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Abstract—Recent studies on optical flow typically focus on the
estimation of the single flow field in-between a pair of images
but pay little attention to the multiple consecutive flow fields in
a longer video sequence. In this paper, we propose an efficient
video optical flow estimation method by exploiting the temporal
coherence and context dynamics under a Kalman filtering system.
In this system, pixel’s motion flow is first formulated as a second-
order time-variant state vector, and then optimally estimated
according to the measurement and system noise levels within
the system by maximum a posteriori criteria. Specifically, we
evaluate the measurement noise according to the flow’s temporal
derivative, spatial gradient, and warping error. And we determine
the system noise based on the similarity of contextual informa-
tion, which is represented by the compact features learned by
pre-trained convolutional neural networks. The context-aware
Kalman filtering helps improve the robustness of our method
against abrupt change of light and occlusion/dis-occlusion in
complicated scenes. Experimental results and analyses on the
MPI Sintel, Monkaa and Driving video datasets demonstrate that
the proposed method performs favorably against the state-of-the-
art approaches.

Index Terms—Video Optical Flow, Kalman Filter, Temporal
Coherence, Convolutional Neural Networks

I. INTRODUCTION

THE estimation of optical flow, which describes the dense
correspondences occurred in dynamic scenes [1], has

been a challenging problem in computer vision. It serves
numerous related tasks including object tracking [2], video
segmentation [3], frame interpolation [4], and video compres-
sion [5], to name a few. To determine the optical flow field
in-between two sequentially captured images, considerable
research has been devoted in literature [1, 6–9].

Horn and Schunck [1] first formulate the optical flow
estimation with optimizing an energy function defined over
the optical flow field. The function includes a data term that
constrains brightness constancy of moving pixels and a spatial
term that regularizes the smoothness of flow fields. Based on
the variational framework [1], other techniques such as TV-L1
regularization [7, 10], coarse-to-fine architecture [7], feature
matching [11, 12] are proposed to improve the overall perfor-
mance of flow estimation. Besides these algorithms, with the
challenging datasets and quantitative evaluations [13, 14], sig-
nificant progress has been made ever since. On the Middlebury
benchmark [14], MDPFlow2 [12] and NNF-Local [15] are
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among the best methods for their near error-free performance.
However, it is noticeable that in this dataset, the sequences are
mostly indoor scenes and the typical motion is less than 10
pixels, which cannot cover actual scenes with large motions.

To motivate further research on challenging problems in op-
tical flow estimation, Butler et al. propose the MPI Sintel [16]
dataset by computer rendering. Compared to the Middlebury
dataset [14], this new dataset comes with long video sequences
that contain sufficient large displacements at an average of
about 20 pixels. It also incorporates motion blur, non-rigid
motion, specular reflections, and atmospheric effects to mimic
the complex natural scenes. To address these problems, new
approaches have been recently proposed [8, 17–21]. The
PatchMatch based algorithms [8, 17, 18] exploit the visual
correspondence by approximate nearest-neighbor fields [19]
for large displacement. The learning based methods, especially
the ones that use convolutional neural networks (CNNs), also
show effectiveness in dealing with correspondence matching
problems. FlowNet [20] trains deep CNNs that are supervised
by ground truth flow labels, and its successor FlowNet2.0 [21]
obtains comparable results with those of conventional varia-
tional optimization based algorithms.

Although consecutive image sequences are provided in the
MPI Sintel dataset, most of the existing approaches only use
every two of them as a pair to estimate a flow field in-
between. Consequently, the temporal correlation that motions
in a scene tend to be coherent over time is neglected. However,
it has been discovered that motion’s temporal coherence can be
profitable for estimating optical flow [22–24]. Volz et al. [25]
and Zimmer et al. [26] modeled temporal coherence for optical
flow in the variational framework. In Volz et al.’s method [25],
five image frames are utilized to make an estimation for the
flow field of the center one. Sun et al. [27] propose a layered
motion model where spatial smoothness and temporal coher-
ence are considered in segmentation for layers. They show that
image sequences with more frames are demanded to resolve
ambiguities in the layer’s ordering at occlusion boundaries.
Another work by Kennedy and Taylor [28] presents a temporal
information enhanced framework by using inertial estimates
of the flow.

In Figure 1, we make statistics for the optical flow fields
of the MPI Sintel dataset to explain the temporal coherence
in videos. In (a), the scatter points with plus sign markers
illustrate the correlation of velocity magnitudes between cur-
rent and next flow fields. The fitted line exhibits a positive
correlation between the temporally consecutive flow fields.
Furthermore, we look into the difference between consecutive
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flows, which represents acceleration. The fitted curve shown
in Figure 1 (b) inspires us that the second-order motion term
also contains temporal coherence though with higher noise
distraction. The reason why temporal coherence of motion
is rarely exploited in previous works may be summarized in
several aspects. First, more frames are required, and it will
lead to a complicated objective function based on the existing
framework [24, 25, 29]. As a consequence, the computational
cost for the numerical optimization of such objection function
is prohibitively high. Second, since the variational framework
has already penalized flow fields’ spatial smoothness, the tem-
poral coherence assumption will lead to the trade-off between
temporal and spatial terms. The last but not the least, large
displacements, abrupt changes might influence the temporal
correlations of flow fields and challenge the effectiveness of
the temporal coherence prior [30].

In this paper, we propose a novel method derived from our
early conference version [31] to exploit temporal coherence
towards robust and accurate optical flows for videos. The
proposed method contains substantial improvements in the
algorithmic enhancements on context-aware system noise, the
better performances on evaluated datasets, and the analysis
on parameter sensitivity. We refer to the new method as
KalmanFlow2.0 as distinguished from the previous Kalman-
Flow. In the proposed video flow estimation system, the
pixel’s motion flow is formulated as a second-order time-
variant state vector consisting of velocity and acceleration
components. The state vector can be predicted by the transition
process as suggested by previous states and also measured
by optimization on newly emerged video frames. Since the
prediction and measuring processes are noisy with outliers
due to the complicity of the real-world object motion, an
optimal estimation can be obtained by maximum a posteriori
criteria according to the measurement and system noise levels.
Specifically, the measurement noise covariance is evaluated
according to the flow’s temporal derivative, spatial gradient,
and warping error. Namely, we impose the temporal coherence
prior by introducing it into the measurement noise.

