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An Edge-Weighted Centroidal Voronoi Tessellation
Model for Image Segmentation

Jie Wang, Lili Ju, and Xiaogiang Wang

Abstract—Centroidal Voronoi tessellations (CVTs) are special
Voronoi tessellations whose generators are also the centers of
mass (centroids) of the Voronoi regions with respect to a given
density function and CVT-based methodologies have been proven
to be very useful in many diverse applications in science and
engineering. In the context of image processing and its simplest
form, CVT-based algorithms reduce to the well-known k-means
clustering and are easy to implement. In this paper, we develop an
edge-weighted centroidal Voronoi tessellation (EWCVT) model for
image segmentation and propose some efficient algorithms for its
construction. Our EWCVT model can overcome some deficiencies
possessed by the basic CVT model; in particular, the new model
appropriately combines the image intensity information together
with the length of cluster boundaries, and can handle very sophis-
ticated situations. We demonstrate through extensive examples the
efficiency, effectiveness, robustness, and flexibility of the proposed
method.

Index Terms—Active contours, centroidal voronoi tessellations,
clustering, edge detection, image segmentation.

I. INTRODUCTION

EOPLE have benefited a lot from technological advances
P in communications, entertainment, medicine, mapping,
and manufacturing [2], [15], [20], which are often brought
by the development of image processing techniques. Typical
image processing includes image enhancement, restoration,
compression and segmentation. These techniques are widely
used in computer vision, feature detection, medical image
processing, morphological image processing, remote sensing,
and so on. To further develop these techniques and apply
them in more sophisticated situations, we first need a better
understanding of images. Clustering is one of the very powerful
tools for retrieving generic structural information from a large
set of data [9], [20]. Roughly speaking, clustering classifies a
large data set into smaller data groups, such that the data in
each cluster share some similarities [16], [21] which can be
specified according to different applications. In the context of
image processing, the data sets take the form of images.
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The model of centroidal Voronoi tessellations (CVTs) [10]
has been introduced to numerous fields and applications such
as image processing, data analysis, computational geometry,
sensor network, numerical partial differential equations, cel-
lular biology, statistics, and the territorial behavior of animals
[10]-[12], [19], [22], [25]. In its simplest form, CVT-based al-
gorithms reduce to the well-known k-means clustering tech-
nique. When applying the CVT model to image segmentation
problems, the partition of a data set actually becomes an opti-
mization process of choosing generators with respect to a spe-
cial energy. Much of the effectiveness of CVT-based algorithms
originates from this feature in image segmentation and other
image processing applications. Moreover, CVT provides a gen-
eral framework for the energy minimization process and al-
lows convenient improvements, substantial generalizations of
existing clustering strategies.

The central task of image segmentation is to partition an
image into subsets so that the elements of each subset share
similar attributes and properties. Once the partition is deter-
mined, we can easily identify the boundaries or edges which
separate the clusters. In the past few years, there have been
many methods developed for image segmentation, see [2]-[9],
[14], [15], [20], [28], [31], [34], [35], [38], and references cited
therein. Some of popular and successful techniques include
the level-set method [4], [6], [31] which is typically a partial
differential equation based variational method and spectral
clustering algorithm which is an eigenvector based method
[28]. More recently, graph-based algorithms have attracted a
lot of attentions as a highly efficient and effective approach of
partitioning the image into a small number of homogeneous
regions [18], e.g., see the state-of-the-art works done in [14],
[27], and [28].

In this paper, we improve the basic CVT-based clustering
method proposed in [12] and develop a new edge-weighted
centroidal Voronoi tessellation (EWCVT) model and corre-
sponding EWCVT-based algorithms for image segmentation.
Compared with some existing methods, our new method has
several desirable advantages.

* The mathematical model of EWCVT is easy to understand
and implement just like the basic CVT model, but its per-
formance in segmenting images over the CVT model is
much better, i.e., the segmentation results are more accu-
rate. The criterion we adopt to produce an “optimal” seg-
mentation is to minimize the edge-weighted clustering en-
ergy defined in Section III-A.

e The EWCVT model and its segmentation algorithms can
be directly and easily applied to handle multiclusters situa-
tions [12], i.e., dividing an image into any specified number
of clusters. It is well-known that the level set based algo-
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rithms are often difficult to be generalized to deal with the
cases with more than two clusters, e.g., in the active con-
tour model [38], by adding more level set functions, the
number of clusters could be preset as 2" in which n is a
positive integer but the formulations would be very com-
plicated when n > 2.

e The new EWCVT-based algorithms are essentially clus-
tering algorithms like the k-means method, so they are
computationally much less expensive than the popular
level set based algorithms, especially when the number of
clusters is large. In addition, it is convenient to generalize
and refine the CVT-based algorithms to meet various ap-
plication requirements without substantially increasing the
computational cost [12] while the segmentation criterion
is generally sensitive to the graph-based segmentation al-
gorithms (even small changes of the criterion may result in
certain computational difficulty, like NP-hard [14], [23]).

* Each of the clusters produced by the EWCVT-based al-
gorithms for an image can consist of several unconnected
pieces in the physical space. This feature often enable us
to segment the image using small number of clusters com-
pared with other approaches.

In Section II, we review the basic CVT model and related
algorithms for image segmentation. The new edge-weighted
centroidal Voronoi tessellations model and corresponding im-
plementation algorithms are discussed in details in Section III.
Applications and numerical examples are then presented in
Section IV together with some discussions to demonstrate
the efficiency, effectiveness, robustness, and flexibility of the
proposed method. Some concluding remarks are finally given
in Section V.

II. CENTROIDAL VORONOI TESSELLATION AND
IMAGE SEGMENTATION

Image segmentation is a process of subdividing an image into
smaller pieces. In particular, the elements in each piece share
some common features, e.g., roughly the same color or same
brightness. The edges are naturally the boundaries between dif-
ferent segments of the image.

A digital image is often stored in the form of pixels, so an
image can be regarded as a function u defined on a domain 2 C
RY in the Euclidean space where the values of u represent the
colors or the gray levels of the pixels. In this paper, we consider
the most familiar images whose domains are 2-D rectangles, i.e.,
Q C R2. We note all of the ideas and algorithms below can be
easily applied to higher dimensional and nonrectangular images.
Let the values of u represent the intensities of the digital image.
Since the pixels of a digital image are usually indexed by integer
pairs, we can treat u as a discrete function defined over a set of
points with integer coordinates, i.e., the point (z,y) = (1,7),
where (4, j) are integer pairs that range over the image domain.
Thus, the domain of a rectangular image w is an index set D =
{(¢,4):i=1,...,I, j=1,...,J} for some positive integers
I and J.

