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Abstract

The need for finding a set of plans rather than one has been
motivated by a variety of planning applications. The prob-
lem is studied in the context of both diverse and top-k plan-
ning: while diverse planning focuses on the difference be-
tween pairs of plans, the focus of top-k planning is on the
quality of each individual plan. Recent work in diverse plan-
ning introduced additionally restrictions on solution quality.
Naturally, there are application domains where diversity plays
the major role and domains where quality is the predominant
feature. In both cases, however, the amount of produced plans
is somewhat an artificial constraint, and the actual number has
little meaning.
Inspired by the recent work in diverse planning, we propose
a new computational problem called top-quality planning,
where solution validity is defined through plan quality bound
rather than an arbitrary number of plans. Switching to bound-
ing plan quality allows us to implicitly represent sets of plans.
In particular, it makes it possible to represent sets of valid
plan reorderings with one plan. We formally define the cor-
responding computational problem and present the first plan-
ner for that problem. We empirically demonstrate the superior
performance of our approach compared to a top-k planner-
based baseline, ranging from 49% increase in coverage for
finding all optimal plans to 69% increase in coverage for find-
ing all plans of quality up to 120% of optimal plan cost.

1 Introduction
While the main focus in classical planning was on producing
a single plan, a variety of applications has shown the need
for finding a set of plans rather than one. These applications
include malware detection (Boddy et al. 2005), plan recog-
nition as planning and its applications (Riabov et al. 2015;
Sohrabi, Riabov, and Udrea 2016; Sohrabi et al. 2018;
Shvo, Sohrabi, and McIlraith 2018), human team planning
(Kim et al. 2018), explainable AI (Chakraborti et al. 2018),
re-planning and plan monitoring (Fox et al. 2006).

The problem of finding a set of plans is studied in the con-
text of both diverse planning (e.g., Nguyen et al. 2012) and
top-k planning (e.g., Katz et al. 2018). Diverse planning fo-
cuses on the difference between pairs of plans, evaluating
a set of plans by aggregating over the pairwise differences
between plans in the set. Recent work in diverse planning
introduced additional restrictions on solution quality, requir-
ing each plan in the set to also be of bounded quality (Vad-

lamudi and Kambhampati 2016; Katz and Sohrabi 2019).
Top-k planning is a generalization of cost-optimal planning.
The focus of top-k planning is on the quality of each indi-
vidual plan, guaranteeing that no plan of better cost exists
outside the solution of a requested size.

Naturally, there are application domains where diver-
sity plays the major role and domains where quality is the
predominant feature. The latter include plan recognition
(Sohrabi, Riabov, and Udrea 2016), multi-agent plan recog-
nition (Shvo, Sohrabi, and McIlraith 2018), human team
planning (Kim et al. 2018), and explainable AI (Chakraborti
et al. 2018). These applications exploit top-k planners to
derive a large number of plans. In these domains, though,
the focus on the number of plans provided is somewhat
artificial, and is intended solely to ensure that a sufficient
number of plans is found. Further, ordering of actions in
a plan can be of less importance in some applications.
Plan recognition is one such example application. In plan
recognition as planning (Sohrabi, Riabov, and Udrea 2016;
Shvo, Sohrabi, and McIlraith 2018), a planning task con-
sists of actions that explain/discard observations. There is
no meaning to the order among these actions. Some spe-
cific practical applications for plan recognition are hypoth-
esis generation (Sohrabi et al. 2016) and scenario planning
advisor (Sohrabi et al. 2018). These applications use a top-k
planner with a large bound on the number of required plans
k, and the obtained plans are post-processed to discard re-
orderings and cluster similar plans. This would also apply
to e.g., problems with actions that correspond to informa-
tion gathering, where no particular ordering is required. The
clear disadvantage of a top-k planner in such cases is that it
would generate all possible orderings before proceeding to
plans of a higher cost. Thus, the number of required plans
used in practice is often a crude over-approximation. Fur-
ther, even quite large numbers are often not sufficient to en-
sure that the set of plans includes enough plans of interest,
since plans can easily have millions of valid reorderings. A
top-k planner would have to generate all these plans before
it can get to a plan of a higher cost. Diverse planners (Bryce
2014; Nguyen et al. 2012; Coman and Muñoz-Avila 2011;
Roberts, Howe, and Ray 2014; Vadlamudi and Kambham-
pati 2016) tackle the issue by defining diversity criteria over
a set of plans, but only a handful of works take the plan qual-
ity into consideration (Roberts, Howe, and Ray 2014; Vad-
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Figure 1: Example logistics task.

