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Abstract
Recognizing surgical instruments in surgery videos is an essential process to describe surgeries,
which can be used for surgery navigation and evaluation systems. In this paper, we argue that
an imbalance problem is crucial when we train deep neural networks for recognizing surgical in-
struments using the training data collected from surgery videos since surgical instruments are not
uniformly shown in a video. To address the problem, we use a generative adversarial network
(GAN)-based approach to supplement insufficient training data. Using this approach, we could
make training data have the balanced number of images for each class. However, conventional
GANs such as CycleGAN and DiscoGAN, have a potential problem to be degraded in generat-
ing surgery images, and they are not effective to increase the accuracy of the surgical instrument
recognition under our experimental settings. For this reason, we propose a novel GAN framework
referred to as DavinciGAN, and we demonstrate that our method outperforms conventional GANs
on the surgical instrument recognition task with generated training samples to complement the
unbalanced distribution of human-labeled data.
Keywords: Generative adversarial network (GAN), image-to-image translation, self attention, data
augmentation.

1. Introduction

To help surgeon’s decision making during the robotic surgery, providing surgical guidance like car
navigation systems, based on the information extracted from the current surgery scene is necessary.
Moreover, a surgery video should be analyzed to evaluate the robotic surgery after its operation.
Recognizing surgical instruments is an essential process in such systems, and the information can
be basically used for recognizing the current surgical phase (Twinanda et al., 2017).

In general, each surgical instrument is not used equally and uniformly in one operation. This
leads to imbalance in terms of data collection, which is one of the critical problems in deep learning.
In addition, since a certain tool is likely to show only in a specific environment, it can be said that
context and background redundancy are high among the data for each tool. To address this issue,
we propose an approach to translating an image. Generative adversarial network which is one
of generative models is known for its ability to generate complex, high-dimensional data such as
natural images (Goodfellow et al., 2014; Radford et al., 2016). With the advent of Conditional
GAN, images can be created in the desired direction such as label-to-digit (Mirza and Osindero,
2014), text-to-image (Reed et al., 2016) and image-to-image (Isola et al., 2017; Choi et al., 2018).
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Figure 1: Results of the conventional works (Kim et al., 2017; Zhu et al., 2017) and ours. Davinci-
GAN gives the result with appearance changes and identical background simultaneously.
(a) bipolar→cadiere, (b) cadiere→bipolar. From left to right: input, DiscoGAN (Kim
et al., 2017), CycleGAN (Zhu et al., 2017) and DavinciGAN (ours).

In particular, unpaired image-to-image translation (Zhu et al., 2017; Kim et al., 2017), which we
address in this paper, has achieved impressive results recently.

However, these prior works failed easily when there are geometric changes between domains
or the resolution of an input is high. Our goal is to address these issues as well as data imbalance
problem between surgical instruments. To this end, our method, given an image, captures a can-
didate tool (e.g., cadiere) and transforms it into a target tool (e.g., bipolar), as shown in Figure 1.
There are similar works (Joo et al., 2018; Tang et al., 2018) that change gestures of a person while
maintaining his/her identity, but they differ from ours in the sense that they deal with simple images
without causing geometric changes.

Our main contributions are as follows:

1. We propose a new generative adversarial network, named as DavinciGAN that captures can-
didate daVinci instruments and transforms them into target daVinci instruments by making
appearance changes.

2. We introduce background consistency loss using self-attention mechanism without ground
truth mask data. With this loss, our network is encouraged to transform only the candidate
tool to the target tool while maintaining background.
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Figure 2: Overall architecture of DavinciGAN. (a) DavinciGAN consists of two generators G, F
and two discriminators DX , DY . (b) The figure on the left shows the discriminator DY , and
the figure on the right shows the generator G. The F and DX also follow this architecture.

3. We augment training data using GANs, and we show that the data augmentation using our
DavinciGAN is the most effective to improving the instrument classification accuracies.

4. To the best of our knowledge, we first handle daVinci surgical instruments via image transla-
tion for data augmentation.