A. Centroidal Voronoi Tessellation and Clustering Energies

Let U = {u(4, )} j)ep denote the set of (not necessarily
distinct) color values of the original image and W = { wl}lel a
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set of typical colors (or brightness levels). We can easily com-
pute the Voronoi region Vj, in U corresponding to the color wy,
which is defined by

forl=,1,...,L}

k=1,...,L ey

where | - | is some predefined metric measure. Note that in (1)
the differences between color values are compared instead of
the physical distances between pixels. The set V = {Vi}F | is
called a Voronoi tessellation or Voronoi clustering [30] of the set
U, color values of the original image. The set of chosen colors
W = {w,}E, are referred as the Voronoi generators. Clearly,
we have V; N'V; = Bif i # j and U = U}, V,. The Voronoi
tessellation V can be viewed as a special partition of U.

Given a partition of U, denoted by {U;}L_,, we normally de-
fine the centroid (center of mass or cluster means) of every cell
U, to be the color w; € U; that minimize

S uti ) - wl.

u(4,5)€U;

4 @
For an arbitrary Voronoi tessellation ({w;}/1;{Vi}[=;) of U,
we often have w; # @y forl = 1,..., L, where {1, }}-, are the
corresponding centroids of {Vz}lel- In other words, we gener-
ally can not expect the generators which generate the Voronoi
tessellation to happen to be the centroids of the corresponding
clusters.

Definition 1: 1If the generators of the Voronoi regions {V; }}-,
of U coincide with their corresponding centroids, i.e.,

wy =y, forl=1,...,L

then we call the Voronoi tessellation {V;}£ , a centroidal
Voronoi tessellation (CVT) [10] of U and refer to {w;}/—, as
the corresponding CVT generators.

We note that the CVT may not be unique for a given image
[10]. Therefore, determining a CVT of U is actually a process
to find a set of generators {w;}£ ; such that {w;}£ , are si-
multaneously the centroids of the associated Voronoi clusters
{Vi}E_,. The construction of CVTs often can be viewed as an
“energy” minimization process [10]. For a given image u and a
set of generators W = { wl}le, let us define the VT energy of
W as follows:

ByrW)= Y &vrli,j) 3)

(i’j)eD

where £y (7, ) denotes the VT energy of the pixel (4, 7) de-
fined as

“

Evr(i,j) = min |u(i,j) —wi]”

.....

More generally, for any set of points (color values)
W = {w}l~, and any partition U = {U;}}., of U, the
classical clustering energy of (W;U) can be defined as follows:

EW;U) =" Y fuli, ) —wil”

I=1 u(i,5)€eU,;

(&)
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Combining (1) and (3) together, we can actually rewrite the
VT energy as

EvrOV) =Y Y |u(i,j) —w|> = EOV;V)  (6)

=1 u(i,j)EV;

where V = {Vl}lel are the corresponding Voronoi regions as-
sociated with {w; }1,. The following result has been shown in
[10].

Theorem 1: The classical clustering energy E(W;U) is min-
imized only if (W;U) form a CVT of U, i.e, Y are Voronoi
regions of U associated with the generators WV and simultane-
ously W are the corresponding centroids of the regions /.

Suppose that we have determined the clusters {U, l}lel for a
given image represented in color space by (3, j) for (¢, j) € D.
Then there is a natural segmentation of the image, which has L
segments D = {D;}/~_, in physical space defined by

D, = {(L,J) u(LJ) S Ul}

Consequently, we can rewrite the clustering energy (5) in this
physical segmentation terminology as

L
EW;D) =) > luli,f) —wl* ()

=1 (i,j)€D,
Let us define
E(i,5) = lu(i, j) = e, .| (8)
where the function 7,: D — {1,...,L} tells which cluster

u(t, 7) belongs to, i.e., for any pixel (¢,5) € D
ru(inj) = I°, i (i,5) € Di- (i, u(i, ) € Ui). (9)
Then it also holds

EW;D)= Y &(i,j).

(i,7)€D

B. Basic CVT-Based Algorithms for Image Segmentation

Image segmentation is a quite direct application of CVT clus-
tering. The following algorithm can be used to construct CVT
clustering; see, e.g., [17], [36], and [37] for details.

Algorithm CVT-A. Given a positive integer L and a digital
image U = {u(4,7)}(i j)ep» choose arbitrarily L color values

{W}%:l-

1) Determine the Voronoi clusters {V;}L_, of U associated
with {wg}lel.

2) For each cluster V;, £ = 1, ..., L, determine the cluster
means Wy.

3) If w, and wy are the same, return ({w¢}{ 5 {Ve}ie,)
and exit; otherwise, set wy = wy for/ = 1,... L and
return to Step 1.

Algorithm CVT-A is also called the Lloyd algorithm [26]. It
is easy to see that steps 1 and 2 will result in a strict decrease
in the VT energy unless a local minimizer is reached. Thus, it is
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guaranteed that the algorithm will converge due to the compact-
ness of the VT energy. The complexity of Algorithm CVT-Ais,
in general, O(k x L x I x J) where k denotes the total number of
iterations. The initial set of color values should be chosen so that
none of the associated Voronoi clusters are empty. Since a dig-
ital image is a finite data set, the algorithm terminates in a finite
number of steps. However, it is often the case that a very good
approximation to the final CVT configuration can be obtained in
substantially fewer steps. For this reason, at each iteration, one
should calculate the VT energy of the current configuration and
terminate when that it is within some prescribed tolerance com-
pared with that of the previous configuration; In our segmenta-
tion experiments, we terminate the iteration when the change in
the energy is less than L% of the value of the current energy.

Algorithm CVT-A does not transfer elements of U from one
cluster to another until the end of each iteration, i.e., it does not
account for the change in the cluster means until all means are
computed. The following algorithm is an accelerated version
of Algorithm CVT-A that takes into account changes in cluster
means as soon as they are determined.

Algorithm CVT-B. Given a positive integer L and a digital
image U = {u(4, )} (i j)ep, choose arbitrarily L color values
{w¢}L_, and determine the associated Voronoi clustering

{Vetic,-

1) For every u(i,j) € U,

a) evaluate the VT energy for all possible transfers of
u(t, 7) from its current cluster V4 to any of the other
clusters Vi, k = 1,...,L, k # ¢,

b) if moving u(i, j) from its current cluster V; to the
cluster V,,, decreases the VT energy the most, then

i) transfer u(z, j) from cluster V; to cluster V,,,;
ii) replace wy and w,, by the means of the newly
modified clusters V; and V,,, respectively.
2) If no transfers occurs, return ({w,}f;;{V;}£ ;) and
exit; otherwise, go to Step 1.

