively) as

a
(i)
k = P (h(i) = k,x(1:i) = w(1:i)), (5)

= P (x(i) = w(i)|h(i) = k)

m∑
l=1

a
(i−1)
l P (h(i) = k|h(i−1) = l). (6)

This can be rewritten by defining

c(i) = P (h(i)|x(1:i−1) = w(1:i−1)), (7)

s(i) = P (h(i)|x(1:i) = w(1:i)), (8)

x(i) = P (x(i) = w(i)|x(1:i−1) = w(1:i)), (9)

and substituting a, so that equation 6 is rewritten as left below, or expressed directly in terms of the
parameters used to define the distributions with vectorized computations (right below):

c
(i)
k =

m∑
l=1

s
(i−1)
l P (h(i) = k|h(i−1) = l), c(i) = softmaxrows(W)>s(i−1), (10)

e(i) = softmaxrows(E)w(i), (11)

x(i) =

m∑
k=1

P (x(i) = w(i)|h(i) = k)c
(i)
k , x(i) = e(i)

>
c(i), (12)

s
(i)
k =

1

x(i)
P (x(i) = w(i)|h(i) = k)c

(i)
k . s(i) =

1

x(i)
e(i) ◦ c(i). (13)

Here w(i) is used as a one-hot vector, and the bias vectors b and d are omitted for clarity. Note that
the computation of s(i) can be delayed until time step i+ 1. The computation step can therefore be

3

rewritten to let c be the recurrent vector (equivalent logspace formulations presented on the right): 2

e(i−1) = softmaxrows(E)w(i−1), = logsoftmaxrows(E)w(i−1),

s(i−1) = normalize(e(i−1) ◦ c(i−1)), = softmax(e(i−1) + c(i−1)),

c(i) = softmaxrows(W)>s(i−1), = log(softmaxrows(W)>s(i−1)),

e(i) = softmaxrows(E)w(i), = logsoftmaxrows(E)w(i),

x(i) = e(i)
>
c(i), = logsumexp(e(i) + c(i)).

(14)

(15)

(16)

(17)

(18)

This can be viewed as a step of a recurrent neural network with tied input and output embeddings:
Equation 14 embeds the previous prediction, equations 15 and 16, the transition step, updates the
hidden state c, corresponding to the cell of a RNN, and equations 17 and 18, the emission step,
computes the output next word probability.

We can now compare this formulation against the definition of an Elman RNN with tied embeddings
and a sigmoid non-linearity. These equations correspond to the first and last cells in Figure 1. The
Elman RNN has the same parameters, except for an additional input matrix U ∈ Rm×m.

e(i−1) = Ew(i−1),

c(i) = σ(Wc(i−1) +Ue(i−1)),

x(i) = softmax(Ec(i))w(i).

(19)

(20)

(21)

3 Transforming an HMM towards an RNN

Having established the relation between HMMs and RNNs, we propose a number of models that
we hypothesize have intermediate expressiveness between HMMs and RNNs. The architecture
transformations can be seen in the first 3 cells in Figure 1. We will evaluate these model variants
empirically (§5), and investigate their interpretability (§6).

3.1 Conditioning transition distribution on previous word

By relaxing the independence assumption of the HMM transition probability distribution we can
increase the expressiveness of the HMM “cell” by modelling more complex interactions between the
fed word and the hidden state. These model variants are non-homogeneous HMMs.

Tensor-based feeding:
Following [22] we define the transition distribution as

P (h(i)|h(i−1) = l, x(i−1) = w) = softmax(Wl,:e
(i−1) +Bl,:), (22)

where W ∈ Rm×m×m,B ∈ Rm×m.

Addition-based feeding:
As tensor-based feeding increases the number of parameters considerably, we also propose an additive
version:

P (h(i)|h(i−1) = l, x(i−1) = w) = softmax(Wl,: +Ue(i−1) + b), (23)
where W ∈ Rm×m,U ∈ Rm×m, b ∈ Rm.

Gating-based feeding:
Finally we propose a more expressive model where interaction is controlled via a gating mechanism
and the feeding step uses unnormalized embeddings (this does not violate the HMM factorization):

e
′(i−1) = Ew(i−1), (24)

f i = σ(Ue
′(i−1) + b), (25)

P (h(i)|h(i−1) = l, x(i−1) = w) = softmax(Wl,: ◦ f (i)), (26)

where U ∈ Rm×m, b ∈ Rm,W ∈ Rm×m.
2where normalize(y) = y∑

i yi
.

4

3.2 Delayed softmaxes

Another way to make HMMs more expressive is to relax their independence assumptions through
delaying when vectors are normalized to probability distributions by applying the softmax function.

