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Abstract

Many real world systems such as traffic networks and ride-sharing taxi systems
can be tackled using multi-agent reinforcement learning. In such settings, self-
interested agents must learn how to interact with each other in a shared stochastic
environment. However, current methods within multi-agent reinforcement learn-
ing generally lead to agents taking joint actions over time that produce welfare
inefficient and globally suboptimal outcomes. To this end, we propose a new
method in which a meta-agent modifies agents’ rewards leading to convergence to
policies that produce globally efficient outcomes in Markov games. Our method
does not require agents to have a priori knowledge of their environment - both the
meta-agent and the agents learn from interacting with it. Our theoretical results
show that using our method, multi-agent reinforcement learning algorithms always
produce efficient outcomes. We apply our method to solve a challenging problem
within an application in economic systems with thousands of agents.

Introduction

Complex systems such as traffic networks, financial markets and swarm robotics involve many agents
strategically interacting with each other. In these systems, self-interested agents take actions over
time to maximise their own cumulative rewards that depend on the actions of other agents and
the system state. Such systems are modelled as Markov games (MGs). In MGs however, stable
outcomes (Nash equilibria) are in general, welfare inefficient and highly undesirable from a central
planner’s perspective [7]. Multi-agent reinforcement learning methods in general, do not guarantee
convergence to efficient NEs that maximise social welfare (e.g. minimise travel time in traffic
networks) or optimise external objectives (e.g. taxi-drivers maximising a firm’s profit or agents in
financial markets minimising systemic risk). Multi-agent reinforcement learning (MARL) methods
[10, 22] converge to stable points (where policies do not change) that are also NEs of the given
game. However, these algorithms are not guaranteed to converge to efficient equilibria. Consequently,
devising methods that ensure convergence to efficient outcomes in MGs is a significant challenge
from practical and theoretical standpoints [18].

We propose a new technique to tackle the issue of undesirable outcomes in MGs. Our method uses
a meta-agent (MA) to modify agents’ reward functions in such a way that ensures convergence to
efficient outcomes. In particular, the MA uses black box optimisation to seek the optimal parameter
of a parametric reward modifier. In this setup,neither the agent’s nor the MA have knowledge of their
reward nor transition functions and use MARL techniques to learn them, which permits application
to a broad range of problems. We prove theoretical results that demonstrate that for a class of MGs
known as Markov potential games (MPGs) the MA’s modifications to the game produces a continuous
family of NE outcomes. This is a crucial property that allows the MA to use black-box optimisation
techniques to find the reward modifications that induce desirable behaviour in the agents. Since the
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reward modifier influences the potential function - a function that is maximised by all agents’ NE
strategies, in principle the MA can induce the desired behaviour in any number of agents.

Markov potential games (MPGs) frequently arise in engineering and economics where agents compete
for a common resource as in the case of spectrum sharing in wireless communications, oligopoly
(market share), transportation networks, ride-sharing applications, supply-chain management, electric
power grids or cloud computing [21, 25]. Potential games are also ubiquitous in classical game-
theory; the prisoner’s dilemma, the battle of the sexes, selfish routing games, congestion games and
team games are all potential games [11, 17].

Contributions. i) We propose an algorithmic framework which involves an MA that learns to modify
the rewards within an MPG to optimise system performance, in both cases in which the NE can be
altered and cases in which it must be preserved. ii) We show that the MG modified by the MA is an
MPG, and that the NE set of the new game is continuous on the reward modifications, which allows
us to prove existence of an optimal reward modifier. We then formulate the problem in a manner
that allows to prove convergence to the reward modifier that induces efficient NE. We provide an
approximation bound when the optimal reward modifier is estimated with a method that has low
computational complexity. iii) We illustrate the framework in a set of experiments that tackle a
challenging application: a logistic problem involving a system with 2,000 agents.