lamudi and Kambhampati 2016; Katz and Sohrabi 2019).
While some computational problems in diverse planning do
require to provide some guarantees on solution quality (Katz
and Sohrabi 2019), existing diverse planners still do not pro-
vide such guarantees.

In this paper, we propose a new family of computational
problems called top-quality planning. The objective of top-
quality planning is to find and concisely represent a set of all
plans of bounded quality, for a given (absolute) bound. That
is, we suggest an alternative definition of solution validity,
by bounding the solution quality instead of bounding the
number of plans. This allows us to define an equivalence re-
lation on plans and implicitly represent equivalence classes
plans without knowing the exact number of plans in the set.
In particular, in this work, we focus on the equivalence rela-
tion that is defined by all possible reorderings of each plan,
represented by one canonical plan. Furthermore, we propose
a first planner for unordered top-quality planning that itera-
tively finds a single plan of top quality and forbids at once
all plans found so far, including all their possible reorder-
ings. For that, we adapt a recently proposed diverse planning
reformulation that forbids a single multiset of actions (Katz
and Sohrabi 2019) to forbid exactly a collection of multi-
sets. Our adaptation of the existing reformulation allows us
to forbid multiple sets of plans at each iteration while pre-
serving soundness and completeness of our approach. We
empirically compare our approach to unordered top-quality
planning to the only available baseline – a top-k planner with
a large k bound. Our approach exhibits a superior perfor-
mance, ranging from 49% increase in coverage for finding
all optimal plans to 69% increase in coverage for finding all
plans of cost up to 120% of optimal plan cost.

2 Preliminaries
We consider classical planning tasks in the well-known
SAS+ formalism (Bäckström and Nebel 1995), extended
with action costs. Such planning tasks Π = 〈V ,O, s0, s?〉
consist of V , a finite set of finite-domain state variables,
O, a finite set of actions, s0, an initial state, and s?, the
goal. Each variable v ∈ V is associated with a finite domain
dom(v) of variable values. These variable, value pairs are
called facts. A partial assignment p maps a subset of vari-
ables vars(p) ⊆ V to values in their domains. For a variable
v ∈ V and partial assignment p, the value of v in p is de-
noted by p[v] if v ∈ vars(p) and we say p[v] is undefined
if v /∈ vars(p). A partial assignment s with vars(s) = V ,
is called a state. State s is consistent with partial assignment
p if they agree on all variables in vars(p), shortly denoted
by p ⊆ s. The product S =

∏
v∈V dom(v) is called the
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Figure 2: Three example cost-optimal plans for the example
task.

state space of planning task Π. s0 is a state and s? is a par-
tial assignment. A state s is called a goal state if s? ⊆ s
and the set of all goal states is denoted by Ss? . Each ac-
tion o in O is a pair 〈pre(o), eff (o)〉 where pre(o) is a par-
tial assignment called precondition and eff (o) is a partial
assignment called effect. Further, o has an associated natu-
ral number cost(o), called cost. An action o is applicable in
state s if pre(o) ⊆ s. Applying action o in state s results
in a state denoted by sJoK where sJoK[v] = eff (o)[v] for
all v ∈ vars(eff ) and = sJoK[v] = s[v] for all other vari-
ables. An action sequence π = 〈o1, · · · , on〉 is applicable in
state s if there are states s0, · · · , sn such that oi is applica-
ble in si−1 and si−1JoiK = si for 0 ≤ i ≤ n. We denote
sn by sJπK. For convenience we often write o1, · · · , on in-
stead of 〈o1, · · · , on〉. An action sequence with s0JπK ∈ Ss?
is called a plan. The cost of a plan π, denoted by cost(π)
is the summed cost of the actions in the plan. For a plan-
ning task Π = 〈V ,O, s0, s?〉, the set of all plans is denoted
by PΠ. A plan π is optimal if its cost is minimal among all
plans in PΠ. For a plan π, we denote by MS(π) the multi-
set1 of actions in π. Note that two different plans π and π′
can have MS(π) = MS(π′). We call such plans reordering
of each other. Reoderings of actions of a plan that are plans
are called valid reorderings.