2. Methods

2.1. Architecture

Figure 2 illustrates the overall architecture of our DavinciGAN. Our goal is to find a mapping
function to change the original surgical instrument in a source domain X to the desired surgical
instrument in the target domain Y without background changes.

DavinciGAN consists of two generators G : x → {GIMG(x),GAT T (x),GCLS(x)} and F : y →
{FIMG(y),FAT T (y),FCLS(y)}, where x ∼ pdata(x) and y ∼ pdata(y). GIMG represents a generator
to generate fake image, and GAT T produces an attention map computed from the predicted class
score in domain classification and the feautre maps of G via weakly supervised learning tech-
nique (Zhou et al., 2016). Also, GCLS is a classifier to classify domains. The F plays exactly
the same role with G, but reverses two domains. Our DavinciGAN also has two discriminators
DX : x→ {DX ,ADV (x),DX ,CLS(x)} and DY : y→ {DY,ADV (y),DY,CLS(y)} and they also not only dis-
criminate whether an input image is real or fake but also classify its domain.

2.2. Loss Function

We designed four loss functions such as adversarial loss, domain adversarial loss, background con-
sistency loss and cycle consistency loss. The adversarial loss function is designed to make the
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generated image distribution indistinguishable to the real data distribution. Also, the domain adver-
sarial loss function is introduced with an auxiliary classifier to derive efficient topological changes.
With the background consistency loss, our method can maintain the background information while
changing the appearance of the tool. Lastly, the cycle consistency loss is helpful to reduce the space
of possible mapping functions and guarantee one-to-one mapping between two domains.

2.2.1. ADVERSARIAL LOSS

We use an adversarial loss as a perceptual loss to enhance the naturalness of the generated images.
By using this loss function, regardless of which output the auxiliary classifiers of discriminators
give for domain classification, the generators learn to generate images indistinguishable from real
images. In our work, we adopt LS-GAN loss (Mao et al., 2017) which is known to be advantageous
for learning stability. We train G and F to maximize this objective and DX and DY to minimize this
objective.

Ladv = Ex∼pdata(x)[‖1−DX ,ADV (x)‖2 +Ey∼pdata(y)[‖DX ,ADV (FIMG(y))‖2

+Ey∼pdata(y)[‖1−DY,ADV (y)‖2 +Ex∼pdata(x)[‖DY,ADV (GIMG(x))‖2.
(1)

2.2.2. DOMAIN ADVERSARIAL LOSS

Along with an adversarial loss, we introduce domain adversarial loss to lead to appearance changes.
We added an auxiliary classifier for each discriminator to derive geometric changes by adversarial
learning with the output of that auxiliary classifier.

LD,CLS = BCE(DX)+BCE(DY ), (2)

where
BCE(N), Ey∼pdata(y)[− log(NCLS(y))]+Ex∼pdata(x)[− log(1−NCLS(x))]. (3)

As a two-class classification problem, we set the label of domain X to 0 and the label of domain
Y to 1. We train discriminators to classify not only accurate domains of real data, but also real x
closer to zero than fake x’ generated from F and real y closer to one than fake y’ generated from
G. On the other hand, G and F try to fool discriminators to classify y’ closer to one than y and x’
closer to zero than x, respectively. DX and DY try to minimize Eq (2) and Eq (4) and G and F try to
maximize Eq (4).

LCLS−ADV = Ex∼pdata(x),y∼pdata(y)[DX ,CLS(x)−DX ,CLS(FIMG(y))+

DY,CLS(GIMG(x))−DY,CLS(y)],
(4)

2.2.3. BACKGROUND CONSISTENCY LOSS

LG,CLS = BCE(G)+BCE(F). (5)

Unlike traditional image translation tasks, we want to cross-domain via transforming only the
instrument while maintaining the background. In our method, as in the case of the discriminator,
we added an auxiliary classifier for each generator to find out which region is important to classify
the domain via weakly supervised learning technique (Zhou et al., 2016; Singh and Lee, 2017) by
minimizing Eq (5). We set the label of domain X to 0 and the label of domain Y to 1 exactly
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like 2.2.2. By utilizing that region as a format of attention map, we try to find out where the
instrument is in the given image without ground truth mask and transform the target instance only,
while maintaining the background by minimizing Eq (6).