Algorithms CVT-A and CVT-B result in a k-means clus-
tering (in color space) of the digital image. Both are guaranteed
to reduce the energy after every iteration, and finally converge to
a minimizer of the VT energy. Numerical experiments indicate
that Algorithm CVT-B is often more reliable than Algorithm
CVT-A [12] even though each iteration of the former is more
costly since one must determine the effect each potential transfer
has on the energy. The gain lies in the fact that an iteration of
Algorithm CVT-B leads to a larger decrease in the energy than
does an iteration of Algorithm CVT-A, and thus, a much smaller
number of iterations are required for Algorithm CVT-B for con-
vergence. A hybrid approach is also quite feasible in which one
starts with the Algorithm CVT-A and then switches to Algo-
rithm CVT-B. Presumably, after several iterations of Algorithm
CVT-A, only a very few of the more expensive iterations of Al-
gorithm CVT-B are needed to obtain accurate results.

The costs of Algorithms CVT-A and CVT-B may be reduced
at the price of increased storage. One recognizes that points that
are close to their current cluster means will likely not be trans-
ferred to another cluster. Thus, for Algorithm CVT-A, we do
not need to consider every point (7, j) when we determine a
new clustering; we only need to consider those points whose
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distances to their old cluster mean is larger than the average dis-
tance of all points in its cluster to the cluster mean. Similarly,
for Algorithm CVT-B, we do not need to loop over every point
u(4,7) € U; we only need to loop over points whose distances
to their current cluster mean are larger than the average distance
of all points in its cluster to the cluster mean. This modification
requires one to determine and store the average distance of each
cluster. However, such a strategy will roughly halve the cost of
each iteration of Algorithm CVT-B. It is obvious that a suitable
data structure that takes into account such stored information
with a quick searching algorithm could lead to a much more ef-
ficient implementation [25].

Another improvement to Algorithm CVT-B is not to compare
reductions in the VT energy for possible transfers to far away
clusters. Thus, in Step 1(a) of Algorithm CVT-B, one would
only consider clusters with means having a distance to the mean
of the current cluster for the point u (4, ) that is less than twice of
the distance from the point (%, j) itself to its own cluster mean.
Implementing this strategy requires the computation and storing
of the distances between cluster means, but it is very useful in
the case that the number of clusters L is very large since the cost
decreases by almost a factor of O(L~1).

We also note that Algorithm CVT-A is easier to parallelize.
For more discussions concerning algorithms for computing
CVTs including their parallelization, we refer to [12], [13], and
[22]. Once the CVT clusters are determined, the boundaries
could be easily detected. Let us define the edges to be the
boundary points (pixels) in the physical space of the images
between different clusters, i.e., (¢,7) € D; is an edge point if
one of its neighboring points belongs to a different segment
Dy, i.e., k # . Equivalently, (7, j) in the segment D, is an edge
point if (:*,5*) ¢ D, for some (i*, 7*) which is a neighbor of

(4, 7)-
C. Deficiencies in the Basic CVT-Based Segmentation

The CVT-based segmentation has been applied successfully
to images with homogeneous regions, each having a distinct
centroid, i.e., a mean intensity value of the associated CVT
cluster. From Section II-A, one sees that the CVT-based al-
gorithms use global intensity information while local informa-
tion is often ignored. The resulting segmentation may give us
too many details and sometimes those extra details may be just
noises [12]. Even worse, the objects may be too weak to be de-
tected by the CVT-based algorithm since they might be over-
whelmed by unwanted details.

InFig. 1, the original image describes a simulated noisy mine-
field. After it is divided into two clusters by the CVT-based seg-
mentation (Algorithm CVT-A or CVT-B), one still can not tell
where the minefield is, i.e., the CVT-based segmentation fail to
accurately identify which objects are mines and which are not.
InFig. 2, the CVT-based segmentation does a good job of identi-
fying the lights, but one fails to recognize the boundary between
the European landmass and the Atlantic ocean. These deficien-
cies stimulate us to look for new ideas to make CVT-based seg-
mentation more accurate and robust. Let us carefully examine
Figs. 1 and 2. Both images are divided into two segments by the
CVT-based clustering in the color space, however, these two
clusters are broken into pieces in the physical space of the im-
ages, i.e., the basic CVT-based segmentation gives us too many
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Fig. 1. Left: Original image of a simulated noisy minefield. Right: CVT-based
segmentation into two clusters.

®)

Fig. 2. Left: Original image of “Europe-at-night”. Right: CVT-based segmen-
tation into two clusters.

edges. From this observation, we may think that appropriately
employing the information of the edges in the physical space
into the CVT model will be useful in controlling the accuracy
of segmentation. In Section III, we will introduce an edge re-
lated energy into the classical clustering energy to derive our
new model.

III. EDGE-WEIGHTED CENTROIDAL VORONOI TESSELLATION
MODEL AND ITS IMPLEMENTATION ALGORITHMS

A. Edge Related Energy

Let us first define a new energy relevant to the edges for a
given clustering (W;U). One may find several ways to define
this energy. For example, in the most natural way, we may define
it as the total number of the edge points, i.e.,

I J
L= X(.j).

i=1 j=1

(10)

where X is certain characteristic function for the edge points
defined on D depending on (W;U).

Here we take a more general approach and define the edge
related energy as the sum of the number of edge points within a
predefined neighborhood of every pixel. To be rigorous, for each
pixel (¢, 7) € D, denote by N,,(4, ) alocal neighborhood for it,
which can be a w X w square centered at (7, j) or a disk centered
at (4,7) with radius w. Let us call any (7/,5') € N,(i,7) a
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neighbor point (or neighbor pixel) of (4, j). For each (3, j) € D,
define

F.i)= Y Xpld) (11)
(@,3") €N (4,5)
and then the total edge energy is given by
F= Y F(ij). (12)

(i,5)eD

It is easy to see that F is nonnegative and so does F'. In general,
we can expect lager value of F' means longer length of the edges
(i.e., more edge points), and vice versa.

Changing in the formula of F (4, j) in (11) can result in dif-
ferent form of the edge energy. In this paper, we define F (4, j)
to be the number of points in N, (¢, j) which does not belong
to the same cluster as that of the point (, 7). In other words, for
each (4, j) € D, we define a local characteristic function X{; ;:
No (i) — {0,1) as

X(z]) (il7j/) _ { 17 if Wu(ilvjl) ;é WM(LJ) (13)

0, otherwise.