In this paper, we will use a logistics task, depicted in Fig-
ure 1, as our running example. This task has two cities, with
two locations each, L1 and L2, three trucks, T1 (left), and
T2, T3 (right), that can drive within their cities, one airplane,
A, that can fly between the airport locations, Apt1 and Apt2,
and four packages, P1 to P4, that need to be transported from
their initial locations to some specified goal locations. The
initial and goal locations of all objects are shown in Figure 1
and marked with dashed arrows. Assuming all actions hav-

1A set with possible multiple occurences of the same element.



ing unit cost, a cost-optimal plan for this task will consists
of 20 actions. Example plans πa, πb, and πc are depicted in
Figure 2.

Given a plan π, it is sometimes possible to obtain a differ-
ent plan of equivalent cost without solving the planning task
again. Two of such possible ways: action reordering and de-
riving symmetric plans, are exploited by state-of-the-art top-
k planners (Katz et al. 2018). While action reordering is per-
formed using search and may be time consuming, symmetric
plans can be obtained using structural symmetries (Shleyf-
man et al. 2015). Structural symmetries are permutations of
variable values and actions that induce automorphisms of
the state transition graph. Here, we present the definition of
structural symmetries for SAS+ as was given by Sievers et
al. (2017).

Definition 1 (structural symmetry) For a SAS+ planning
task Π = 〈V ,O, s0, s?〉, let F be the set of Π’s facts, i. e.
pairs 〈v, d〉 with v ∈ V , d ∈ dom(v). A structural symmetry
for Π is a permutation σ : V ∪F ∪O → V ∪F ∪O, where:

1. σ(V) = V and σ(F ) = F such that σ(〈v, d〉) = 〈v′, d′〉
implies v′ = σ(v);

2. σ(O) = O such that for o ∈ O, σ(pre(o)) = pre(σ(o)),
σ(eff (o)) = eff (σ(o)), cost(σ(o)) = cost(o);

3. σ(s?) = s?;
where σ({x1, . . . , xn}) := {σ(x1), . . . , σ(xn)}, and s′ :=
σ(s) is the partial state obtained from the partial state s s.t.
for all v∈vars(s), σ(〈v, s[v]〉)=〈v′, d′〉 implies s′[v′]=d′.

A structural symmetry σ stabilizes the state s if σ(s) = s.
Given a plan π = o1 . . . on and a structural symmetry σ
that stabilizes the initial state, applying the permutation σ
to each action in the plan results in a necessarily valid plan
σ(π) = σ(o1) . . . σ(on) of the same cost. Note that σ(π) is
not a reordering of π, since σ may map actions from π to
actions outside of π.

In our example, the structural symmetries can detect sym-
metries between two of the trucks T2 and T3, between the
two packages that are initially in L1, and between the two
packages that are initially in L2. Thus, structural symmetries
can be used to obtain additional plans from a given plan. In
our example, the plan πc in Figure 2 can be obtained from
πa using the symmetry between the trucks T2 and T3. Note
that these two plans use different actions and thus are not
reorderings of each other. The plan πb, on the other hand,
is a reordering of πa, changing the order between the first
two actions. These two plans are not symmetric, since map-
ping the action (load P4 T2 L2) to (load P3 T2 L2) would
also require mapping (unload P4 T2 L2) to (unload P3 T2

L2). Naturally, there exist pairs of plans that are both sym-
metric and reordering of each other. There are 6602112 cost-
optimal plans in our example, half of them are reorderings
of the plan πa and the other half are reordering of πc.

Lastly, the top-k planning problem (Sohrabi et al. 2016;
Katz et al. 2018) is defined as follows.