Delayed transition softmax
The computation of the recurrent vector c(i) = P (h(i)|x(1:i−1)) is replaced with

c(i) = softmax(Ws(i−1)). (27)

Both c and s are still valid probability distributions, but the independence assumption in the distribu-
tion over h(i) no longer holds.

Delayed emission softmax
A further transformation is to delay the emission softmax until after multiplication with the hidden
vector. This effectively replaces the HMM’s emission computation with that of the RNN:

x(i) = softmax(Ec(i))w(i). (28)

This formulation breaks the independence assumption that the output distribution is only condi-
tioned on the hidden state assignment. Instead it can be viewed as taking the expectation over the
(unnormalized) embeddings with respect to the state distribution c, then softmaxed (H R in Fig 1).

3.3 Sigmoid non-linearity

We can go further towards RNNs and replace the softmax in the transition by a sigmoid non-linearity.
The sigmoid is placed in the same position as the delayed softmax. The recurrent state c is no longer
a distribution so the output has to be renormalized so the emission still computes a distribution:

c(i) = sigmoid(Ws(i−1)), (29)

x(i) = e(i)
>
normalize(c(i)). (30)

This model could also be combined with a delayed emission softmax - which we’ll see makes it
closer to an Elman RNN. This model is indicated as F (fusion) in Figure 1.

4 Transforming an RNN towards an HMM

Analogously to making the HMM more similar to Elman RNNs, we can make Elman networks more
similar to HMMs. Examples of these transformations can be seen in the last 2 cells in Figure 1.

4.1 HMM emission

First, we use the Elman cell with an HMM emission function. This requires the hidden state be a
distribution. We consider two options: One is to replace the sigmoid non-linearity with the softmax
function (R H in Figure 1):

c(i) = softmax(Wc(i−1) +Ue(i−1)) (31)

x(i) = (softmax(E)w(i))>c(i). (32)

The second formulation is to keep the sigmoid non-linearity, but normalize the hidden state output
inside the emission computation:

c(i) = σ(Wc(i−1) +Ue(i−1)) (33)

x(i) = (softmax(E)w(i))>normalize(c(i)). (34)

5

4.2 Softmax non-linearity

Second, we experiment with replacing the sigmoid non-linearity with a softmax:

c(i) = softmax(Wc(i−1) +Ue(i−1)) (35)

As a more flexible variant, the softmax is applied only to compute the emission distribution, while
the sigmoid non-linearity is still applied to recurrent state:

c(i) = (Wσ(c(i−1)) +Ue(i−1)) (36)

x(i) = softmax(Esoftmax(c(i)))w(i). (37)

4.3 Multiplicative integration

In the HMM cell, the integration of the previous recurrent state and the input embedding is modelled
through an element-wise product instead of adding affine transformations of the two vectors. We can
modify the Elman cell to do a similar multiplicative integration:3

c(i) = σ((Wc(i−1)) ◦ (Ue(i−1)))) (38)

Or, using a single transformation matrix:

c(i) = σ(W (c(i−1) ◦ e(i−1))) (39)

5 Language Modeling Experiments

Our formulations investigate a series of small architectural changes to HMMs and Elman cells. In
particular, these changes raise questions about the expressivity and importance of (1) normalization
within the recurrence and (2) independence assumptions during emission. In this section, we analyze
the effects of these changes quantitatively via a standard language modeling benchmark.

5.1 Setup

We follow the standard PTB language modeling setup [3, 17]. We work with one-layer models
to enable a direct comparison between RNNs and HMMs and a budget of 10 million parameters
(typically corresponding to hidden state sizes of around 900). Models are trained with batched
backpropagation through time (35 steps). Input and output embeddings are tied in all models. Models
are optimized with a grid search over optimizer parameters for two strategies: SGD4 and AMSProp.
AMSProp is based on the optimization setup proposed in [15].5

5.2 Results

We see from the results in Table 1 (also depicted in Figure 2) that the HMM models perform
significantly worse than the Elman network, as expected. Interestingly, many of the HMM variants
that in principle have more expressivity or weaker independence assumptions do not perform better
than the vanilla HMM. This includes delaying the transition or emission softmax, and most of the
feeding models. The exception is the gated feeding model, which does substantially better, showing
that gating is an effective way of incorporating more context into the transition matrix. Using

3This is related to the architecture proposed in [26], which shows that models with multiplicative integration
can obtain competitive performance.