Note that D; denotes the segments in the physical space of the
image associated with /. Now let us replace (11) by

>

(i':3") €N (4,7)

Ec(i,j) = A Xag(.q) (4

where ) is a positive weighting factor and then the total edge
energy is given by

Ec(D) =

(i,7)€D

5)

Note that the edge energy E, only depends on the clusters
{D;}E£ | in the physical space. If the neighbor (i’, ) of (4, 5)
belongs to a different cluster compared with that of (4, j), we
name such a neighbor pixel as an local edge point with regard
to (¢, 7). Thus, ££(4, j) actually is the weighted number of local
edge points with regard to the pixel (7, j). We note that a local
edge point associated with the pixel (Z, /) may not be a true edge
point at all.

Together with the classical clustering energy (7), we define
the following edge-weighted clustering energy as follows:

E(W;D) = E(W;D) + E.(D)
= > [€0,4) +Eclirg)]

(i,7)€D

= D> lu(i.g) —wlf

I=1 (i,5)€D,

+A > >

(i,5)€D (#,5")EN (i,5)

X 5 (i',5"). (16)
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Fig. 3. Purple shadow area is the set of local edge points associated with (z, )
defined in (14). Point (x, y) is the center of the circle.

The second term, the edge energy will play a crucial role in our
new model. Our goal is to find a clustering (W; D) that min-
imizes the edge-weighted clustering energy (16). By carefully
examining (14), one may notice that the variation of edge energy
due to the transfer of pixel (4, j) will fall into two parts: one is
from the edge energy variation of pixel (¢, 7) itself and the other
is from the edge energy variation of pixels inside N, (%, j).

B. Relation Between the Edge Energy and the Boundary
Length

All definitions and discussions above are for the discrete case:
D ={(i,5) :i=1,...,I, 5 =1,...,J} is a discretization
of the image domain. Now let us assume that the image u is a
continuous function over the bounded domain Q2 € R2. We will
show that there exists an asymptotic relationship between the
edge energy and the boundary length in the continuous case.

Assume that a smooth curve I" divides {2 into two clusters
C4 and Cs (in the physical space). We let N, (z,y) be a disk
centered at (z,y) € Q with radius w. Under these notations, the
edge energy (14) of the point (z,y) is

52(1)3/) =Xe€ tNu(z,y)X(a:,y)(xlvyl)dx/dy/ (17)

and the total edge energy (15) in the continuous case is given by

EZ(D) = € to€i(z, y)dudy
=AEtg € th(m,y)X(m,y)(x',y')d:v'dy'. (18)

Without loss of generality, let us assume (x,y) € Cs. Then
(17) gives the weighted area of N, (z,y) N Cy. Assume that w
is small enough, then the intersection of I" and N, (z, y) can be
viewed as a straight line segment (Fig. 3). The edge energy of
the point (z, y) is equal to the weighted area of N, (z,y) N Cy,
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i.e., the purple shadow area in Fig. 3 multiplied by ), which can
be written as

E&(2,y) = Mw?d — w?sinf cos )
= A(f — sin 6 cos O)w?. (19)
Note that h = w cos § denotes the distance from (z, y) to C.
Now we can rewrite the edge energy as

E;(D) = € ta€i(z,y)drdy
=2\ € t¢ € tr(0 — sinf cos #)w?dldh

=2\ € tg/Q € tr(f — sin f cos 0)w? (wsin 0)dldh

=2Xw? € t7/%(0sin § — sin 0 cos §)d6 € trdl

= %AJ’H (20)
where H =€ trdl is the length of the boundary curve I'. There-
fore, we obtain a proportional relation between the total edge
energy and the length of the boundary.

For simplicity, our proof is given only for the case of two
clusters. For the cases with more than two clusters, the proof can
be generalized correspondingly and the relation (20) still holds.
The difference only occurs around the intersections of more that
two boundary curves, but for a sufficient small w, the effect of
those intersections can be ignored compared to the total length
H. We also note that when N, (x, y) is aw X w square centered
at (x,y), then we will have a similar relation such as

ES(W;D) = ar ®H

where ar is a constant depending on the position and shape of
the curve I'.
The relation (20) indicates that the relationship between the
weight A and the radius of the neighborhood w is
1
A~ —

w3

when the total edge energy is fixed.

C. Edge-Weighted Distance

Now we construct an edge-weighted distance function to
measure the distance from a pixel to a generator. We want to
guarantee that moving a pixel to the associated cluster of the
generator to which it has the shortest edge-weighted distance
decreases the total edge-weighted clustering energy the most.

Let us rewrite (16) as

EW:D) = (i’ ') = Wy ir 1) |2
(1,3")€D\(i.1)

+ |u(LJ) - wﬂu(i7j)|2

+ oo &l
(i,3") €D\ (4,5)

+&c(i,9). 21
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Now we need to determine variation of the total edge-weighted
clustering energy when we transfer a pixel (7, j) from its current
cluster D to another cluster D,,,. Obviously, the first term in the
right-hand side of (21) has no change. The change of the second
term is given by

[u(is ) = win]* = [u(i, j) = wi ], (22)
Now, let us denote by n(4, j) the number of pixels within Dy N
N (%,7)\ (4, 7). Before we move the pixel (i, j), its edge energy

18

EL(ZJ) =A

>

(@,3")ENw (i.7)

>

ke{1,...LY\{}

X', 5"

=A nk(ZJ) (23)

Similarly, after we transfer (4, j) to cluster D,,, its edge energy

changes to

(i/’jl)eN’LU (7’71)
ke{l,...,.L}\{m}

(24)

Clearly, the change in the fourth term &, (i, 7) after the transfer-

ring is
ke{1,...,LI\{1}

A > ni(i, j) — A
ke{l,..,.L}\{m}

(25)

Now let us consider the change of £, (4’, j') due to the moving
of the pixel (4, j) from cluster D; to D,,. If pixel (¢’, j) is out-
side of N,,(4, ), the moving of (7, ) will not affect this term.
Suppose that (', j") € Ny(4,5) N Dp. If p # [, m, obviously
there is no change in the edge energy £.(i’, j'). If p = [, moving
(i,7) out of cluster D; will increase the edge energy by A. If
p = m, moving (¢, 7) into the cluster D,,, will decrease the edge
energy by \. Therefore, the change of Z(i,’j,)eD\(i,j) Ec(i',5")
is

Summing (22), (25), and (26) together, we then obtain the
variation of the total edge energy & (W) due to the transferring
of the pixel (¢, j) from D, to D,, as follows:

[u(i, §) = win[* = Ju(i, 7) = wil* + 2X(n4(3, §) = nn (i, 7))
which can be rewritten in a more symmetrical way as

(|u(57J) - wm|2 - 2)‘nm(LJ))
— (Ju(i, §) = wi|* = 2An(3,5)) . (27)

Now let us define the edge-weighted distance from a pixel
(7,7) to a generator wy, as

dist((7, 5), wi) = V/]uli, j) — we]? + 2 . (3,5)  (28)
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where 71,(7, j) = [Ny (4, 5)| —n (7, §) — 1, the number of pixels
within N, (4, 7) \ (Dx U (4,7)). Note that this distance beauti-
fully combines the color information together with the physical
information of the pixel (4, 7).