Definition 2 (top-k planning problem) Given a planning
task Π = 〈V ,O, s0, s?〉 and a natural number k, find a set
of plans P ⊆ PΠ such that:

(i) for all plans π ∈ P , if there exists a plan π′ for Π with
cost(π′) < cost(π), then π′ ∈ P , and

(ii) |P | ≤ k, with |P | < k implying P = PΠ.
An instance of the top-k planning problem 〈Π, k〉, is called
solvable if |P | = k and unsolvable if |P | < k.

The objective of top-k planning is finding k plans of lowest
costs for a planning task Π and thus optimal planning is the
special case of top-1 planning.

3 Top-quality Planning
We start by formally defining the top-quality planning prob-
lem as the problem of finding all plans of bounded quality.

Definition 3 (top-quality planning problem)
Given a planning task Π = 〈V ,O, s0, s?〉 and a natural
number q, find the set of plans P ={π ∈ PΠ | cost(π) ≤ q}.

The top-quality planning problem is well-defined and al-
ways has a solution. Note that one can exploit existing tools
for top-k planning to derive solutions to the top-quality plan-
ning problem, by setting k to a large value and adding an-
other stopping criteria, once a plan π of cost(π) > q was
obtained. In such cases, P would explicitly contain all plans
with cost(π) ≤ q. This was done by Vadlamudi and Kamb-
hampati (2016) as the first step in their algorithm, although
they do not formally define the top-quality problem. These
explicit sets of plans can get prohibitively large. Further,
some of the plans in that set, although different as sequences
of actions, could be considered equivalent from the underly-
ing application perspective. If, in addition, it would be pos-
sible to escape the need for generating all these equivalent
plans, the performance of the planners could improve sig-
nificantly.

Let N be some equivalence relation on the set of plans
PΠ. For a plan π ∈ PΠ, by N [π] we denote the equivalence
class of π, which is a set of all plans that are equivalent to
π under N . Slightly abusing the notation, for a set of plans
P , by N [P ] we denote the union of the equivalence classes⋂
π∈P N [π]. Using that equivalence relation, we can define

the quotient top-quality problem as follows.

Definition 4 (quotient top-quality planning problem)
Given a planning task Π = 〈V ,O, s0, s?〉, an equivalence
relation N over its set of plans PΠ, and a natural number
q, find a set of plans P ⊆ PΠ such that

⋃
π∈P N [π] is the

solution to the top-quality planning problem.

For equivalence relations that preserve plan cost the quo-
tient top-quality planning problem always has a solution.
Note that solutions to top-quality planning are solutions to
the quotient top-quality planning under the identity equiva-
lence relation. Further, while there is one possible solution
to the top-quality planning problem, there can be many so-
lutions to a quotient top-quality problem, defined by rep-
resentatives of each equivalence class. Further, nothing in
our definition prevents a solution from including more than
one plan per equivalence class, the only restriction is that all
equivalence classes have to be represented.



In this paper, we focus on one specific equivalence rela-
tion, considering two plans to be equivalent if their action
multi-sets are. Formally, we consider the equivalence rela-
tion

UΠ = {(π, π′) | π, π′ ∈ PΠ,MS(π) = MS(π′)}.

Thus, the main computational problem we consider in this
paper is as follows.

Definition 5 (unordered top-quality planning problem)
Given a planning task Π = 〈V ,O, s0, s?〉 and a natural
number q, find a set of plans P ⊆ PΠ such that P is a
solution to the quotient top-quality planning problem under
the equivalence relation UΠ.

Note that while the solution to the top-quality planning
problem can be obtained from a solution to the unordered
top-quality planning problem, using a simple algorithm that
generates all possible valid reordering for each plan in the
solution, this is not the focus of current work. Focusing
on the unordered top-quality planning problem allows us to
generate reorderings of the same plan only if and when these
reorderings are actually needed.