Related Work. Our work relates to mechanism design (MD) [14] and its dynamic and learning
variants [23]. These incomplete information models analyse the problem of constructing a mechanism
- a system of rewards and transfers, among self-interested strategic agents that have private information
about their reward functions. The problem is to incentivise truth-revealing announcements from the
agents. A well-known result in MD rules out (strategy-proof) mechanisms that induce the desired
agent behaviour for general agent reward functions [19]. Therefore, in MD, agents’ reward functions
are (typically) limited to quasi-linear functions that are known up front [14]. Our framework permits
a general rewards beyond quasi-linear functions. Moreover, since computing gradients is not required
as in, for example [8], we tackle problems when the reward functions are unknown to the agents (and
the MA) enabling us to solve complex and analytically intractable systems.
This work relates to leader-follower games (L-FGs) - sequential games in which a leader moves

in advance of other agent(s) or follower(s), who each select a best response (BR) strategy [2, 24].
However, in L-FGs, the leader cannot induce efficient outcomes i.e. maximise its own objective (e.g.
ex. 98.1 in [15]) since the leader’s reward is a function over a fixed joint action set. In our framework
however, the MA’s reward is determined by the agents’ joint actions which are taken after the MA
has made a choice of reward functions over a space of continuous functions.
This topic relates to reward shaping through which a reward is added with the aim of inducing

convergence to a more desirable equilibrium [2, 6]. The majority the reward shaping literature is
concerned with potential based reward shaping (PBRS). PBRS leaves the NE set unaltered and does
not guarantee convergence to more efficient equilibria [5]. A number of papers handle non-potential
based rewards shaping e.g. [16], however, such papers are limited in scope since they consider only
specific normal form games settings e.g. the stag hunt game1. We tackle the MG case which adds
considerable complexity to the problem since it requires a method of incentivising sequences of
state-action pairs (trajectories) in a stochastic environment. In addition to the case for which the NE
is preserved, our framework covers cases for which the MA alters the NE set so that the behaviour of
rational agents aligns with some external objective.

Preliminaries

Let N , {1, . . . , N} denote the (possibly infinite) set of agents where N ∈ N × {∞}. An MG
is a tuple: G= 〈N, (γi)i∈N ,S, (Ui)i∈N, P, (Ri)i∈N〉 which can be described as follows: at each
time step k = 1, 2, . . . T ∈ N × {∞}, the state of the system is given by s ∈ S ⊆ Rp for some
p ∈ N. The game is equipped with an action set U= ×i∈NUi – a Cartesian product of each agent’s
action set Ui. Each set Ui is a compact, non-empty action set for each agent i ∈N. We define by
U−i = ×j∈N\{i}Uj - the Cartesian product of all agents’ action sets except agent i. At each time
step, the next state of the game is determined by a probability distribution P : S× U× S so that
P (·|s,u) gives the probability distribution over next states given a current state s when the agents
take a joint action u ∈ U. When the environment is at state s and the agents take action u, each

1In [16] some experiments on repeated games are performed but no theoretical analysis is provided.
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agent i receives a reward computed by the function Ri : S× Ui × U−i → R. The term γi ∈ [0, 1[ is
each agent i’s discount factor. Each agent has a stochastic policy πi : S× Ui → R+ - a conditional
distribution over the action set given the current state. Let Πi be a non-empty set of stochastic policies
over S× Ui such that πi ∈ Πi. We denote by Π the set of policies for all agents i.e. Π , ×i∈NΠi,
where each πi, and by Π−i , ×j∈N\{i}Πj . For simplicity, we assume Πj = Πi,∀i 6= j. The joint
policy of all agents is denoted by π =

(
πi
)
i∈N ∈ Π, while the joint policy of all but the i-th agent is

denoted π−i =
(
πj
)
j∈N\{i}. We will sometimes write π =

(
πi, π−i

)
for any i ∈N.

Each agent i ∈Nuses a value function, vπi : S×Π→ R, as its objective function:

vπi (s) = E
[ T∑
t=0

γtiRi(st, ui,t, u−i,t)
∣∣ut ∼ π(·|st), st+1 ∼ P (·|st,ut), s0 = s

]
, (1)

where ut = (ui,t, u−i,t) is the joint action at time t. We now give some essential definitions:

Definition 1. The policy πi ∈ Πi is a BR policy against π−i ∈ Π−i if: πi ∈ argmax v
(π̃i,π−i)
i .

A Markov-Nash equilibrium (M-NE) is the solution concept for MGs in which every agent plays a
BR against other agents. A M-NE is defined by the following:

Definition 2. A strategy profile π =
(
πi
)
i∈N ∈ Π is an M-NE if v(πi,π−i)

i (s) ≥ v
(π′i,π−i)
i (s),

∀π′i ∈ Π, ∀π−i ∈ Π−i, ∀s ∈ S, and ∀i ∈N.