In conclusion, moving a pixel to the cluster of a generator to
which it has the shortest edge-weighted distance defined by (28)
will decrease the edge-weighted clustering energy E (W; D) the
most.

D. Edge-Weighted Voronoi Regions

Given a set of generators VW = {wl}le in the color space,
we define the the edge-weighted voronoi regions D = {D;}L
in the physical space D by

Dy ={(i,5) € D : dist((4, ), w;) < dist((4, ), wp)

(29)

If the generators WV are fixed, then it is obvious that the edge-
weighted Voronoi tessellation {D; }/_; corresponds to the min-
imizer of the edge-weighted energy E(W, D), i.e.,

D = argming, E(W; D).

We then define the EWVT energy for a given set of generators
W = {wi}i~, by

EEVVVT(W) = E(Wv 25) (30)

where D are the edge-weighted Voronoi regions associated with
W. The following algorithm can be used to efficiently construct
the edge-weighted Voronoi regions.

Algorithm EWVT. Given a set of generators W = { wibE .
Choose an arbitrarily partition {Dl}lL:1 in the physical space
of the digital image U = {u(i, j)} i j)en-

1) For every (i,7) € D,

a) calculate and compare the edge-weighted distance
defined in (28) from the point (i, 7) to all of the
generators {w; }=_;

b) move the point (4, j) to the cluster whose generator
has the shortest edge-weighted distance to it. (Note
that this also equivalently results in an update of the
partition {D;}/ ). N

2) If no point is moved, return {Dl}lL=1 and exit the loop;
otherwise, go to Step 1.

It is obvious that Algorithm EWVT leads to strict decrease in
the EWVT energy until an edge-weighted Voronoi tessellation
of D is found. The algorithm terminates in a finite number of
steps because the digital image is a finite data set.

E. Edge-Weighted Centroidal Voronoi Tessellations: Model
and Algorithms

Algorithm EWVT determines the edge-weighted Voronoi re-
gions D = {D;}E_, for a given set of generators. By the spirit
of CVTs, we also need a way to determine the corresponding
edge-weighted centroids of {D;}£ |, i.e., the minimizer of the
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edge-weighted energy E(* 5) (D are now fixed). In fact, ac-
cording to (16), it is easy to see that the edge-weighted cen-
troids are exactly the standard CVT centroids of {D;}£_, since
the edge energy £, (i, j) at each pixel (i, j) is fixed. Explicitly,
the edge-weighted centroid for each D; is given by

= — 3 u(ij) G1)
|Dif =
(i,5)€D
where | Dy is the number of pixels in D;.

Definition 2: For a given edge-weighted Voronoi tessellation
({’l[)l}ll’zl; {l~)l}lL:1 of D, we call it an edge-weighted cen-
troidal Voronoi tessellation (EWCVT) of D if the generators
{w }-, are also the corresponding centroids of the associated
edge-weighted Voronoi regions {D;}& ;.

Then it is easy to prove the following result about EWCVT
from the above analysis. R ~

Theorem 2: The edge-weighted energy £(WV;D) is mini-
mized only if (W;D) form a EWCVT of D, i.e., D are edge-
weighted Voronoi regions of D associated with the generators
W and simultaneously WV are the corresponding centroids of the
regions D.

The following algorithm can be used to apply the EWCVT
model to the application of image segmentation.

Algorithm EWCVT-A. Given an integer . and choose
arbitrarily a partition {D;}~ , of the digital image
U = {u(i,j)}ij)eb-

1) For each cluster l~)l, l=1,...,L, determine its cluster
centroid w; by (31).

2) Take {w}[ , as the generators, determine the
corresponding edge-weighted Voronoi clustering
D’ = {Dj}{, according to Algorithm EWVT.

3) If the edge-weighted Voronoi clustering { D]}~ | and
{D,}_, are the same, return ({wl}le; {ﬁl}le) and

exit the loop; otherwise, set l~)l = l~?; forl=1,...,L
and go to Step 1.

Note that steps 1 and 2 will result in a strict decrease in the
EWVT energy until a local minimizer is reached. Thus, it is
guaranteed that the algorithm will converge a minimizer of the
EWVT energy and terminate in a finite number of steps. The
initial set of clusters should be chosen such that none of the
clusters { D} | is empty.

In step 2 of Algorithm EWCVT-A, the point transferring be-
tween clusters is made immediately but the generators will not
be updated until the loop goes back to step 1. Allowing up-
date of the generators by the centroids of the clusters after every
pixel transferring again can result in the following accelerated
version of Algorithm EWCVT-A, where the configuration will
be changed immediately after a point is determined to transfer
from its current cluster to another one. In other words, the point
(pixel) will be transferred in the current iteration step and the
cluster centroid will be re-calculated before dealing with the
next point of the data set.
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Algorithm EWCVT-B. Given an integer L and

choose arbitrarily a partition { D}, of digital image

U = {u(i, )} j)ep- Determine the centroids {w;}{~; of
{D,}L_, and take them as the generators.

1) For every (i,7) € D:

a) calculate and compare the edge weighted distance
defined in (28) from the point (¢, j) to all the
generators {w; } 1 ;;

b) transfer the point (3, j) to the cluster whose generator
has the shortest distance to it, say, from D; to D,,;

¢) replace w; and w,, with the centroids of the newly
modified clusters D; and D,,, respectively.

2) if no point is moved, return ( {w; }{L; {ﬁl}le and exit
the loop; otherwise, go to Step 1.

Both Algorithms EWCVT-A and EWCVT-B will definitely
converge to a local minimizer of the EWVT energy. It is also
clear that Algorithms EWCVT-A and EWCVT-B will reduce
to the CVT-based algorithms CVT-A and CVT-B respectively
when the weight A = 0 or the size of the neighborhood w =
1, i.e., no other points in a point’s neighborhood except itself.
The nature of Algorithm EWCVT-B, i.e., real time modification
of the configuration in each iteration, leads to a larger energy
decrease each step than that of Algorithm EWCVT-A as usual,
and thus Algorithm EWCVT-B is often faster. The complexity
of Algorithm EWCVT-B is O(k x w? x L x I x .J) where k
denotes the number of iterations, so it is more expensive than the
CVT-based algorithms. Note that, in most practical cases, we
again do not need to wait until the condition to exit the loops is
strictly satisfied for in both algorithms. In fact, we will calculate
and record the EWVT energy of the current configuration at
each iteration. If the decrease of the EWVT energy is within
some prescribed tolerance, the algorithm will be terminated. In
our numerical experiments, we stop the iteration [12] if

lé&iiz:¥£%l < L%.

i

(32)

Adjusting the prescribed tolerance of the energy may result in
slightly different final EWCVT configuration. The EWCVT-
based algorithms provide us an effective way to control the seg-
mentation accuracy.