Furthermore, considering that there exist complicated scenes
such as abrupt change of light and occlusions/dis-occlusions
which violate the temporal coherence assumption, we intro-
duce a context-aware algorithm for determining the system
noise of our Kalman filter. By computing the contextual simi-
larity of pixel patches to adjust system noise level dynamically,
the temporal filters are able to recover from the inconsistency
of flow fields. The contextual information is extracted from the
learned features of convolutional neural networks, which fol-
lows the idea of the feature embedding in [32]. The network is
pre-trained to transform image patches into a compact feature
representation. It improves the robustness of our Kalman filter-
ing to the abrupt change of light and occlusion/dis-occlusion
in complicated scenes. Figure 2 presents the visual comparison
of the flow results by DFAuto [33], the proposed KalmanFlow
method, and the ground truth. The DFAuto algorithm is
recently proposed by Monzon et al. [33]. It is a variational
optimization based method that considers the regularization
strategy for discontinuity preserving. Our method is capable
of filtering out the flow outliers on the wall as well as the

(a) (b)

Fig. 1: Scatter and fitted plot of the absolute magnitudes of (a)
velocity and (b) acceleration on the MPI Sintel dataset [16].

occluded back of the head.
Comparing to the other optical flow estimation methods,

the contributions of this paper can be summarized from the
following aspects:

1) We model the motion with both velocity and accelera-
tion, and make use of the temporal coherence of video
sequences by the Kalman filtering tool for the optical
flow estimation. The proposed method is more accurate
and efficient than optimizing the classical multi-frame
objective variational function.

2) In our filtering system, the noise levels of measurements
are evaluated through the consideration of flow’s spatial
smoothness, temporal derivative, and pixel warping error.
And the system noise is designed according to the contex-
tual information extracted from the learned convolutional
neural networks. The seamless incorporation of these
factors into the temporal filtering system makes our
method more robust.

3) With extensive experiments, our approach is demon-
strated to be effective in generating temporally coherent
and quantitatively accurate results against the state-of-the-
art optical flow estimation methods. And it is noted that
the upcoming optical flow algorithms in the future may
also be readily plugged into our proposed framework for
better performances.

The remainder of this paper is organized as follows.
Section II discusses the mostly related works in literature.
Section III introduces the proposed Kalman filtering method,
including the preliminaries and the formulation of our Kalman
filtering system. Section IV gives details on the propagation
of the Kalman filter from frame to frame, the evaluation of
the measurement noise and the context-aware system noise.
Experiments and analyses are conducted in Section V and
conclusions are drawn in Section VI.

II. RELATED WORK

We introduce the mostly related works to the method in
this paper. The interested reader can refer to the literature by
Sun et al. [34] and Fortune et al. [30] for a full review of
optical flow estimation.

A. Variational Optimization

The variational optimization method is pioneered by Horn
and Schunck [1], and Lucas and Kanade [35]. It optimizes
an objective function that generally contains a data term and
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(a) Input images (b) DFAuto [33] (c) KalmanFlow (d) Ground Truth

Fig. 2: Illustration of the effectiveness of KalmanFlow.

a spatial term. The data term penalizes the warping error
specified by a flow field from the search space, while the
spatial term constrains the search space by using the prior
information such as the spatial smoothness of the flow field.
Other priors such as the object boundary are more likely to
be a motion boundary [36], or objects of a scene should be
classified into multiple layers [27] may also be engaged in the
literature. For instance, to preserve the motion discontinuity,
some studies adopt the gradient guided regularization for
the smoothness term [12]. The variational energy function is
often optimized by numerical algorithms such as the SOR
iterations [7]. We in this paper use the data term and spatial
term as indicators for the noise levels in our measurement
process. Besides, we introduce the temporal derivatives as
a new prior term for better temporal consistency in-between
consecutive flow fields.

B. Cost Volume Search

In contrast to the continuous optimization [7] of a vari-
ational framework, the discrete optimization based methods,
such as PatchMatch and cost volume search, assume integer
flow candidates to each pixel and perform an iterative pixel-
wise search for optimal vectors. As a representative of discrete
algorithms in recent years, the cost volume search approach
originated from the visual correspondence [37] is introduced
to optical flow estimation [32, 38]. FullFlow [38] presents
a global optimization method on the regular 2-dimensional
label space of flow fields and achieves state-of-the-art results.
DCFlow [32] implements a 4-dimensional cost-volume to
estimate optical flow. It calculates the cost through learned
feature representations of contextual patches. In contrast to
the normalized correlation cost in FullFlow [38], the learned
feature is not only robust geometric and radiometric distortions
but also helps to construct cost volume at a fast speed thanks to
its compact vectorized formulation. In the proposed Kalman
filtering system of this paper, we inherit the same spirit by
using the contextual similarity represented by learned features
to determine dynamic system noises.

C. Convolutional Neural Networks

Convolutional Neural Network (CNN) has stimulated a
growing interest in applying learning based methods to com-
puter vision tasks especially after its success on image clas-
sification [39]. DeepFlow [40] trains a CNN model for ex-
tracting the multi-stage features of patches that are blended
into a variational framework. PatchBatch [8] and FlowField-
sCNN [41] propose to extract CNN based image features
for the PatchMatch based methods [19]. FlowNet [20] and
FlowNet2.0 [21] make significant progress by showing that

with pure convolutional neural networks the optical flow can
be estimated at a comparable accuracy with the state-of-the-
art ones by non-learning based methods. It is also noted that
there are some semi-supervised [9] or unsupervised learning
methods [42–44]. However, the state-of-the-art performance
with neural networks is achieved by Sun et al. [45]. Their
method called as PWC-Net [45] outperforms all the other
methods on records according to the MPI Sintel Optical
Flow benchmark of its time. PWC-Net shows us that the
insights originated from classical methods including image
feature pyramid, frame warping, cost volume can be gracefully
combined with regular neural layers, which finally lead to a
compact end-to-end trainable network model. Our new method
KalmanFlow2.0 has some internal connections with PWC-Net
in that the image features and cost volume are considered.
But the difference lies in that we use these techniques in
a filtering process for more coherent optical flow fields in
temporal domain.

Several most recent works [46–49] also pay efforts to
employ the temporal coherence within deep learning or varia-
tional optimization frameworks. Ren et al. [46] train a network
to fuse the multiple pre-fetched optical flow fields into a new
one. Based on the pipeline in EpicFlow [36], Maurer and
Bruhn [47] propose the ProFlow algorithm that uses online
learning to make better predictions for unreliable estimations,
especially in the occluded area, and achieves the state-of-the-
art performance on Sintel benchmark [16]. Janai et al. [48]
apply unsupervised learning to explicitly reason about oc-
clusions within a multi-frame architecture. Directional priors
to the classical variational framework by Maurer et al. [49]
extend the two-frame approaches to the multi-frame domain.
Noticeably, all these four works above use three frames as
short term information source, as compared to our long term
utilization of frames via recursive Kalman filters.