The M-NE condition ensures no agent can improve their rewards by deviating unilaterally from their
current strategy. We define NE{G} as the set of M-NE for the game G.
Definition 3. An MG is called an exact MPG or an MPG for short, if there exists a function
Φ : S×Π→ R such that:

v
(πi,π−i)
i (s)− v(π′i,π−i)

i (s) = Φ(πi,π−i)(s)− Φ(π′i,π−i)(s) ∀π′i ∈ Πi, ∀π−i ∈ Π−i,∀s ∈ S, ∀i ∈N

Note that Φπ(s) gives the same value for all agents. We use Gmpg to denote an MPG. In the rest of
the paper, we focus exclusively on MPGs.

The Framework

We now describe how the MA modifies the MG played by the agents. The problem is arranged into a
hierarchy of the MA’s problem and the set of agents’ subproblem.

The agents’ subproblem consists of solving the Markov game G(w) =
〈N, (γi)i∈N ,S, (Ui)i∈N, P, (Ri,w)i∈N〉 i.e. finding π ∈ NE{ G(w)} where w is chosen
by the MA. Now each agent i ∈Nhas a value function vπ,wi : S×Π×W → R given by:

vπ,wi (s) = E
[ T∑
t=0

γtiRi,w(st, ui,t, u−i,t)
∣∣ut ∼ π(·|st), st+1 ∼ P (·|st,ut), s0 = s

]
(2)

The most natural alteration to an agent’s reward function is for it to be modified additively by a
modifier function Θ : S× Ui × U−i ×W → R s.th. the agents’ modified reward function becomes:

Ri,w(st, ui,t, u−i,t) , Ri(st, ui,t, u−i,t) + Θ(st, ui,t, u−i,t,w)

where Ri : S× Ui × U−i → R is the game ‘intrinsic reward’ that cannot be modified by the MA.

Note that the modifier function includes cases for which Θ(·, u−i,t, ) = Θ(·, u′−i,t), ∀u−i,t 6=
u′−i,t ∈ U−i in which case the modifier function adds rewards that do not depend on actions other
than those taken by agent i.

The meta-agent’s problem consists of a tuple PMA , 〈w, RMA〉 where w ∈W ⊂ Rl (l ∈ N) is a
set of vector of real-valued parameters over a space of parametric uniformly continuous functions and
RMA is the reward function for the MA. The MA’s problem is to find Θ (i.e. the vector of parameters
w) that maximises the following:

J(w,π) = E
[
RMA(w,π)

]
, (3)
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whilst satisfying the M-NE condition which ensures that the agents play BR policies. Hence the MA’s
problem is:

maximise
w∈W

J(w,π)s.t. v
(πi,π−i),w
i (s) ≥ v(π

′i,π−i),w
i (s),∀i ∈N ,∀π′i ∈ Πi ,∀π−i ∈ Π−i ,∀s ∈ S.

The formulation describes numerous problems within economics, logistics and computer science
including revenue management (e.g., ticket pricing), congestion management, and network design
problems (e.g. tolling) [13, 4]. We consider two main cases, depending on the MA’s goal:

1. Trajectory targeted: The MA’s payoff is a function of the state trajectories produced by the
agent’s policies in the MG; i.e., J(w,π) , E

[
RMA(w, Xπ, ζ)

]
, where Xπ is Markov chain

induced by the policy profile π ∈ Π in G(w) and ζ is an i.i.d. random variable which captures
the noisiness in outcomes. An example is the KL divergence between the distribution of agent
locations at every timestep, Da

t (w,π), and the target distribution of desired locations, D?
t : R(tra)

MA =∑T
t=0 KL(Da

t (w,π)‖D?
t ). Applications include social planners seeking to minimise congestion in

traffic networks through tolls, and firms seeking to smoothen electricity consumption in smart grids
through dynamic pricing [4].
2. Welfare targeted: The MA’s payoff is a function of the agents’ joint rewards, that is, J(w,π) ,
E
[
RMA(w, h(vπ,wa ), ζ)

]
, for some uniformly continuous function h and vπ,wa , (vπ,wi )i∈N. A

simple example is the sum of agents’ rewards i.e.: R(soc)
MA =

∑
i∈Nv

π,w
i , resulting in the MA

maximising social welfare. Other examples are oligopoly intervention e.g. fishery problems using
optimal taxation [21] and worst-case optimisation (maxmin) problems (i.e. h = −1).