4 Computation of Top-quality Plans
In order to obtain a solver for the computational problem
specified above, we take an approach similar to Katz et al.
(2018), and iteratively generate plans using an existing cost-
optimal planner, and construct planning tasks with a reduced
set of plans, by forbidding exactly the plans found so far. In
contrast to Katz et al. (2018), we forbid not only a specific
plan, but also all its possible reorderings. In order to achieve
that, we thus instead of forbidding plans as sequences of ac-
tions, forbid plans as multi-sets. To be able to do that, we
need to come up with a reformulation of a planning task that
forbids all plans with the exact number of appearances for
each action. Similar reformulation was recently suggested
by Katz and Sohrabi (2019) for diverse planning. The refor-
mulation can forbid a single multi-set, and thus for a set of
plans, the union of their multi-sets was forbidden in each
consecutive iteration. That way, possibly additional plans
were forbidden. For diverse planning, that did not pose a
problem. In our case, however, we need to ensure that we
forbid exactly the set of plans that were previously found.
For that, in what follows, we adapt the reformulation of Katz
and Sohrabi (2019) accordingly.

Alternatively, the reformulation of Katz and Sohrabi
(2019) can be used directly, creating a sequence of plan-
ning tasks, similarly to the way it was done in top-k plan-
ning (Katz et al. 2018). This. however, poses two problems:
the reformulated planning task size grows fast with each it-
eration, and, as in the iterative top-k planner, the mapping
between the reformulated and original actions must be con-
stantly maintained.

In this work, at each iteration we reformulate the original
planning task to forbid all plans found so far. In this case,
we do not need to maintain the mapping between the refor-
mulated and original actions and keep the reformulated task

size smaller. In the rest of this section we adapt the defini-
tion of Katz and Sohrabi (2019) to a set of plans (as multi-
sets), present an algorithm that exploits the adapted defini-
tion to derive top-quality solutions, and prove its soundness
and completeness. We start by presenting the definition.

4.1 Forbidding a Plan as a Multi-set of Actions
Slightly simplifying the definition of Katz and Sohrabi
(2019), we present a task reformulation that ignores orders
between actions in a plan and thus also forbids all possible
reorderings of a given plan, as well as all sub-plans.

Definition 6 Let 〈V,O, s0, s?〉 be a planning task and π be
a plan. The task Π−π = 〈V ′,O′, s′0, s′?〉 is defined as follows.
• V ′ = V ∪ {v} ∪ {vo | o ∈ π}, with v being a binary

variable, and dom(vo) = {0, . . . ,mo}, where mo is the
number of occurences of o in π,

• O′ = {oe | o ∈ O \ π} ∪
⋃mo

i=0{o
f
i | o ∈ π}, where

pre(oe) = pre(o), eff (oe) = eff (o) ∪ {〈v, 0〉},
pre(ofi ) = pre(o) ∪ {〈vo, i〉},
for 0 ≤ i < mo, eff (ofi ) = eff (o) ∪ {〈vo, i+1〉},
eff (ofmo

) = eff (o) ∪ {〈v, 0〉}, and

cost′(oe)=cost′(ofi )=cost(o), 0 ≤ i ≤ mo,
• s′0[v] = s0[v] for all v ∈ V , s′0[v] = 1, and s′0[vo] = 0 for

all o ∈ π, and
• s′?[v]=s?[v] for all v∈V s.t. s?[v] defined, and s′?[v]=0.

The semantics of the reformulation is as follows. The vari-
able v starts from the value 1 and switches to 0 when an ac-
tion is applied that is not from plan π treated as a multi-set.
Once a value 0 is reached indicating a deviation from plan π,
it cannot be switched back to 1. The finite-domain variables
vo encode the number of applications of the action o. The
actions ofi are copies of the action o in π, counting the num-
ber of applications of o, as long as the number is not higher
than the number of times it appears in π. Once the number
of applications exceeds mo, v is set to 0.

4.2 Forbidding Multiple Plans Exactly
In order to forbid multiple plans, the greedy approach of
Katz and Sohrabi (2019) forbids the super-set of these plans
by taking a super-set of the multi-sets representing the plans.
In our case, when optimality is required, we cannot follow
the same approach. Instead, we present a reformulation that
forbids exactly these plans and their sub-plans, and the pos-
sible reorderings. Our reformulation extends the one in Def-
inition 6, by introducing a binary variable for each plan, en-
coding whether the plan was deviated from.