4Choose a learning rate from {5, 10, 20} and decayed by 4.0 after each epoch where validation did not
improve. Batch size was 20, and embedding parameters are initialized from the uniform distribution in the range
(−0.1, 0.1). These mostly follow the settings of https://github.com/pytorch/examples/tree/master/
word_language_model.

5 We use AMSGrad [20] (instead of Adam [13]) with β1 = 0, making it more similar to RMSProp. We pick
an initial learning rate from {0.001, 0.002}, and a l2 weight decay rate from {0, 1e− 4, 1e− 5, 1e− 6, 1e− 7}.
Batch size is 32, embedding parameters are initialized from the uniform distribution in the range (−0, 8, 0.8).

6

 https://github.com/pytorch/examples/tree/master/word_language_model
 https://github.com/pytorch/examples/tree/master/word_language_model

Model dev ppl Model dev ppl

HMM Elman
– Vanilla 284.59 – Softmax, HMM emission 313.84
– Tensor feeding 288.15 – HMM emission (normalize) 312.63
– Addition feeding 288.62 – Softmax non-linearity 207.95
– Gated feeding 243.51 – Softmax normalize before emit 225.36
– Delayed transition softmax 284.59 – Multiplicative (single matrix) 107.45
– Delayed emission softmax 287.00 – Multiplicative 100.71
– Delayed transition and emission softmax 293.72 – Vanilla 87.27
– Sigmoid non-linearity 240.91
– Sigmoid non-linearity, delayed emission softmax 142.31 LSTM 80.61

Table 1: Language Modeling Perplexity for our baseline and transformed models. HMM
+ …

RNN
…

1 1 284.59 80.61

3 2 288.62 87.27

4 3 243.51 100.71

5 4 284.59 225.36

6 5 287 207.95

7 6 293.72 297.61

8 7 240.91 312.63

9 8 142.31 313.84

Pe
rp

le
xi

ty

50

125

200

275

350

HMM
RNN

HMM
+ Additio

n  

 F
ee

ding

+ G
ati

ng

+ Dela
ye

d 

 t
ran

sit
ion

+ Dela
ye

d 

 e
miss

ion

+ Dela
ye

d 

 t
ran

s &
 em

it

+ si
gmoid

+ si
gmoid  

 & RNN Emit

LSTM
Elman

+ Multiplicative

+ normalize  

 before emit

+ softmax 

 non-lin

+ delayed 

 softmax

+ HMM Emit

Pe
rp

le
xi

ty

50

125

200

275

350

HMM
RNN

Table 2

Perplexity PTB UPOS

284.59 52.36 68.23

288.15 45.16 61.66

243.51 44.62 59.64

142.31 42.09 52.41

240.91 31.82 44.13

207.95 36.68 48.54

87.27 44.97 54.59

80.61 45.75 55.08

25

40

55

70

50 125 200 275 350

PTB UPOSTable 2-1

Perplexity PTB UPOS

284.59 52.36 68.23

288.15 45.16 61.66

243.51 44.62 59.64

142.31 42.09 52.41

240.91 31.82 44.13

313.84 30.86 45.85

207.95 36.68 48.54

87.27 44.97 54.59

80.61 45.75 55.08

25

40

55

70

50 125 200 275 350

PTB UPOS

+ softmax 

 non-line &  

 HMM Emit

�1

Figure 2: Perplexities under our architectural transformations of HMM and RNN variants.

a sigmoid non-linearity before the output of the HMM cell (instead of a softmax) does improve
performance (by 44 ppl), and combining that with delaying the emission softmax gives a substantial
improvement (almost another 100 ppl), making it much closer to some of the RNN variants.

We also evaluate variants of Elman RNNs: Just replacing the sigmoid non-linearity with the softmax
function leads to a substantial drop in performance (120 ppl), although it still performs better than the
HMM variants where the recurrent state is a distribution. Another way to investigate the effect of
the softmax is to normalize the hidden state output just before applying the emission function, while
keeping the sigmoid non-linearity: This performs somewhat worse than the softmax non-linearity,
which indicates that it is significant whether the input to the emission function is normalized or
softmaxed before multiplying with the (emission) embedding matrix. As a comparison for how much
the softmax non-linearity acts as a bottleneck, a neural bigram model outperforms these approaches,
obtaining 177 validation perplexity on this same setup.

Replacing the RNN emission function with that of an HMM leads to even worse performance than the
HMM; a softmax non-linearity or a sigmoid followed by normalization does not make a significant
difference. Multiplicative integration leads to only a small drop in performance compared to a vanilla
Elman RNN, and doing so with a single transformation matrix (more comparable to the HMM)
leads to only a small further drop. In contrast, preliminary experiments showed that the second
transformation matrix is crucial in the performance of the vanilla Elman network.