III. PROPOSED METHOD

In this section, we present the framework of the proposed
video optical flow estimation method. We first start with
the conventional formulation of variational and cost volume
search frameworks that only considers brightness constancy
and temporal smoothness. And then we describe the proposed
Kalman filtering system that takes advantages of temporal
coherence.

A. Preliminaries

Variational Framework. Let I(t,x) : (T,Ω)→ R be a video
sequence, of which the temporal domain is T ⊂ Z and pixel’s
spatial domain is Ω ⊂ Z2. Flow field v(t, x) between every
two consecutive frames represents the motion vector of pixels
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Fig. 3: Flowchart of the proposed video optical flow estimation method. At time step t, we extract the context information
by extracting input frames’ convolutional features. With the posterior flow field and noise covariance of previous time step
t − 1, we calculate use the Prediction equations to provide a prior estimation of current flow field and evaluate the system
noise. Besides, with the given frame I(t) and I(t + 1), we use measuring tools that solve the energy function to obtain a
measurement flow field. The measurement noise is calculated according to the spatial smoothness, temporal coherence and
warping accuracy. We engage the Kalman Updating equations to obtain a posterior estimation of the flow field as well as its
posterior noise covariance. For the next time step t := t + 1, the above procedures will be recursively executed.

moving from t-th to t+1-th frame. To determine the 2-D
optical flow field v(t, x) := (u, v), an energy cost function is
minimized in a Horn-Schunck-type variational framework [1],

E(v) =
∑
x

Edata(x,v) + α
∑
x

Esmooth(x,v), (1)

where

Edata(x,v) := Φ(|I(t + 1,x + v)− I(t,x)|2), (2)

and
Esmooth(x,v) := Φ(|∇vu|2 + |∇vv|2). (3)

In the objective function, data term Edata(x,v) minimizes
pixel’s warping error pointed by v(t, x). And regularization
term Esmooth(x,v) is derived from the prior that motion fields
tend to be spatially smooth and is calculated according to
flow’s spatial gradient. α is a parameter tuning the balance be-
tween the two terms. The penalty function Φ(s) =

√
s2 + k2

(k is a small constant 0.001) is to avoid singularity problem.
By a continuous optimization such as SOR [7] of the function,
the flow field v(t, x) can be obtained.
Cost Volume Search. Another paradigm for estimating optical
flow is the discrete optimization of a high structured cost
volume. The cost volume is made up of the costs of the
integer flow vectors in a 2-dimensional search space. Typical
use of the pixel/patch difference as in equation (1) or the
normalized cross-corelation as in [38] may not be robust to
the visual appearance change of objects. Therefore, a more
compact and computationally efficient way is used by Xu [32]
and Sun [45]. They train a convolutional neural networks
to transform image patches (27 × 27) into a 64-dimensional
feature space so as to measure the patch distances in a more
compact Euclidean space. The CNN is trained to tell whether
a given pair of patches are similar or not according to their

transformed features. With the transformed pixel-wise features
of two images at time step t and t+ 1, the 4-dimensional cost
volume is evaluated by

C(x,v) = 1−
(
F(t,x)

)>(
F(t + 1,x + v)

)
(4)

where F(t,x) is the convolutional features of frame I(t,x).
A higher similarity of the features will lead to a smaller cost
value. With the cost volume constructed, a discrete energy
function over the integral flow candidates is established. It
takes the cost values as the data term of equation (1) and the
spatial smoothness between neighboring flow vectors. Finally,
the optical flow field can be estimated by discrete optimization
such as the SGM algorithm [32] of this regular cost volume
structure.

Though the variational framework [7, 28] and the cost
volume search [32, 45] are widely used in different literature,
both of them are essentially built on the similarity of data as
well as the spatial smoothness of the flow field. Meanwhile,
the flow field’s temporal coherence has been little studied
in literature [22, 23, 25, 50]. In this paper, with the help
of Kalman filtering tool, we propose to exploit the temporal
coherence to obtain video’s flow. The filtering process is
performed in a recursive way that only two video frames and
the predicted flow fields are required for each time step, which
makes our method efficient.

B. Kalman Filtering

Kalman filtering [51] is a high-efficiency optimal estimation
tool applied in many areas including auto control [52], signal
processing, etc. Particularly, in image/video processing, it
has also been widely adopted in object tracking [53, 54],
video error concealment [55], etc. For a time-variant dynamic
system, its state vector follows a transition function over time.
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To get the value of target state vector, a measuring process
is usually executed. The measurement result may be derived
from state vector directly or indirectly, which is formulated by
a measurement function. Since the transition and measuring
process are both noisy in real-world applications, the optimal
estimation of state vectors is required given its measurements
and transition process, which compose the idea of Kalman
filtering.

In our filtering system for flow field, a second-order approx-
imation for motion is adopted, i.e., motion is modeled as an
accelerated process. Thus, the state vector to be filtered for
each pixel location in our system is defined as

u(t) = [v(t),a(t)]>. (5)

We here omit the coordinate index x of velocity v(t, x) and
acceleration a(t, x) for convenience. Since previous works [22,
23] made use of temporal coherence only with a constant
assumption, we use an acceleration term for higher precision
of motion. This acceleration assumption for motion is also
implicitly adopted by [25] with a second-order regularization
for flow field. With an accelerated motion model, the state
vectors transited over time can be formulated by

u(t) =

[
v(t)

>

a(t)
>

]
=

[
v(t− 1)

>
+ a(t− 1)

>

a(t− 1)
>

]
, Au(t− 1) + ε(t)

(6)

where the transition matrix A is a 4 × 4 square matrix as[
1 1
0 1

]
⊗ I2, where ⊗ represents a Kronecker product

and In is an n-dimension identity matrix. By this transition
function, the horizontal and vertical component of motion
vectors are assumed to be independent. The system noise ε(t)
follows an independent identical Gaussian distribution with
covariance matrix Q(t).

Then, in the measuring process, the measurement vector is
directly derived from state vector.

w(t) = u(t) + η(t) (7)

Similarly, the noise term η(t) is assumed to be Gaus-
sian distributed with covariance matrix R(t). Measurement
of velocity vector v(t) in w(t) is obtained by solving the
energy function (1) by continuous or discrete optimization
algorithms that are off-the-shelf in literature. We compute the
acceleration vector a(t) through an indirect way. It is given by
a(t) = v(t) + vb(t) where vb(t) is backward motion vector
of t-th frame to t−1-th frame. Note that the backward velocity
is negatively proportional to time increasing direction, thus the
forward and backward velocity are summed up to approximate
the acceleration vector.