Definition 7 Let 〈V,O, s0, s?〉 be a planning task, P be a
set of plans, and OP = {o | o ∈ π, π ∈ P}. The task
Π−P = 〈V ′,O′, s′0, s′?〉 is defined as follows.
• V ′ = V ∪ {vπ | π ∈ P} ∪ {vo | o ∈ OP }, with vπ being

binary variables, and dom(vo) = {0, . . . ,mo}, where
mo = maxπ∈P {mπ

o} and mπ
o is the number of occur-

rences of o in π,



• O′ = {oe | o ∈ O \ OP } ∪ {ofi | o ∈ OP , 0 ≤ i ≤ mo},
where

pre(oe)=pre(o), eff (oe)=eff (o)∪{〈vπ, 0〉 | π ∈ P},
pre(ofi ) = pre(o) ∪ {〈vo, i〉},
eff (ofi ) = eff (o) ∪ {〈vo, i+1〉} ∪ {〈vπ, 0〉 | i = mπ

op}
for 0 ≤ i < mo,
eff (ofmo

) = eff (o) ∪ {〈vπ, 0〉 | π ∈ P}, and

cost′(oe)=cost′(ofi )=cost(o), 0 ≤ i ≤ mo,
• s′0[v] = s0[v] for all v ∈ V , s′0[vπ] = 1 for all π ∈ P ,

and s′0[vo] = 0 for all o ∈ OP , and
• s′?[v]=s?[v] for all v∈V s.t. s?[v] defined, and s′?[vπ]=0

for all π ∈ P .

4.3 Using the Reformulation
Algorithm 1 exploits the reformulation in Definition 7 to
find a solution to the unordered top-quality planning prob-
lem. The algorithm incrementally finds the set P of top qual-
ity plans. Starting with the empty set P = ∅ and assuming
Π−∅ = Π, we use an optimal planner iteratively to find an op-
timal plan π to the planning task Π−P . Once a plan is found,
it is added to the set of found plans P . Then, the new re-
formulation Π−P is constructed from Π for the next iteration.
The algorithm stops when a plan π is generated such that
cost(π) > q. Note that the algorithm results in a set P of se-
quential plans, with no two plans being reorderings of each
other. Similarly to Katz et al. (2018), at each iteration, after
the plan π was found, we use structural symmetries to gen-
erate from π additional plans that are symmetric (Shleyfman
et al. 2015) to π, and add these that are not reorderings of π
to the set P . Finally, since the first step results in an optimal
plan, the quality can be defined relatively to the cost of the
optimal plan rather than an absolute number.

Theorem 1 Algorithm 1 is sound and complete for un-
ordered top-quality planning when using cost-optimal plan-
ners that find shortest (in the number of actions) cost-
optimal plans.

Proof: Let P be the set of plans returned by Algorithm 1 and
let πf be the plan found when the algorithm breaks. Since
πf is an optimal plan to Π−P and cost(πf ) > q, we need to
show that Π−P forbids exactly the plans in UΠ[P ]. For a plan
π ∈ P , Π−P has a variable vπ that reaches its goal value only
when the number of applications of some action exceeds the
number of appearances of that action in π. Thus, π is not
a plan for Π−P . Since Definition 7 treats plans as multi-sets,
this is true also for all π′ ∈ UΠ[π].

Let P1, . . . , Pn denote the sets of plans at the beginning
of each algorithm iteration and let π1, . . . , πn = πf be the
optimal plans found by the algorithm in these iteration, with
πi being an optimal plan to Π−Pi

. Let π be a plan for Π such
that cost(π) ≤ q. If π 6∈ UΠ[P ], there exists k such that π
is a plan for Π−Pk

, but not for Π−Pk+1
. Let P ′ = Pk+1 \Pk

be the plans forbidden in Π−Pk+1
but not in Π−Pk

. Then, there
exists π′ ∈ P ′ such that MS(π) ⊆ MS(π′). If MS(π) =
MS(π′), then π ∈ P and we are done. Assume that MS(π)