To put our results in context, we also compare against an LSTM baseline with the same number
of parameters, using the same regularization and hyperparameter search strategy as for our other
models. While more extensive hyperparameter tuning [15] or more sophisticated optimization
and regularization techniques [16] would improve performance, the goal here is just to do a fair
comparison within the computational resources we had available to optimize all models, not to
compete with state-of-the-art performance.

7

Figure 3: Tagging accuracies (right) are plot-
ted against perplexities from Table 1. We see
a somewhat quadratic relationship.

Model PTB UPOS

HMM
– Vanilla 52.36 68.23
– Tensor feeding 45.16 61.66
– Gated feeding 44.62 59.64
– Sigmoid non-linearity 31.82 44.13
– Sigmoid non-linearity with

delayed emission softmax 42.09 52.41

Elman
– Softmax, HMM emission 30.86 45.85
– Softmax non-linearity 36.68 48.54
– Vanilla 44.97 54.59

LSTM 45.75 55.08

Table 2: Tagging accuracies for representative models.
Accuracy is calculated by converting p(w) to p(t) ac-
cording to WSJ tag distributions.

6 Syntactic Evaluation

A strength of HMM bottlenecks is forcing the model to produce an interpretable hidden representation.
A classic example of this property in language modeling is part-of-speech tag induction. It is therefore
natural to ask whether changes in the architecture of our models correlate with their ability to discover
syntactic properties. We evaluate this by analyzing the models’ implicitly predicted tag distributions
at each time step. Specifically we hypothesize that the HMMs will preserve basic tag-tag patterns
of the language, and that this may not be true for RNNs. We test this by computing the accuracy of
predicting the tag of the next word in the sequence out of the next word distribution. None of the
models were trained to perform this task.

We estimate the model’s distribution over POS tags at each time step, p(t), by marginalizing over the
model’s output word distribution p(w) and the context-independent tag distribution p(t|w) for every
word in the training portion of the PTB. We compare the most likely marginal tag against the ground
truth to compute a tagging accuracy. This evaluation rewards models which place their emission
probability mass predominantly on words of the correct part-of-speech. We compute this metric
across both the full PTB tagset and universal tags (UPOS) [19].

Viterbi decoding in HMMs enable us to compute the tag distribution conditioned on the highest
scoring (Viterbi) state at each time step. This leads to better performance than marginalizing over
hidden state values, showing that the states encode meaningful word clusterings. In contrast, Elman
models perform best when conditioned on the full hidden state rather than the maximum dimension
only. Results are shown in Table 2 and plotted against perplexity in Figure 3.

7 Related Work

A number of recent papers have identified variants of gated RNNs which are simpler than LSTMs but
perform competitively or satisfy properties that LSTMs lack. These variants include RNNs without
recurrent non-linearities to improve interpretability [8], gated RNN variants with type constraints
[1], and a class of RNNs called rational recurrences, in which the hidden states can be computed
by WFSAs [18]. Our goal was instead to compare RNNs against HMMs, which while clearly less
expressive can provide complementary insights into the strengths of RNNs.

Another strand of recent work proposed neural models that learn discrete, interpretable structure:
[27] introduced a mixture of softmaxes model where the output distribution is conditioned on discrete
latent variable. Other work includes language modeling that jointly learns unsupervised syntactic
(tree) structure [21] and neural hidden Markov models for Part-of-Speech induction [22]. Models
of segmental structure over sequences [25, 23] and neural transduction models with discrete latent
alignments [28] have also been proposed.

8

8 Conclusion

In this work, we presented a theoretical and empirical investigation into model variants over the
spectrum of possible hybridization between HMMs and RNNs. By carefully controlling all design
choices, we provide new insights into several factors including independence assumptions, the
placement of softmax, and the use of nonlinearities. Comprehensive empirical results demonstrate
that the key elements to better performance of the RNN are the use of a sigmoid instead of softmax
linearity in the recurrent cell, and the use of an unnormalized output distribution matrix in the
emission computation. Multiplicative integration of the previous hidden state and input embedding,
and intermediate normalizations in the cell computation are less consequential. HMMs outperforms
other RNNs variants in a next POS tag prediction task, which demonstrates the advantages of models
with discrete bottlenecks in increased interpretability.

References
[1] David Balduzzi and Muhammad Ghifary. Strongly-typed recurrent neural networks. CoRR,

abs/1602.02218, 2016.