The function Θ can be interpreted as a system of wealth transfers leading naturally to con-
sider budgetary constraints. The function Θ can be interpreted as a system of wealth trans-
fers leading naturally to consider budgetary constraints. If the modifier function satisfies
:
∑
i∈N

∑
t≤T Θ(st, ui,t, u−i,t,w) ≤ 0, ∀st ∈ S, then the transfer of wealth is constrained so

that there is no net transfer of wealth from the MA to the agents.

Note that the MA problem is a bilevel optimisation problem (specifically, a mathematical program
with equilibrium constraints). Such problems are generally highly non-convex and the feasible
regions might be unconnected and for this reason, such problems are in general highly intractable
using analytic methods in all but simple cases (e.g. linear rewards) [3].

In the next section, we overcome these issues by expressing the NE constraint in terms of the potential
function, and show that MARL methods can be applied to compute the set of NE for the agents’
subgame, so that we can ensure feasibility for the MA problem without requiring closed analytic
solutions. We then give a constructive formulation that allows to prove convergence to such an
optimal solution. Finally, we provide an approximation bound when the optimal reward modifier is
approximated with a truncated power series. We proceed to explain the details.

Theoretical Analysis

We now show that G(w) is an MPG, which enables NE{G(w)} to be described in terms of local
maxima of function (as opposed to fixed points).

It is necessary to show that the game produced after the MA alters the agents’ rewards is still potential.

Lemma 1. The game G(w) is an MPG.

Corollary 1. The following expression holds {argmaxπ∈Π Φπ,w(s),∀s ∈ S} ⊆ NE{G(w)}.

Cor. 1 expresses that in playing their BR strategies G(w), each agent inadvertently maximises Φπ,w,
so the function Φπ,w is a potential of G(w).

We now prove that NE{G(w)} is continuous on w, which is required for the use of black-box
optimisation to maximise MA’s objective. The following result establishes the continuity in MA’s
reward under changes in w ∈W which underpin the existence of a solution for MA’s problem and a
method for computing the solution. We begin by demonstrating that small changes in MA’s action
lead only to small changes in the game, in particular, the game itself is continuous in w:
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Proposition 1. Given metric space X, let Bα(x) , {y ∈ X : ‖x− y‖ < α} denote the open ball
with radius α > 0 around x ∈ X. Then for any ε > 0, ∃δ > 0 : w′ ∈ Bε(w) =⇒ x′ ∈ Bδ(x), for
any x′ ∈ NE{G(w′)}.

Now, we establish the existence of an optimal reward modifier w? ∈W that solves MA’s problem,
i.e. w? ∈W maximises J(w,π) and thus induces an efficient NE.
Theorem 1. For G(w) there exists a value w? ∈W that maximises MA’s reward function RMA.

Previous results hold for an arbitrarily expressive modifier function Θ. In practice, it is computation-
ally efficient to express Θ using a representation with few parameters. The following bounds MA’s
loss when the modifier function is approximated by a truncated power series:
Theorem 2. Let wε(n) ∈W approximate solution to MA’s problem for G(w) which is generated
by an n−order series expansion, define MA’s approximation loss by L, J(w?,π)− J(wε(n),π) ,
then L is subject to the following bound: maxw′∈W ,π′∈Π

∣∣DN+1J(w′,π(w′))
∣∣.

The solutionw? can be closely approximated by a truncated series expansion (other expansions e.g.
neural networks are possible) reducing the number of parameters to be computed.

The issue of how to computew? remains. In the following section we demonstrate thatw? can be
computed using black-box optimisation and MARL.

Solution Method

In our problem, the function RMA, its gradient, the function h and vπ,wa are all unknown to the
MA, who solely observes its realised rewards for each candidate w which suggests a black-box
optimisation method. The unknown payoff, J , is treated as a random function with some prior belief
over the space of functions. After observing the value of J(wk,π) for some wk ∈W , the belief
is updated to form a posterior distribution which is used to construct an acquisition function (e.g.,
expected improvement) that indicates which parameter wk+1 should be evaluated next, guiding
exploration over W . Similarly the agents do not know the components G(w) but merely observe
their individual rewards after their joint policy π is played, we therefore use MARL to solve the
game. The agents sample trajectories of experience tuples (st,ut, (Ri,wk