(a) 22-th of LDOF (b) 23-th of LDOF

(c) 23-th of KalmanFlow (d) 23-th of Groundtruth

Fig. 4: (a) and (b) are the 22-th and 23-th flow field generated
by LDOF [56] algorithm where outliers exist in various regions
including motion boudaries, flat areas, etc. (c) and (d) are the
23-th flow field generated by KalmanFlow and the groudtruth
flow.

According to the theory of Kalman filtering [51], the
prediction and updating equations can be derived.

Prediction :{
ū(t) = Aû(t− 1)

P̄ (t) = AP̂ (t− 1)A> +Q(t)

(8)

Updating :
K = P̄ (t)[P̄ (t) +R(t)]−1

û(t) = ū(t) +K[w(t)− ū(t)]

P̂ (t) = [I4 −K]P̄ (t)

(9)

In these equations, ū and û represent the prior and posterior
estimation for the state vector u, respectively. Correspondingly,
P̄ and P̂ are the prior and posterior noise covariances.
Prediction equations (8) calculate the predicted state vector
and its system noise covariance, while Updating equations (9)
fuse the prior prediction and measurement with maximum a
posteriori estimation of u according to the noise covariances.

By the above prediction and updating equations, for current
time step t, the filtering process is as follows. We first
obtain a prior estimation ū(t + 1) without I(t + 1) by the
prediction equations (8). Simultaneously, its noise covariance
P̄ (t + 1) is determined according to previous optimal esti-
mation’s noise covariance P̂ (t). Then, once given the frame
I(t + 1), we calculate the forward and backward optical flow,
and a measurement w(t) can be obtained. We then evaluate
its noise by some criterion to get R(t). By determining a
Kalman Gain K according to P̄ (t) and R(t), the posterior
estimation û(t + 1) of time step t is obtained. The whole
process of KalmanFlow2.0 is illustrated in the Figure 3. Figure
4 (a) and (b) illustrate two consecutive flow fields by LDOF
algorithm [56]. Figure 4 (c) and (d) illustrate the results of
KalmanFlow and the ground truth. The outliers on the moving
head and underarm are eliminated by KalmanFlow.

IV. IMPLEMENTATION DETAILS

In the Kalman filtering process, three issues are critical to
the solution of the optimal estimation. The first issue is how
we get the previous estimations so as to keep a continuous
tracking of the same object. Another issue lies in that the
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evaluation of measurement and system noise plays a significant
role in balancing the prediction and measurement. Moreover,
the third issue is that how we keep a robust estimation
for complicated scenarios including abrupt change of light,
occlusion/dis-occlusion, etc.

A. Propagation of Kalman Filters

In the filtering system, we assign each pixel location a
Kalman filter to do the optimal estimation correspondingly.
When it comes to a new time step, due to the object motions,
these filters should also be propagated to their new locations so
as to maintain the historical information for correct estimation.
These information includes the previous optimal state vector
and its posterior noise covariance. However, the problem is
that there may exist occlusions and dis-occlusions near motion
boundaries. Hence, we need to drop off the filters for those to-
be-occluded pixel locations and initialize new filters for newly
emerged object pixels.

Given flow field v(t, x) of time t, the Kalman filters will
propagate to their new locations at y = x + v ∈ Ωt+1. The
subscript t + 1 for Ω represents a new coordinate space of time
step t + 1. However, because of non-translational motion or
occlusion, multiple pixels may propagate to a same location.
Denote that set S(y) = {xi : xi + vi = y,∀xi ∈ Ωt,y ∈
Ωt+1} contains pixels of xi mapped to the same location y.
The unique active pixel in set S(y) that will not be occluded
is determined by

A(y) = {x? = arg min
xi∈S(y)

Edata(xi,vi)} (10)

Here, we use the data term Edata(xi,vi) to decide which filter
will win over others and is active in next frame. Then, the
propagated Kalman filter for each pixel location y ∈ Ωt+1

is chosen from A(y). For the location that have no previous
Kalman filter, namely S(y) = ∅ and A(y) = ∅, a fresh
new Kalman filter will be initialized as needed. The initialized
filter will set its noise covariance of prior estimation ū(t) to
be infinite, namely P̄ (t) = inf , representing that the prior
estimations are untrusted.

B. Temporal Coherence Enhanced Measurement Noise

Since Kalman filter is a recursive optimal filter, the quality
of results is highly dependent on the estimation of measure-
ment noise η(t) and system noise ε(t). For the measurement
noise η(t), a straightforward idea may come to mind that it is
correlated with flow field’s data term and smoothness term
as used in the energy function (1). However, the methods
minimizing the two terms may occasionally produce incorrect
motion vectors but with low cost. And it is also found that
these outliers do not occur at the same location because they
are mainly caused by the complex motions, the local minimum
in energy optimization, etc. Thus, we propose a temporal
coherence term to enhance the evaluation of vector’s noise.

In our method, the pixel-wise noise variance for a flow field
v is given as follows,

σ2(x,v) = C − exp−γEdata(x,v) − expβEsmooth(x,v)

− exp−τEtemporal(x,v).
(11)

Algorithm 1 The KalmanFlow 2.0 for Video Sequences

Input: The input video sequence {I(t) : t ∈ (1,T)}.
1: for t = 1 to T− 1 do
2: if t = 1 then
3: Initialize P̄ (t) = inf .
4: Initialize ū(t) = 0.
5: else
6: Compute ū(t).
7: Compute Q(t) by equation (14) or (15).
8: Compute P̄ (t) by equations (8).
9: end if

10: /*Calculation for current time step*/
11: Compute w(t) by solving equation (1).
12: Compute R(t) by equation (13).
13: Compute û(t) and P̂ (t) by equations (9).
14: /*Preparation for next time step*/
15: Propagate filters according to equation (10).
16: end for
Output: Video’s optical flow {û(t) : t ∈ (1,T)}.

(a) (b)

(c) (d)
Fig. 5: Illustration of the (a) first main component of mea-
surement noise R(t), (b) first main component of prediction
noise P̄ (t), (c) measurement optical flow by DCFlow and (d)
optimal estimation by KalmanFlow2.0.