There are a lot of accelerating strategies for determining
CVTs [12], [25], [32]. Most of them are also applicable to
our EWCVT model. We just need to replace the VT energy
with the EWVT energy in any of the accelerated strategies.
Presumably, the points close the segment boundary are most
likely to be moved in each iteration step. Thus, we can only
consider the moving of edge points at each iteration in Algo-
rithms EWCVT-A and EWCVT-B. In practice, this scheme
has been proven to be a satisfied strategy for acceleration pur-
pose. Certainly, one also can implement a hybrid approach in
which one starts with Algorithm EWCVT-A or EWCVT-B by
evaluating all of the points and then switches to the scheme of
evaluating the edge points only. Another possible improvement
may be first carrying out the basic CVT clustering (Algorithm
CVT-A or CVT-B) and then switching to the EWCVT-based
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algorithms with the CVT clusters as the initial guess since the
CVT clustering can quickly find a very good initial configura-
tion for the EWCVT-based algorithms (this approach is used in
most of our numerical examples).

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we will discuss the selection of parameters
in our EWCVT model for image segmentation and present re-
sults obtained by applying our EWCVT-based segmentation al-
gorithms to various synthetic and real images from different
modalities.

A. Principles of Determining Parameters

There are two parameters in our EWCVT model: A as the
weighting factor used to balance the classical clustering energy
in the color space and the edge energy involving the physical
space, and w as the size of the neighborhood for each pixel used
to control local details of the image. The final segmentation re-
sults are effected by both parameters, i.e., A and w determine
the segmentation accuracy of the proposed method in some ex-
tend. Therefore, we need to carefully select these parameters in
order to obtain satisfactory segmentation results for given im-
ages. Some principles of determining the parameters are dis-
cussed below.

The EWCVTs are constructed through evaluating the EWVT
energy of each point/pixel and minimizing the total sum. Note
that the EWVT energy of each point consists of two parts: one
is the classical clustering energy F(W; D) and the other is the
edge energy E (D). In order to avoid any one of these two en-
ergies dominates during the construction process, we need to
make sure that they are almost kept in the same order of magni-
tude, i.e., the weighting factor A should be chosen such that

max{E(W; D), Ec(D)}
min{ E(W; D), Ec(D)}

<C (33)

holds for some positive constant C'. Without explicit declaration,
A in our experiments is always chosen to satisfy (33) with C' =
10.

In our experiments, we take N, (7, ) to be a w X w square
centered at (7, j) (One may choose it to be a circle with radius
w too). The segmentation results are clearly dependent on the
values of w. Generally speaking, a larger w can eliminate more
noises, while a smaller w can be more accurate in finding details
of the image. If the noises take the form of a bunch of uncon-
nected blocks in the physical domain, our experiments show that
all noise blocks whose diameters are less than w will be elimi-
nated after the segmentation. Thus, the selection of w often de-
pends on the scale of the noises of the given image.

The principles presented here are guidelines for choosing pa-
rameters to obtain satisfactory segmentation results in most situ-
ations. Certainly, sometimes one may want to set the parameters
to meet some other requirements for certain purposes.

B. Illustration of the Effect of Parameters and Initial Clusters

In our numerical experiments, most of the examples pre-
sented below only take a few iterations (for the EWCVT-based
algorithms to stop) to obtain the final segmented images
due to the use of CVT clusters as the initial configuration
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for the EWCVT-based algorithms. For these examples, we
will provide all of the intermediate images obtained during
the segmentation process. For other examples which require
much more iterations due to a simple initial configuration,
only some typical intermediate images will be presented. For
all example in this paper, the first image presented will be
the original image and the second and last one will be the
image of the initial clusters and the final segmentation of the
EWCVT-based algorithms, respectively. We also note that
the outcomes of Algorithms EWCVT-A and EWCVT-B are
essentially the same (maybe a very slight difference) since they
are just different implementation schemes for the construction
of EWCVT of the same image. Thus, we only test Algorithm
EWCVT-B since it it generally more efficient than Algorithm
EWCVT-A as discussed in Section III-E). Information about
the parameters w and )\, image size, number of iterations, and
CPU time will be listed in the caption of each example figure.
The experiments are performed on a Compaq Presario PC with
Core Duo 1.66-GHz processor and 1.0-GB RAM.

Fig. 4 shows the segmentation result of Algorithm
EWCVT-B applied to a heavily noised synthetic image.
The original image consists of three separated geometric ob-
jects in a noisy background. In order to show the difference in
segmentation between the CVT-based model and the EWCVT
model, in this example, we first carry out a CVT-based seg-
mentation algorithm (Algorithm CVT-B) to the original image
to get a CVT clustering with two clusters (see the first image of
the second row in Fig. 4), then the CVT clusters are used as the
initial configuration for Algorithm EWCVT-B to compute the
EWCVT segmentation. Totally only 2 iterations are needed for
Algorithm EWCVT-B to stop in this example. It is clear that
the EWCVT model does generate better segmentation than the
basic CVT model in this example, i.e., the boundary between
segments is smoother and Almost all background noises are
removed. We also plot the edge-weighted clustering energy
E(W,D) (i.e., the EWVT energy Epwyr(W)), the classical
clustering energy F(W, D) and the edge energy E.-(W,D)
respectively in Fig. 4 (bottom row). From the energy plot, we
observe that:

1) As we expect, the edge-weighted clustering energy (16)
keeps decreasing during the iterations of Algorithm
EWCVT-B. This shows that our algorithm is truly a
monotonic energy minimization process with respect to
EWVT energy.

2) The classical clustering energy keeps increasing during
the iteration. As stated above, we take the CVT clustering
as the initial clusters. Note that the clustering energy
E(W,D) (i.e., the VT energy Evr(W)) is minimized by
the CVT-based algorithms. Thus, the clustering energy of
the initial guess is the minimum among all iterations. Our
algorithm decreases the edge-weighted clustering energy
but the classical clustering energy may increase along the
iterations.