(st,ut))i∈N, st+1), which
are used to estimate the joint value function, vπ,wa . Then, they update their policies by performing
stochastic gradient ascent. The optimisation objective is nested; the MA chooses w of G(w) and
the agents select a joint policy which generates a reward signal for the MA. Simultaneous updates
of both the MA parameters and the agents’ policies, in general, lack converge guarantees due to
non-stationarity. Therefore, in order to compute the solution iteratively, after an initial choice by
the MA, we let the MARL algorithm run until convergence which fulfils the M-NE constraint for
the MA’s problem (c.f. Prop. 2); the MA receives feedback from the outcome of the game G(w),
then updates its choice of w. This results in an inner-outer loop method. We require an efficient
optimisation algorithm. Clearly, BO is a candidate algorithm to allow us to scale the framework. BO
is sample efficient and has strong theoretical guarantees for non-convex problems [20].

Convergence. Theorem 1 guarantees the existence of a solution forw?. Guarantees for convergence
of the inner loop of the algorithm are also required. Potential games have strong convergence
guarantees with numerous of MARL algorithms e.g. fictitious play [9]. The following proposition
provides this guarantee:
Proposition 2 (Convergence). The algorithm converges to a stable point, moreover the set of stable
points of algorithm 1 correspond to M-NE for the MPG.

Convergence of the inner loop is required to obtain the equilibria of the multi-agent system.
Consequently, the method is subject to conditions under which MARL methods converge. In the class
of games we consider, MARL methods have been shown in general, to converge to NE solutions
[9, 12]. Note also that by Theorem 3, approximate solutions can be computed with a reduced number
of parameters in the BO component for a given error bound.

Experiments: Controlling the massive crowd

Consider 2,000 agents each seeking to locate themselves at desirable points in space over a time
horizon. The desirability of a region changes with time and decreases with the number of agents
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located within the neighbourhood. In this setting, the resulting NE distribution is in general, highly
inefficient (and may not conform to external objectives) due to agent clustering [12]. The problem
encapsulates spectrum sharing problems in wireless communications [1] and models spatio-economics
problems such as firms locating their supply with dynamic demand processes and taxi-fleets. To
handle large strategic populations, we use an RL mean field game (MFG) framework [12].
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Figure 1: One shot case. (Top) Heat maps represent the MA’s preferred distribution M?, the default
agents’ behaviour, and the influence of the MA’s in the agents’ distribution. (Bottom) Average KL
divergences for each evaluation of the MA’s BO outer loop.
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Figure 2: Dynamic case. (Top) Heat maps represent (first row) the MA’s preferred distribution
M?
t , (second row) the induced agent distribution Ma

t at time-steps t = 0, 1, 2. (Bottom) Average
episodic cumulative KL divergences for each evaluation of the MA’s BO outer loop (averaged over
100 independent tests per evaluation for 4 independent runs). Without the influence of the MA, the
agents behave similar to the default behaviour displayed in Figure 1-Top middle.

We test our method in a one-shot game and in a dynamic game. Unlike current methods, our method
does not require knowledge of the gradients and/or the reward functions. We observe, in Figure 1
and Figure 2 respectively, that in accordance with the theory, the agents learn to select policies that
produce a distribution that matches M? over the horizon of the problem.

In the one-shot game the MA seeks to induce a single agent distribution (as shown by the left heat
map in Figure 1) - this is different from the distribution obtained when agents’ behaviour is driven by
their intrinsic reward function (central heat map in Figure 1). When the modifier function Θ in added
to the agents’ reward function, the average KL divergence converges almost to zero, i.e., the agents’
distribution obtained with the MA framework (right heat-map in Figure 1) is almost the desired one.
In the dynamic game the MA’s desired distribution changes over time. In our experiment, M?

t
for t = 0, 1, 2 are as shown by the heat maps in the top row of Figure 2(left), while the bottom
row presents the agents’ distributions achieved with the MA framework. For the one-shot game, in
Figure 2(right), we observe the average episodic cumulative KL divergences converge almost to zero.

Conclusion

In this paper, we introduce a meta-agent framework - a technique that enables self-interested adaptive
learners to converge to efficient Nash equilibria in Markov games. By adding a modifier function to
the agents’ rewards, our method learns how to affect the rewards of self-interested agents to induce
efficient system outcomes and thus producing convergence to desirable M-NE. We prove a continuity
property in the meta-agent’s modifications to the game which permits a broad range of black-box
optimisation techniques to be applied. We demonstrated how the technique can be used to tackle
problems in which the meta-agent can dramatically induce efficient outcomes in MARL.
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