In this equation, the noise is related to three terms, in-
cluding warping error Edata(x,v), spatial smoothness error
Esmooth(x,v) and temporal coherence error Etemporal(x,v).
They are fused by coefficient γ, β and τ . The constant C is set
to 3.0, constraining the noise variance to the range of 0.0 and
3.0. Moreover, the temporal coherence term Etemporal(x,v)
is given by

Etemporal(x,v) = Φ(||v(t, x)− v′(t, x)||2), (12)

where v′ is the propagated flow vector of previous time step,
i.e., v′(t,x) = v(t− 1,xj + vj), similar to the propagation of
filters in Section IV-A. When the noise covariances of v and
vb are calculated, the measurement noise R(t) is obtained by

R(t) = diag
(
σ2(x,v), σ2(x,vb) + σ2(x,v)

)
⊗ I2, (13)

where diag(·) is the operator to compose a diagonal matrix
with given elements.
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C. Context-Aware System Noise

Generally, the system noise covariance matrix Q can be set
as a constant matrix,

Q = κI4, (14)

where we empirically set κ to a small constant κ = 0.001. For
most cases where motion keeps a good continuity, this constant
assumption for the system noise covariance is reasonable.

In the recent benchmarks [16], optical flow estimation is
faced with challenges like large displacement, appearance
change and occlusion/dis-occlusion. To make the Kalman filter
robust to these challenges, we propose to adaptively adjust the
filter according to the cost of the predicted flow. We inherit
the evaluation of the cost volume that extract the contextual
information to determine the system noise. Specifically, the
constant parameter κ in equation (14) is replaced with a
context-aware factor κ(t), leading to a time-variant system
noise as follows:

Q(t) = κ(t)I4

=
(
1− exp−C(x,v̄)

)
I4,

(15)

where the v̄ is extracted from the predicted state vector ū.
When contexts between the pixel x of step t and x+ v̄ of step
t+1 change sharply, a large cost value C(x, v̄) of the predicted
optical flow vector is obtained. Consequently, we get a large
system noise covariance Q(t). The prior noise covariance P̄ (t)
will grow large if the previous Q(t) has been consistently
high in the past time steps. Thus according to the calculation
of Kalman Gain K in the Updating equations (9), the filter
will get optimal estimation closer to the measurement result.
Inversely, when the variation of context correlation is low, κ(t)
will keep at a small value, so that the flow field will be refined
with high reliability. We list the detailed procedures of the
proposed method in Algorithm (1).

We present an example in Figure 5 for a visualized concept
of the measurement and prediction noise. It is noticed that for
most areas, both the measured and predicted flow fields are
satisfying. However, for the occluded areas such as the static
background above the moving arm, the cost volume search
algorithm cannot generate good results. But according to the
history information that the background is mostly static, the
predicted optical flow is more accurate than the measured one.
Finally, the outliers for the static background will be corrected
in the optimal estimation.

V. EXPERIMENTAL RESULTS

In recent years, the most popular datasets to evaluate optical
flow algorithms are Middlebury [14], KITTI [57], and MPI
Sintel [16]. Among the three datasets, we use the MPI Sintel
that provides video sequences of various scenes including
large motions, specular reflections, motion blur, etc. In this
dataset, the Clean pass is rendered with shading effect but
no image degradations, whereas the Final pass additionally
includes motion blur, defocus blur, and atmospheric effects.

We evaluate our methods against eight different optical
flow estimation algorithms. First of all, the DFAuto [33]
algorithm is a variational optimization based method that con-
siders the regularization strategy for discontinuity preserving.

Then, three remarkable algorithms aimed at resolving large
displacements including MDP-Flow2 [12], LDOF [56], and
SIFTflow [11] are also brought in for comparisons. Besides,
the adopted EpicFlow [36] calculates the dense flow field by
edge-preserved interpolation of the sparse field initialized by
feature descriptors, while FullFlow [38] optimizes the classi-
cal flow objective over the full space of mappings between
discrete grids without the use of descriptors. We also use the
DCFlow [32] and PWC-Net [45], both of which are the recent
state-of-the-art algorithms on the MPI Sintel benchmark.

For each of these eight algorithms, the KalmanFlow or
KalmanFlow2.0 filtering process is implemented as follows.
By the provided source codes of the algorithms including
FullFlow [38], MDPFlow2 [12], LDOF [56], SIFTFlow [11],
EpicFlow [36], DFAuto [58], DCFlow [32], and PWC-
Net [45], initial measurements of the flow fields for video
sequences are obtained. Then we perform Kalman filtering
on these measurements and denote the filtered results as
MDPFlow2+KF (KF is short for KalmanFlow), LDOF+KF,
SIFTFlow+KF, EpicFlow+KF, DFAuto+KF, DCFlow+KF,
and PWC-Net+KF. We implement the KalmanFlow2.0 on
DCFlow [32] and PWC-Net [45] to make full understandings
of how contextual information for dynamic system noise
helps improve the robustness of filtering. We note them as
DCFlow+KF2 and PWC-Net+KF2 respectively. The control-
ling parameters required by KalmanFlow and KalmanFlow2.0
are kept the same for all baseline algorithms and evaluated
datasets. In the evaluation of flow field’s noise by equation
(11), parameter γ, β, and τ are set to 0.1, 0.30, and 0.02
respectively. The parameter sensitivity will be discussed in
the subsection V-D.

All the experiments are performed on a machine with Intel
Core i7 3.5GHz CPU and 32GB RAM. On average, for
each image pair (1024 × 436) in MPI Sintel dataset, our
KalmanFlow2.0 implemented with Matlab consumes about 20
seconds. The speed of Kalman filtering can be much faster
thanks to its full parallelism of pixel-wise filters.

A. Effectiveness of KalmanFlow

Table I and II present quantitative results on the TEST
and TRAINING set of the MPI Sintel benchmark respectively.
We use the EPE (EndPoint Error) to evaluate the quantitative
performance of optical flow estimation. A smaller EPE value
represents better performance. The tables list six different
pixel regions of the average EPE for all (all pixels), non
(non-occluded pixels), occ (occluded pixels), d0-10 (within
10 pixels of an occlusion boundary) and s40+ (displacements
larger than 40 pixels).

In Table I, for all the variational based algorithms such as
MDPFlow2, LDOF, and SIFTFlow, the improvement of our
KalmanFlow is significant. The improvements on EPE for all
pixel regions of the three algorithms are about 0.4 ∼ 0.6
in Final pass, and 0.1 ∼ 0.9 in Clean pass. For particular
pixel regions such as non and occ, the improvements are also
evident between 0.1 ∼ 1.0 and 0.5 ∼ 2.0 respectively. Overall,
our KalmanFlow can effectively improve the performance of
baseline algorithms. Meanwhile, we notice that there are cases
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TABLE I: AVERAGE ENDPOINT ERROR OF DIFFERENT ALGORITHMS ON THE MPI SINTEL TEST SET. all = OVER THE
WHOLE IMAGE. noc = NON-OCCLUDED PIXELS. occ = OCCLUDED PIXELS. d0-10 = WITHIN 10 PIXELS OF AN OCCLUSION
BOUNDARY. s40+ = DISPLACEMENTS LARGER THAN 40 PIXELS.