[2] Leonard E. Baum and J. A. Eagon. An inequality with applications to statistical estimation
for probabilistic functions of markov processes and to a model for ecology. Bulletin of the
American Mathematical Society, 73(3):360 – 363, 1967.

[3] Ciprian Chelba and Frederick Jelinek. Exploiting syntactic structure for language modeling.
In Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics
and 17th International Conference on Computational Linguistics, Volume 1, pages 225–231,
Montreal, Quebec, Canada, August 1998. Association for Computational Linguistics.

[4] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar, October
2014. Association for Computational Linguistics.

[5] A Dempster, N Laird, and D Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the royal statistical society. Series B (methodological), pages 1–38, 1977.

[6] Jason Eisner. Inside-outside and forward-backward algorithms are just backprop (tutorial paper).
In Proceedings of the Workshop on Structured Prediction for NLP, pages 1–17, Austin, TX,
November 2016. Association for Computational Linguistics.

[7] J Elman. Finding structure in time. Cognitive science, 14(2):179–211, 06 1990.

[8] Jakob N Foerster, Justin Gilmer, Jascha Sohl-Dickstein, Jan Chorowski, and David Sussillo. In-
put switched affine networks: An rnn architecture designed for interpretability. In International
Conference on Machine Learning, pages 1136–1145, 2017.

[9] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

[11] Frederick Jelinek, Lalit R. Bahl, and Robert L Mercer. Design of a linguistic statistical decoder
for the recognition of continuous speech. IEEE Transactions on Information Theory, 21(3):250–
256, May 1975.

[12] Michael I Jordan. Serial order: A parallel distributed processsing approach. Technical report,
University of California, San Diego, 1986.

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

9

[14] Kenton Lee, Omer Levy, and Luke S Zettlemoyer. Recurrent additive networks. arXiv preprint
arXiv:1705.07393, 05 2017.

[15] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural
language models. arXiv preprint arXiv:1707.05589, 2017.

[16] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. CoRR, abs/1708.02182, 2017.

[17] Tomáš Mikolov, Anoop Deoras, Stefan Kombrink, Lukáš Burget, and Jan Černockỳ. Empirical
evaluation and combination of advanced language modeling techniques. In Twelfth Annual
Conference of the International Speech Communication Association, 2011.

[18] Hao Peng, Roy Schwartz, Sam Thomson, and Noah A. Smith. Rational recurrences. In Proc. of
EMNLP, 2018.

[19] Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech tagset. In
Proceedings of the Eighth International Conference on Language Resources and Evaluation
(LREC-2012), pages 2089–2096, Istanbul, Turkey, 05 2012.

[20] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
ICLR, 2018.

[21] Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and Aaron C. Courville. Neural language
modeling by jointly learning syntax and lexicon. CoRR, abs/1711.02013, 2017.

[22] Ke M. Tran, Yonatan Bisk, Ashish Vaswani, Daniel Marcu, and Kevin Knight. Unsupervised
neural hidden markov models. In Proceedings of the Workshop on Structured Prediction for
NLP, pages 63–71, Austin, TX, November 2016. Association for Computational Linguistics.

[23] Chong Wang, Yining Wang, Po-Sen Huang, Abdelrahman Mohamed, Dengyong Zhou, and
Li Deng. Sequence modeling via segmentations. arXiv preprint arXiv:1702.07463, 2017.

[24] T Wessels and Christian W Omlin. Refining hidden markov models with recurrent neural
networks. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural
Networks, volume 2, pages 271–276. IEEE, 2000.

[25] Sam Wiseman, Stuart M Schieber, and Alexander M Rush. Learning neural templates for text
generation. arXiv preprint arXiv:1808.10122, 08 2018.

[26] Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, and Ruslan R Salakhutdinov. On
multiplicative integration with recurrent neural networks. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems
29, pages 2856–2864. Curran Associates, Inc., 2016.

[27] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen. Breaking the softmax
bottleneck: A high-rank rnn language model. arXiv preprint arXiv:1711.03953, 2017.

[28] Lei Yu, Jan Buys, and Phil Blunsom. Online segment to segment neural transduction. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
pages 1307–1316, Austin, Texas, November 2016. Association for Computational Linguistics.

10

	Introduction
	Formulating HMMs as Recurrent Neural Networks
	Model definition
	Inference

	Transforming an HMM towards an RNN
	Conditioning transition distribution on previous word
	Delayed softmaxes
	Sigmoid non-linearity

	Transforming an RNN towards an HMM
	HMM emission
	Softmax non-linearity
	Multiplicative integration

	Language Modeling Experiments
	Setup
	Results

	Syntactic Evaluation
	Related Work
	Conclusion