3) The edge energy keeps decreasing. Observing that in the
first image of the second row, there are a lot of edge points
since the CVT clusters give us a bunch of unconnected
noise blocks. During the construction process of the
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Fig. 4. Detection of three geometric objects from a noisy background using
Algorithm EWCVT-B with the CVT clustering (2 clusters) as the initial config-
uration; image size = 100 X 100,w = 5, A = 0.02, 2 iterations, CPU time
= 0.89 s. Top row: Original image; second row: results after 0, 1, and 2 itera-
tions; bottom row: plot of variations of the energies.

EWCVT, most of the noise blocks are eliminated; thus,
the number of edge points reduces significantly.

4) In addition, the decrease of the edge energy bypasses
the increase of the clustering energy; thus, the total
edge-weighted clustering energy decreases.

Our EWCVT model and algorithms are also quite robust in
removing the noises. The original image in Fig. 5 is a similar but
much more heavily noised synthetic image compared with that
of Fig. 4. Algorithm EWCVT-B still works very well for this
example and the computational cost only increase by 1 iteration
(CPU time increases by 0.43 s). The variations of the energies
again have similar patterns as that of the previous example.

The effect of the parameter A and the role of the edge energy
in the EWCVT model are well illustrated in Figs. 6-8 where
Algorithm EWCVT-B is applied to the image of three separated
balls in a homogeneous background, with different values of the
parameter A = 0.01, 0.05, 0.2. If A is smaller, then more details
of boundary between segments the EWCVT model can be de-
tected, and the segmentation result is closer to that obtained by
the basic CVT model; if ) is larger, then the EWCVT model will
more likely group the objects in the image together, and, thus,
the boundary of final segmentation is shorter and smoother. It is
easy to see verify these points from what happens in Figs. 6-8.
Equation (14) implies that the edge energy is proportional to
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Fig. 5. Detection of three geometric objects from a noisy background using
Algorithm EWCVT-B with the CVT clustering (2 clusters) as the initial config-
uration; Image size = 100 x 100,w = 5, A = 0.01, 3 iterations, CPU time
= 1.32 s. Top row: original image; second row: results after 0, 1, and 3 itera-
tions; bottom row: plot of variations of the energies.
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Fig. 6. Detection of three balls using Algorithm EWCVT-B with the CVT clus-
tering (2 clusters) as the initial configuration. Image size = 6 X 64, w = 5,
A = 0.01, 2 iterations, CPU time = 0.43 s.

A. Algorithms EWCVT-A and EWCVT-B are all monotonic
minimization processes for the EWVT energy, larger A leads
to a shorter edge length due to the second term in (16). It is
easy to see that the grouping based on the so-called Kanizsa’s
“proximity rule” happens when A\ = 0.05 (Fig. 7) and A = 0.2
(Fig. 8). Among Figs. 6-8, X in Fig. 8 is smallest and gives us
the shortest boundary.
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Fig.7. Grouping of three balls based on Kanizsa’s “proximity rule” when using
Algorithm EWCVT-B with the CVT clustering (2 clusters) as the initial clusters.
Image size = 64 x 64,w = 5, A = 0.05, 4 iterations, CPU time = 0.57 s.
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Fig. 8. Grouping of three balls based on Kanizsa’s “proximity rule” when using
Algorithm EWCVT-B with the CVT clustering (2 clusters) as the initial config-
uration. Image size = 64 x 64, w = 5, A = 0.2, 4 iterations, CPU time
= 0.57s.

As stated above, w should be chosen according to the size of
the noise blocks. In Fig. 9, Algorithm EWCVT-B with two clus-
ters is applied to detect an airplane from a noisy background.
We set w to be 9 (that almost means that the largest diam-
eter of the noise blocks which can removed after segmenta-
tion is 9). In this example, the initial two clusters of D are de-
fined as follows: one is the set of all pixels inside the circle
{(LJ) €D :/(i—50)2+(j —50)2 < 40} and the other is
the set of all remaining pixels. As shown in Fig. 9, almost all
noise blocks are eliminated after the segmentation. On the other
hand, some parts of the airplane are also missing in the final
segmented image. The reason is the size of some noise blocks
is comparable with, or even bigger than those of certain parts of
the airplane in the original image. In order to balance both influ-
ences, we surely need to use a more appropriate w. Let us change
w to a smaller value, say 5 and keep all other settings the same.
The segmentation results are presented in Fig. 10. Although
there are some noise blocks left in the final segmented image,
all of important features of the airplane are well preserved and
overall we obtain a better segmentation for this image.
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Fig. 9. Detection of an airplane from a noisy background using Algorithm
EWCVT-B with 2 clusters. Image size = 100 x 100,w = 9, A = 0.00015,
37 iterations, CPU time = 7.42 s. The images except the original one are from
iteration 0, 31, 34, 36, 37, respectively.

Fig. 10. Detection of an airplane from a noisy background using Algorithm
EWCVT-B with 2 clusters. Image size = 100 x 100, w = 5, A = 0.00015,
34 iterations, CPU time = 5.26 s. The images except the original one are from
iteration 0, 16, 26, 31, 34, respectively.

We also would like to remark that our EWCVT-based algo-
rithms are quite robust with respect to the selection of initial
clusters. In Figs. 11 and 12, we present the segmentation results
of Algorithm EWCVT-B with two clusters applied to the image
of a group of well-organized balls, with different initial clusters
(the second image in each of the figures). Grouping based on
chromatic identity happens in both examples. The results show
that the final segmented images are almost the same although the
initial clusters are quite different. We also note that in Fig. 12
much more iterations are needed due to the much worse initial
configuration compared with that in Fig. 11 where the initial
CVT clusters already identify the six balls quite well.

C. More Two-Cluster Examples

In Fig. 1, we have shown the deficiency of the CVT-based
segmentation to accurately identify the minefield when it is
applied to a simulated noisy minefield image. We apply the
EWCVT-based segmentation to the the same original image
and the segmentation results are presented in Fig. 13. It takes
2 iterations for Algorithm EWCVT-B with the CVT clustering
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Fig. 11. Grouping based on chromatic identity when Algorithm EWCVT-B is
applied with the CVT clustering (2 clusters) as the initial configuration. Image
size = 64 x 64,w = 5, A = 0.05, 4 iterations, CPU time = 0.57 s.
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Fig. 12. Grouping based on chromatic identity when Algorithm EWCVT-B is
applied with simpler initial clustering (2 clusters): one is the set of all pixels
inside the circle f(z]) € D:\/(: —32)>+ (j — 27)2 < 22 { and the other
is the set of all remaining pixels. Image size = 64 X 64,w = 5, A = 0.02,20
iterations, CPU time = 1.57 s. The images except the original image are from
iteration 0, 6, 14, 16, 20, respectively.