TEST set
Final pass Clean pass

all non occ d0-10 d10-60 s40+ all non occ d0-10 d10-60 s40+

FullFlow+KF 5.802 2.761 30.58 4.866 2.438 35.51 3.598 1.247 22.77 2.957 0.977 21.21
FlowFields [18] 5.810 2.621 31.79 4.851 2.232 33.89 3.748 1.056 25.70 2.784 0.878 23.60
FullFlow [38] 5.895 2.838 30.79 4.905 2.506 35.59 3.601 1.296 22.42 2.944 1.023 20.61

MDPFlow2+KF 8.078 3.938 41.78 5.642 3.691 49.31 5.711 1.842 37.20 3.370 1.846 39.39
MDPFlow2 [12] 8.445 4.150 43.43 5.703 3.925 50.50 5.837 1.869 38.15 3.210 1.913 39.45

LDOF+KF 8.751 4.298 44.99 6.086 4.084 54.83 6.592 2.449 40.30 4.248 2.351 44.25
LDOF [56] 9.116 5.037 42.34 6.849 4.928 57.29 7.563 3.342 41.17 5.353 3.284 51.69

SIFTFlow+KF 9.317 4.527 48.30 6.366 4.405 60.48 8.280 3.524 46.96 5.511 3.554 58.25
SIFTFlow [11] 9.941 4.987 50.34 7.164 4.791 61.53 8.898 4.008 48.85 6.490 3.943 58.95

TABLE II: AVERAGE ENDPOINT ERROR OF DIFFERENT ALGORITHMS ON THE MPI SINTEL TRAINING SET.

TRAINING set
Final pass Clean pass

all non occ d0-10 d10-60 s40+ all non occ d0-10 d10-60 s40+

FullFlow+KF 3.744 2.229 22.97 3.820 1.894 26.78 2.456 1.166 18.83 2.559 0.836 18.38
FullFlow [38] 3.816 2.273 23.41 3.837 1.947 26.96 2.498 1.184 19.17 2.533 0.868 18.34

EpicFlow+KF 3.708 2.235 22.39 3.917 1.884 26.19 2.220 0.994 17.78 2.505 0.578 14.69
EpicFlow [38] 3.760 2.266 22.72 3.956 1.916 26.19 2.263 1.009 18.18 2.540 0.585 14.64

MDPFlow2+KF 5.266 3.229 31.12 4.649 2.814 36.27 3.065 1.331 25.07 2.811 1.020 21.38
MDPFlow2 [12] 5.728 3.468 34.40 4.827 3.091 37.62 3.299 1.376 27.70 2.749 1.117 22.23

LDOF+KF 5.149 3.067 31.57 4.877 2.650 35.47 3.375 1.587 26.07 3.334 1.175 23.56
LDOF [56] 6.205 3.595 39.34 5.702 3.124 39.41 4.099 1.944 31.45 4.013 1.423 26.31

SIFTFlow+KF 5.373 3.140 33.71 5.240 2.830 39.13 4.389 2.389 30.71 4.381 1.954 33.30
SIFTFlow [11] 5.943 3.543 36.41 5.890 3.154 40.59 4.959 2.728 33.27 5.071 2.284 34.59

DFAuto+KF 7.004 4.827 34.63 7.220 4.734 56.15 6.677 4.481 34.54 7.099 4.442 56.63
DFAuto [33] 7.375 5.084 36.45 7.705 4.977 57.16 7.021 4.700 36.48 7.530 4.625 57.47

FullFlow MDPFlow2 EpicFlow DFAuto

FullFlow+KF MDPFlow2+KF EpicFlow+KF DFAuto+KF

Ground Truth Ground Truth Ground Truth Ground Truth

Fig. 6: Visual comparison of different algorithms on the MPI Sintel TRAINING set. The flow fields from left to right are from
alley 1, market 2, temple 2 and bandage 1 respectively.

when the results are worsening by KalmanFlow. For example,
the occ region of Final pass by LDOF and LDOF+KF are
42.34 and 44.49. This problem is mainly due to the long-
term error of some large displacements in complex scenes.
However, it does not affect the overall advantage of Kalman-
Flow. The non region by the two methods are 5.037 and 4.29
respectively, and the result for all region are 9.116 and 8.751,

demonstrating that our algorithm can provide better flow fields.

Moreover, the FullFlow are improved by KalmanFlow since
the Final pass in all region is refined from 5.895 to 5.802. The
margin 0.093 may not be as large as what KalmanFlow has
achieved over MDPFlow2, but it helps the FullFlow algorithm
outperform FlowFields [18]. The reason is that with EPE
getting closer to zeros, the improvement of it becomes difficult.
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FullFlow LDOF MDPFlow2 SIFTFlow

FullFlow+KF LDOF+KF MDPFlow2+KF SIFTFlow+KF

Fig. 7: Visual comparison of different algorithms on the MPI Sintel TEST set. The flow fields from left to right are from
bamboo 3, cave 3, market 1 and PERTURBED market 3 respectively.

TABLE III: AVERAGE ENDPOINT ERROR OF DCFLOW WITH OR WITHOUT THE PROPOSED KALMANFLOW AND KALMAN-
FLOW2.0 ALGORITHMS ON THE MPI SINTEL TRAINING AND TEST SET.

Dataset Method
Final pass Clean pass

all non occ d0-10 d10-60 s40+ all non occ d0-10 d10-60 s40+

TRAINING
DCFlow+KF2 3.249 1.842 21.09 3.409 1.478 22.02 2.069 0.881 17.15 2.263 0.498 14.10
DCFlow+KF 3.382 1.866 22.61 3.450 1.500 23.04 2.256 0.983 18.41 2.360 0.631 14.65
DCFlow [32] 3.353 1.899 21.81 3.473 1.528 22.31 2.114 0.908 17.42 2.263 0.526 13.88

TEST
DCFlow+KF2 5.067 2.195 28.47 4.652 1.948 29.57 3.645 1.149 23.99 3.037 0.932 22.86
DCFlow+KF 5.120 2.245 28.55 4.747 1.981 29.51 3.585 1.142 23.50 3.036 0.921 22.20
DCFlow [32] 5.119 2.283 28.22 4.665 2.108 29.35 3.537 1.103 23.39 2.897 0.868 21.29

TABLE IV: AVERAGE ENDPOINT ERROR OF PWC-NET WITH OR WITHOUT THE PROPOSED KALMANFLOW AND KALMAN-
FLOW2.0 ALGORITHMS ON THE MPI SINTEL TRAINING AND TEST SET.