LBG−CONSIST = Ex∼pdata(x),y∼pdata(y)[‖(x−GIMG(x))⊗ (1−GAT T (x))‖1+

‖(y−FIMG(y))⊗ (1−FAT T (y))‖1].
(6)

2.2.4. CYCLE CONSISTENCY LOSS

In the task of unpaired image-to-image translation, it is known that adversarial losses are not enough
to guarantee the mapping between an input and the desired output because random data of target
domain distribution can be generated when only adversarial loss functions are optimized. Since the
task we address is to change only the instrument while maintaining the background, an input i and
GIMG(i) or FIMG(i) must have one-to-one correspondence in theory. Cycle consistency loss is a great
help in this context and we train G and F to minimize this objective.

LCYC−CONSIST = Ex∼pdata(x),y∼pdata(y)[‖x−FIMG(GIMG(x))‖1+

‖y−GIMG(FIMG(y))‖1].
(7)

2.2.5. FULL OBJECTIVE

To sum it up, the full objective functions to optimize discriminators and generators are as follows,
respectively.

LD = Ladv +λCLS ∗ (LD,CLS +LCLS−ADV ). (8)

LG =−Ladv +λCLS(LG,CLS−LCLS−ADV )

+λ BGLBG−CONSIST +λCYCLCYC−CONSIST .
(9)

For hyper-parameter setting, we set λCLS = 1, λ BG = 10 and λCYC = 10.

3. Experiments and results

3.1. Dataset

With 8 surgery videos using the daVinci Surgical System, we label frames having only one corre-
sponding instrument. Since we found that bipolar is common and cadiere is rare relatively among
all surgical instruments, we chose these two instruments to conduct experiments and finally, we built
our surgical instrument dataset, consisting of 29,207 images where 15,344 are bipolar and 13,863
are cadiere.

3.2. Experiemental settings

We compare DavinciGAN with baseline models such as DiscoGAN and CycleGAN. The size of
input and output images in our experiment is 256×256. For this setting, we added extra parameters
to DiscoGAN addressing 64× 64 size originally to equalize the number of learnable parameters.
We adopt an Encoder-Decoder architecture which can be better in realizing appearance changes for
our generators. Our discriminator uses 32× 32 PatchGAN (Isola et al., 2017; Li and Wand, 2016;
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Figure 3: Additional translation results (a): bipolar→ cadiere and (b): cadiere→ bipolar. From
left to right: input, DiscoGAN (Kim et al., 2017), CycleGAN (Zhu et al., 2017), Davin-
ciGAN (ours).

Ledig et al., 2017; Zhu et al., 2017) to classify whether patches are real or fake with the spatial
information. Our network also used CBAM bottlenecks (Woo et al., 2018) between layers to get
better performance of self attention.

We have chosen a mini-batch size of 8, and only horizontal flip was used as a data augmentation
technique. Furthermore, we use the Adam optimizer (Kinga and Adam, 2015) with learning rate of
0.0002, β1 of 0.5 and β2 of 0.999. All models are implemented using Tensorflow and trained on a
NVIDIA TITAN Xp GPU.

3.3. Results

3.3.1. QUALITATIVE RESULTS

Figure 3 shows our qualitative results on our surgical instrument dataset. DavinciGAN generated
more convincing results than two baselines, DiscoGAN and CycleGAN. While maintaining the
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overall structure of background and surgical aids such as gauze, DavinciGAN transformed candidate
instruments into target instruments by causing shape changes. In spite of trying various settings
such as tuning the learning rate and the learning ratio between generator and discriminator per
iteration, we found that DiscoGAN falled into mode collapse. This seems to be due to the fact
that there is no constraint on the first translation such as background consistency loss function
while handling complex images with organs, blood vessels and surgical aids (e.g., gauze, needle).
CycleGAN adopts a fully convolutional ResNet structure (Johnson et al., 2016) which is known
to be advantageous in generating high resolution images with little change in input. Although
it maintains the structure of an input image well, it has difficulties in making variations to the
candidate instrument with no constraint such as domain adversarial loss function.