Algorithm 1 Iterative unordered top-quality planning.
Input: Planning task Π, quality bound q
P ← ∅
Π′ ← Π
while True do

π ← optimal plan to Π′

if cost(π) > q then
break

end if
P ← P∪{π}∪{π′ |π′ is symmetric to π, π′ 6∈UΠ[π]}
Π′ ← Π−P according to Definition 7

end while
return P

is a proper subset of MS(π′). Note that π′ is a reordering
of a plan that is symmetric to πk, which was the optimal
plan found for Π−Pk

. Assuming that our optimal planner finds
shorter optimal plans before longer ones, a plan π for Π−Pk

would be found before πk, contradicting the assumption that
MS(π) is a proper subset of MS(π′). �

5 Experimental Evaluation
In order to evaluate the feasibility of our suggested approach
for unordered top-quality planning, we have implemented
our approach as part of the ForbidIterative planners collec-
tion (Katz, Sohrabi, and Udrea 2019), which is implemented
on top of the Fast Downward planning system (Helmert
2006). The collection, among other, includes the implemen-
tation of the iterative top-k planner (Katz et al. 2018). The
experiments were performed on Intel(R) Xeon(R) CPU E7-
8837 @2.67GHz machines, with the time and memory limit
of 30min and 2GB, respectively. The benchmark set con-
sists of all STRIPS benchmarks from optimal tracks of In-
ternational Planning Competitions (IPC) 1998-2018, a total
of 1797 tasks in 64 domains. Our baseline for the compari-
son is a simple approach, using a top-k planner with a large
k value, 109, stopping if a plan of quality above the bound
was reached. We use NaiveS, the best perfoming configu-
ration of the iterative top-k planner (Katz et al. 2018), that
exploits both symmetries and plan reorderings. The purpose
of setting k to a large number is to allow the top-k planner to
exploit the entire 30min time interval. Among tasks solved,
the largest number of plans found by the top-k planner was
60480. For tasks not solved, the maximal number of plans
found by the top-k planner was 767501. Note that reading
and writing such large amounts of plans is time consum-
ing by itself. For each task, the quality bound is computed
using the cost of the first found (optimal) plan, multiplied
by a constant2. We experiment with four different quality
bound multipliers, namely qm = 1.0 (optimal plans only),
1.05, 1.1, and 1.2 of the optimal plan cost. For larger quality
bounds, both approaches had low coverage, and thus we do
not report these results. Note, q can be any natural number
as mentioned in Definition 5.

2This is not an overhead, as at least one optimal planner run
needs to be performed anyway.



qm=1.00 qm=1.05 qm=1.10 qm=1.20
Coverage K-tq tq K-tq tq K-tq tq K-tq tq
airport 7 21 7 18 6 17 6 17
blocks 16 17 16 17 10 13 8 9
data-network18 0 1 0 0 0 0 0 0
depot 2 2 2 2 0 2 0 1
driverlog 5 9 5 9 1 7 1 4
floortile11 0 2 0 2 0 0 0 0
ged14 5 7 5 7 5 7 5 7
gripper 1 4 1 3 0 2 0 2
logistics00 3 16 3 13 1 10 0 6
logistics98 0 4 0 2 0 1 0 0
miconic 18 27 18 26 11 16 10 12
movie 0 1 0 1 0 1 0 0
mprime 18 19 18 19 18 19 6 11
mystery 20 20 20 20 20 20 13 15
nomystery11 9 13 7 11 4 8 2 5
openstacks08 0 2 0 2 0 2 0 2
parcprinter08 6 15 5 12 5 12 5 11
parcprinter11 3 11 2 8 2 8 2 7
pegsol08 21 23 21 23 21 22 8 17
pegsol11 8 13 8 13 8 12 2 5
pipes-notank 5 11 5 11 3 7 1 4
pipes-tank 2 4 2 4 2 4 1 1
psr-small 37 46 26 40 22 36 16 24
rovers 3 6 3 6 2 4 0 3
satellite 2 5 2 5 1 1 0 1
scanalyzer08 4 5 4 5 4 4 3 3
scanalyzer11 1 2 1 2 1 1 1 1
spider18 5 5 3 4 0 0 0 0
storage 8 14 8 14 7 11 6 7
tetris14 1 2 1 2 1 2 0 1
tidybot11 5 7 2 5 1 3 1 1
tpp 4 6 4 5 2 5 2 5
transport08 6 7 1 1 1 1 0 0
transport14 0 1 0 0 0 0 0 0
trucks 1 2 1 2 0 1 0 0
visitall11 8 8 7 7 5 6 5 5
woodwork08 3 8 2 6 1 4 0 2
woodwork11 0 3 0 1 0 0 0 0
zenotravel 7 7 7 7 4 5 3 4
Sum other 25 25 23 23 21 21 18 18
Sum (1797) 269 401 240 358 190 295 125 211