Dataset Method
Final pass Clean pass

all non occ d0-10 d10-60 s40+ all non occ d0-10 d10-60 s40+

TRAINING
PWC-Net+KF2 2.275 1.326 14.32 2.789 0.988 14.76 1.749 0.881 12.76 2.23 0.475 11.35
PWC-Net+KF 2.357 1.331 15.38 2.799 0.992 15.55 1.830 0.884 13.84 2.244 0.476 12.15
PWC-Net [45] 2.302 1.367 14.16 2.858 1.020 14.64 1.814 0.956 12.70 2.375 0.535 11.30

TEST
PWC-Net+KF2 4.979 2.430 25.78 4.571 2.078 30.35 3.753 1.588 21.44 3.657 1.298 24.70
PWC-Net+KF 4.964 2.438 25.56 4.603 2.066 30.46 3.850 1.595 22.27 3.664 1.302 25.28
PWC-Net [45] 5.042 2.445 26.22 4.636 2.087 31.07 4.386 1.719 26.16 4.282 1.657 28.79

Ground Truth DCFlow DCFlow+KF DCFlow+KF2

Input Overlay DCFlow Error DCFlow+KF Error DCFlow+KF2 Error
Fig. 8: Visual comparison on the 18-th optical flow field of shaman 2 sequence.

We note that the EPEs of the top-ranked methods are very
close to each other. More results for the TRAINING set of MPI
Sintel are provided in Table II. The EpicFlow and DFAuto are
added to assess the KalmanFlow’s capability further. In this
table, almost all of the pixel regions by the six algorithms gain
improvements from KalmanFlow.

Figure 6 and 7 depict some of the visual images of coded
optical flow. In brief, the tones of the coded flow field image
represent the directions of motions, and the saturations are for

magnitudes of the motions. In Figure 6, some estimated flow
fields in the TRAINING set of MPI Sintel is provided. The
four flow fields of the first row are generated by FullFlow,
MDPFlow2, EpicFlow, and DFAuto. The second and third
rows are KalmanFlow’s results and the ground truth respec-
tively. It can be found that outliers frequently occur around
motion boundaries, but can be robustly eliminated or mitigated
by KalmanFlow. The incorrect motions of occluded regions
can be refined by the predictive nature of Kalman filter. And
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Ground Truth DCFlow DCFlow+KF DCFlow+KF2

Input Overlay DCFlow Error DCFlow+KF Error DCFlow+KF2 Error
Fig. 9: Visual comparison on the 24-th optical flow field of temple 2 sequence.

Ground Truth PWC-Net PWC-Net+KF PWC-Net+KF2

Input Overlay PWC-Net Error PWC-Net+KF Error PWC-Net+KF2 Error
Fig. 10: Visual comparison on the 48-th optical flow field of a rain of stones x2 sequence from the Monkaa dataset [59].

TABLE V: AVERAGE ENDPOINT ERROR ON THE MONKAA
AND DRIVING DATASETS.

Method
Monkaa Driving

Clean Final Clean Final

PWC-Net+KF2 2.804 3.319 11.92 12.66
PWC-Net+KF 2.827 3.485 12.24 12.81
PWC-Net [45] 3.077 3.508 12.92 13.72

the performance in occ column of Table II and Table I also
validates this improvement.

Figure 7 shows the results of bamboo 3, cave 3, mar-
ket 1 and PERTURBED market 3 from the TEST set, without
ground truth flow fields that are reserved for benchmark-
ing though. Similarly, the first row illustrates the results of
existing methods while the second row provides results by
KalmanFlow. In the first column of bamboo 3, the flow at
the boundary of the right bamboo tree is affected by the
shadow effect. However, KalmanFlow can recover it from
filter’s previous estimations, thus producing a satisfactory flow
field. The rest three columns in Figure 4 also shows the
advantage of KalmanFlow, such as the area over the head of
the girl in cave 3, the leg of the running girl in market 1.

B. Effectiveness of Context-Aware KalmanFlow2.0

Our improved method KalmanFlow2.0 dynamically adjusts
the system noise according to the contextual similarity of
neighboring frames. The quantitative results for DCFlow+KF2
and PWC-Net+KF2 are presented in Table III and IV. The

DCFlow+KF generally performs slightly inferior to the orig-
inal DCFlow method. For example, on the Final pass of the
TRAINING set, DCFlow has an EPE of 3.353 for all region
while DCFlow+KF gets higher error of 3.382. When we look
into the occ and non regions, the problems turns out that the
occluded regions are not well filtered by our KalmanFlow
method that it deteriorate the EPE from 21.81 to 22.61. Similar
phenomenon can be found in the Clean pass of the TRAINING
set. However, when we perform the context-aware Kalman
filtering for optical flow, we make substantial improvements in
both the occluded and non-occluded regions. The EPEs of occ
and non regions are reduced from 21.81 to 21.09 and 1.899 to
1.842 respectively. Other regions such as d0-10, d10-60, s40+
are also refined. Consequently, KalmanFlow2.0 improves the
all region of TRAINING set’s Final pass from 3.353 to 3.249.
In the Final pass of TEST set, DCFlow+KF2 also reduces the
EPE of all region from 5.119 to 5.067.

We find that this phenomenon is caused by that when the
occluded regions undergo an abrupt change of local context,
the filters are usually not suitable to be adapted to make
prior estimation for the upcoming time steps. In such cases,
it is better to reduce the contributions of the prior estimation.
Kalman filtering is intrinsically able to adjust the system noise
level as needed. The patches containing contextual information
are represented with learned image features that are compact
and invariant to the visual appearance. We show the visual
images of the typical cases in Figure 8 and 9 to explain
this phenomenon in an intuitive way. Figure 8 shows a man
with heavy beard moving his head, the KalmanFlow and
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1-st

2-nd

3-rd

4-th

5-th

Ground Truth DCFlow DCFlow+KF2 Ground Truth DCFlow DCFlow+KF2

Fig. 11: Visual comparisons on the 1-st to 5-th optical flow field of alley 1 sequence.

KalmanFlow2.0 can both filter out some of the outliers near
the eyebrow (in the enlarged cyan box). But the outliers near
the beard (in the enlarged red box) are not well eliminated
by KalmanFlow. It’s due to that the changed textures in the
dark light are not well distinguished by KalmanFlow. But with
the context information used in KalmanFlow2.0, the outliers
are recognized and can be removed significantly. Similar cases
are found in Figure 9, where the regions near the waving wing
are taken good care of by the proposed context-aware Kalman
filters.