3.3.2. QUANTITATIVE RESULTS

Table 1 shows the quantitative results of instrument classification utilizing the fixed real data and
synthetic data generated by each model as training data. In consideration of the difficulty to collect
surgical image data, the experiment was conducted with limited training data. We trained GAN-
based models on 3,987 images where 2,419 are bipolar and 1,568 are cadiere from three videos.
For instrument classification task, we used 500 real data and 500 synthetic data for each instrument
as training data while leaving all images of the remainder five videos as test data. For all cases,
ResNet50 (He et al., 2016) trained until convergence. As a result, although DavinciGAN used less
parameters than two baselines, it was superior to baselines in test accuracy and even competitive
with additional real data.

Table 1: Classification performances and the number of parameters for each method.

Dataset Method # of parameters Accuracy (%)
Real 1000 - - 58.84

Real 1000 + Synthetic 1000 DiscoGAN 67M 57.91
Real 1000 + Synthetic 1000 CycleGAN 56M 58.61
Real 1000 + Synthetic 1000 DavinciGAN 31M 61.34

Real 2000 - - 62.31

4. Discussion

4.1. Self attention via weakly supervised learning

Figure 4 (a) visualizes attention maps from generators and reversely attended input for each instru-
ment. Reversely attended inputs which are utilized for the background consistency loss tend to hide
instruments’ head which is discriminative features to identify which instrument it is. We introduced
self attention mechanism via weakly supervised learning to capture the position of instrument to
transform without ground truth mask data. However, there are failure cases caused by the failure
of attention. When generators classify the instruments, it tends to attend to the surgical aids, such
as a gauze or the User Interface of daVinci surgical system, as well as the instrument’s shape. As
a result, we found that undesired attention maps are generated as shown in Figure 5. Since certain
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Figure 4: How the generated attention is utilized in DavinciGAN and the visual analysis of the
background consistency loss. (a): Attention maps produced by generators. Attended
input shows discriminative features such as the head of instruments. On the other hand,
reversely attended input which is utilized for the background consistency loss tends to
hide discriminative features of the instrument. (b): Without the background consistency
loss, the bipolar is generated at an arbitrary position, but with background consistency
loss, it is generated at the position of cadiere.

instruments tend to appear only in certain situations, classifier also tends to predict an output us-
ing other discriminative features rather than the instrument itself. As mentioned in section 3.3.2,
limited data was used as training data due to the consideration of challenges to collect rich surgical
video data. Surgical videos of more diverse surgeons will increase the appearance of instruments in
orthogonal contexts, which can improve the performance of attention.

4.2. The effectiveness of background consistency loss

Interestingly, as shown in Figure 4 (b), the background consistency loss shows an intuitive result.
Without the background consistency loss, our network generated a synthetic bipolar in the upper
right side while hiding the cadiere by changing its color. This is because generators can fool dis-
criminators by generating target instruments at any location, which is not a desired output for us.
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Input Attention Output

Figure 5: Failure cases of DavinciGAN with undesired attention maps. Attention maps from
generators focus on gauze and User Interface of daVinci Surgical System, not on the
shapes of instruments. With these undesired attention maps, generators produced unde-
sired outputs.

However, with the background consistency loss, our network shows its capability to generate the
target instrument at the desired position.

5. Conclusion

In this paper, we propose a novel generative adversarial network, DavinciGAN which transforms
only surgical instrument while maintaining the background. This is achieved by the domain adver-
sarial loss function and the background consistency loss function. We have showed qualitative and
quantitative results on how useful generated data can be as training data compared to two baselines
such as DiscoGAN and CycleGAN. One of advantages with our method is that DavinciGAN uti-
lizes the self attention mechanism through weakly supervised learning approach so that we do not
require any other annotation data like segmentation masks.
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