Table 1: The coverage results comparing to top quality plan-
ning via top-k planning, for various quality bounds.

Table 1 depicts the per-domain summed coverage, com-
paring our technique, tq, to the baseline, K-tq, for four qual-
ity bound multipliers. Each task gets a coverage of 1 if and
only if the planner proved there is no other plan within qual-
ity bound, by either finding a plan above the bound or prov-
ing there are no other plans. Note first that out of the 64 do-
mains, there are 18 domains where all optimal plans could
not be found for any tasks, with any approach. There are
7 more domains where there is no difference in coverage
between the baseline and our approach, for all tested qual-
ity bounds. These 25 domains are summarized in the Sum
other row of Table 1. Out of the remaining 39 domains, the
coverage never gets worse and it gets better (often signifi-
cantly better) for at least one of the tested quality bounds.
Extreme examples are AIRPORT, LOGISTICS00, and PSR-
SMALL where the increase in coverage for some quality
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Figure 3: Per-task comparison of the solution encoding size.

bounds is by 10 instances or more. Overall, there is a clear
benefit of the suggested approach over the baseline.

Another benefit of our approach is a compact representa-
tion of the solution. Figure 3 shows a per-task comparison
of the number of plans in the solution for each of the ap-
proaches, for the quality bound multiplier qm = 1.0, for
tasks solved by both approaches. First, out of the total of
263 such tasks, there are 111 tasks on the diagonal. Out of
the remaining 152 tasks (all above the diagonal), 73 tasks
have a single optimal plan found by our approach, while the
baseline needs to find multiple optimal plans, which are all
reorderings of the same plan, with the maximal number of
60480 reorderings found. When the number of valid reorder-
ing is larger, the baseline approach fails before being able to
find all optimal plans.

Finally, Figure 4 compares the reformulated task size of
our approach to the baseline one. We compare the last gener-
ated task reformulation, for tasks solved by both approaches,
for the quality bound multiplier qm = 1.0. The task size is
measured here by the number of facts, i. e., variable value
pairs. While the larger tasks are not necessarily harder for a
classical planner, this is usually the case. Our experiments
clearly show that our approach creates tasks of sizes almost
two orders of magnitude smaller than the baseline approach.

6 Conclusions and Future Work
In this work we have shown a way of obtaining all plans
of bounded solution quality, representing plan reorderings
implicitly and thus escaping the need for counting plans.
We have presented a novel reformulation of a planning task
that forbids exactly the set of given plans, their reorderings,
and all subplans thereof. We have formally defined the fam-
ily of computational problems in top-quality planning and
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Figure 4: Final constructed task size in terms of the number
of facts.

have implemented a first planner for unordered top-quality
planning. The planner, exploiting the new reformulation, has
empirically shown to perform significantly better than the
straightforward approach of exploiting top-k planners with
a large bound k, as it is often done in practice.

For future work, one promising direction is exploring
the use of top-quality instead of top-k planners in planning
applications. Another possible direction is creating a top-
k planner based on the unordered top-quality planner, ex-
ploiting the more compact task representation. Further, (un-
ordered) top-quality planners can be used to obtain solutions
to diverse planning, when solution cost is also considered
(Vadlamudi and Kambhampati 2016).
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