We note that on the Clean images of the MPI Sintel TEST
set, the DCFlow enhanced with our KF method performs
inferior to original results. While we aim to maintain a
unified Kalman filtering framework for all baseline algorithms
and datasets, the controlling parameters including the γ for
warping error, β for spatial smoothness and τ for temporal
coherence are set to be fixed. However, the different rendering
effects in Final and Clean passes may require us to give
various settings for their best performances. Another intuition
for the performance loss might be due to that the optimal
parameter setting tuned on the TRAINING set may not works
best for the TEST set because there exists a mismatch of the
data distribution between the two sets, which has also been
indicated by Mayer et al. [59]. We carry out experiments

on the Monkaa, and Driving dataset [59] and present the
quantitative results in the Table V. Moreover, we add Figure 10
to show the qualitative comparisons on the Monkaa dataset.
Our method can remove some of the outliers in the estimated
flow fields of this dataset. It shows the effectiveness of our
approach for the other benchmarks with multi-frame optical
flow annotations.

C. Video’s Optical Flow Fields

We present a comprehensive comparison of the multiple
consecutive flow fields processed by our methods. In Fig-
ure 11, there are optical flow fields from 5 consecutive time
steps in the alley 1 sequence. Each row represents a time
step correspondingly. At t = 1, namely in the first row, both
DCFlow and KalmanFlow2.0 generate some outliers above
the head (in red box) and behind the arm (in cyan box).
Since the KalmanFlow2.0 filters are initialized at this time step
and take no prior information, the outliers are not removed.
The enlarged views of the two regions are shown in the
4-th to 6-th column. Then at t = 2, DCFlow generates
fewer outliers behind the arm, while our KalmanFlow2.0
eliminates them more thoroughly. For the outliers above the
head, KalmanFlow2.0 also exclude them substantially. At time
step t = 3, 4, 5, KalmanFlow2.0 produces better results than



1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2019.2903656, IEEE
Transactions on Image Processing

12 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

1 2 3 4 5
time step

0.08

0.1

0.12

0.14

0.16

0.18

0.2
E

PE
DCFlow
DCFlow+KF2

1 2 3 4 5
time step

0

0.02

0.04

0.06

0.08

0.1

E
PE

Improvement by KF2

(a) (b)

1 2 3 4 5
time step

0

0.2

0.4

0.6

0.8

E
PE

DCFlow
DCFlow+KF2

1 2 3 4 5
time step

0

0.2

0.4

0.6

0.8

E
PE

Improvement by KF2

(c) (d)
Fig. 12: The performance improvement by KalmanFlow2.0
that exploits temporal coherence. (a) and (c) presents the
results of DCFlow and DCFlow+KF2 on the tracked regions
of alley 1. (b) and (d) presents the improvements made by
KF2.

TABLE VI: ENDPOINT ERROR WITH DIFFERENT PARAME-
TER SETTINGS ON THE LDOF+KF2 ALGORITHM.

Parameters EPE

γ β τ all non occ

0.1 0.04 0.06 4.5953 1.9673 27.3986

0.1 0.04 0.18 4.7426 2.1168 27.5267

0.1 0.12 0.02 4.5697 1.9260 27.5094

0.1 0.12 0.06 4.6083 1.9662 27.5335

0.1 0.12 0.18 4.7137 2.0745 27.6146

0.1 0.30 0.02 4.5651 1.9096 27.6072

0.1 0.30 0.06 4.5712 1.9251 27.5319

0.1 0.30 0.18 4.6362 1.9839 27.6515

0.2 0.12 0.02 4.5832 1.9195 27.6962

0.2 0.12 0.06 4.6091 1.9524 27.6622

0.2 0.12 0.18 4.6917 2.0469 27.6413

0.2 0.30 0.02 4.5878 1.9057 27.8609

0.2 0.30 0.06 4.5919 1.9163 27.8087

0.2 0.30 0.18 4.6309 1.9635 27.7771

LDOF 5.9216 2.3004 37.3438

the original DCFlow method. The advantage is attributed to the
use of temporal coherence, with the prior information passed
from the past time steps, the outliers occurred behind the arms
and the head is corrected effectively.

For the two regions in red and cyan boxes, we plot graphs to
illustrate their EPEs with respect to time in Figure 12 (a) and
(c). We also show the improvements made by KF2 across time
in (b) and (d). With time increasing and more frames being
captured, the performance improvements by our Kalman filter
are becoming substantial and stable.

D. Parameter Sensitivity Analysis

We conduct experiments to test the parameter sensitivity
in our KalmanFlow2.0. Since γ, β and τ balance the data
warping error, spatial gradient and temporal derivative in the
evaluation of noise variance, different settings are studied.
Table VI presents some of the results based on the sequences
of alley 1, ambush 2 and market 6 in the Clean set. And
LDOF [56] algorithm is chosen as the measuring tool for
Kalman filters. The three sequences have various motions such
as small and large displacements, global motions which enable
them to be good representatives for the whole set.

From this table, we find the variation of parameter γ (0.1
to 0.2) for the data term has little effect on the EPE. By
contrast, EPE is more sensitive to the parameter β and τ . A
smaller τ tends to give better results on occ pixel regions
while larger β is beneficial for the non pixel regions. As
highlighted in the table, the best result is obtained for all
pixel regions when γ = 0.1, β = 0.30, τ = 0.02. Overall,
by the given parameter settings that have been examined, the
EPE changes within 0.2 pixels for all pixel regions and is
overall lower than the baseline LDOF algorithm. The proposed
KalmanFlow2.0 is robust to different parameter settings in a
reasonable range. However, it is also noticed that with different
baseline measurement methods and datasets, these parameters
have to be adjusted to reach best performances.

VI. CONCLUSIONS

In this paper, we propose a novel optical flow estimation
framework for video sequences. It employs the temporal
coherence in videos through Kalman filtering. The proposed
KalmanFlow and the context-aware KalmanFlow2.0 can im-
prove existing state-of-the-art optical flow algorithms. In the
evaluation for the flow field’s noise, we introduce the temporal
derivative term besides data and spatial smoothness terms,
enabling the Kalman filter to produce more consistent results
in time domain. We use the context-aware system noise to
make the Kalman filters robust to the abrupt change and
occlusion/dis-occlusions. We demonstrate that not only the
variational framework based algorithms but also the recent
state-of-the-art deep learning based ones can benefit from this
temporal coherence prior.
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