(two clusters) as the initial configuration and the final seg-
mented image is really superior. A similar application of the
EWCVT-based segmentation is presented in Fig. 14 for the
image “Europe at night” where the basic CVT-based segmen-
tation fails to obtain a good result. Note that in this example the
initial clusters we choose are not a CVT clustering but a very
simple circle-type one, see the second image of the first row in
Fig. 14. It takes 73 iterations for Algorithm EWCVT-B to stop.
The corresponding variations of energies during the iterations
are also plotted in Fig. 14. We observe in this example that:

1) The classical clustering energy is two orders of magnitude
larger than the edge energy. By carefully examining the
intermediate images, we find that the boundary length
increases greatly during iterations in order to approximate
the coastline of European landmass. If the edge energy
dominates the iterative process, the EWCVT model will
result in a shorter boundary. This implies the classical
clustering energy should dominate the iterative process in
this specific application in order for the EWCVT-based
segmentation to identify the Europe coastline accurately;
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Fig. 13. Detection of a simulated minefield using Algorithm EWCVT-B with
the CVT clustering (2 clusters) as the initial configuration. Image size = 100 x
100, w = 5, A = 0.1, 2 iterations, CPU time = 1.15 s.

thus, the value of A should be small enough to allow the
boundary to grow longer.

2) In Fig. 2, we already saw that the resulting image obtained
by the basic CVT-based segmentation has too many edges.
The EWCVT model gives us the ability to effectively con-
trol the number of the edge points in the final segmentation.

3) In this example, the edge energy keeps increasing while
the edge-weighted clustering energy and the classical clus-
tering energy keeps decreasing. This is partly due to the
fact that the edge length (edge points) of the initial clusters
is too small, i.e., far away from the accurate segmentation.

4) An important outcome of our EWCVT-based segmenta-
tion algorithm might be the clear identification of the Eng-
lish Strait.

In Fig. 15, we present the segmentation result of Algorithm
EWCVT-B applied to an art picture from the Los Angeles Times
by Brian Forrest. The image is segmented into two clusters and
the boundary of the spiral in the resulting segmentation is again
quite accurate and smooth.

Fig. 16 is used to show the ability of the EWCVT-based
method to group objects together according to their orientation
identity. This is done by replacing the original intensity values
U by orientation(U) = tan™'(U,/U,) and then apply Algo-
rithm EWCVT-B to the modified U. Only 4 iterations are need
and we obtain a nice grouping result of two clusters.

D. Multicluster Examples

Our model can also be easily applied to multicluster segmen-
tation of images. The original image in Fig. 17 is almost iden-
tical to that in Figs. 4 and 5 except each of the three geometric
objects has a distinct color: red, green and blue respectively.
Thus, four clusters are needed in order to detect them accurately
from the noisy background. Algorithm EWCVT-B starts with a
CVT clustering (4 clusters) as the initial configuration and stops
after 2 iterations. The CPU time is only 2.51 s. not much more
than that used in Figs. 4 and 5. The segmentation result is clearly
very accurate. The plot of variations of energies during the iter-
ations are also presented in Fig. 17.

We now provide some more complex examples from real-
world scenes in Figs. 18-20 where the left one is the original
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Fig. 14. Top to second row: Detection of the Europe land from the
“Europe at night” image using Algorithm EWCVT-B with simple ini-
tial clustering (2 clusters): one is the set of all pixels inside the circle
{(i,j) € D:/(i—55)2+ (j —60)2 < 60  and the other is the set of all
remaining pixels. Image size = 106 x 113,w = 5, A = 0.0004, 73 iterations,
CPU time = 16.85 s. The images except the original image are from iteration
0, 26, 56, 66, 73, respectively. Bottom row: plot of variations of the energies.

Fig. 15. Top to second row: Detection of a spiral from an art picture using
Algorithm EWCVT-B with the CVT clustering (2 clusters) as the initial config-
uration. Image size = 234 x 191, w = 5, A = 0.01, 4 iterations, CPU time
= 6.20 s.

image and the right one the final segmented image in all figures.
The CVT clustering is used as the initial configuration for Al-
gorithm EWCVT-B in all examples. In Fig. 18, we present the
detection of skiers from a real-world background using Algo-
rithm EWCVT-B with three clusters. The algorithm stops after
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Fig. 16. Grouping based on orientation identity when using Algorithm
EWCVT-B with the CVT clustering (2 clusters) as the initial configuration.
Image size = 64 X 64,w = 5, A = 1.0, 4 iterations, CPU time = 0.97 s.
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Fig. 17. Top row: Detection of three colorful geometric objects from a noisy
background using Algorithm EWCVT-B with the CVT clustering (4 clusters)
as the initial configuration. Image size = 100 X 100, w = 5, A = 1.0,2
iterations, CPU time = 2.51 s. Bottom row: Plot of variations of the energies.

2 iterations and only takes 10.57 s. All skiers are well identi-
fied by our segmentation algorithm. Fig. 19 shows the segmen-
tation results using Algorithm EWCVT-B with three clusters to
the image of a group of elephants in a savanna scene. The al-
gorithm also stops after two iterations and the running time is
almost as same as the former example. Again, the elephants are
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Fig. 18. Detection of skiers from a real-world background using Algorithm
EWCVT-B with the CVT clustering (3 clusters) as the initial configuration. Left:
Original image; right: final segmented image. Image size = 320 X 240,w =5,
A = 0.01, 2 iterations, CPU time = 10.57 s.

Fig. 19. Detection of elephants from a savanna scene using Algorithm
EWCVT-B with the CVT clustering (3 clusters) as the initial configuration.
Left: Original image; right: final segmented image. Image size = 320 x 214,
w =5, A = 0.01, 2 iterations, CPU time = 10.65 s.

Fig. 20. Detection of a starfish from a sea-bottom scene using Algorithm
EWCVT-B with the CVT clustering as the initial configuration. Image size
= 320 X 214. Top-left: Original image; top-right: segmented image with
3 clusters; bottom-left: segmented image with 4 clusters; bottom-right: seg-
mented image with 5 clusters. For the segmentation with 5 clusters: w = 3,
A = 0.005, 2 iterations, CPU time = 15.75 s.

clearly detected by our algorithm. Fig. 20 presents the detec-
tion of a star-fish from a real sea-bottom scene using Algorithm
EWCVT-B with three, four and five clusters, respectively. Due
to the strong inhomogeneous background, the segmentation re-
sult with three clusters is clear not good, but that with four and
five clusters are both quite accurate. The algorithm stops after
two iterations for all cases. The running time for the case of five
clusters is 15.75 s, slightly longer than former two examples
since more clusters are used. These examples demonstrate that
our model and algorithms are quite effective and efficient for
segmenting complex images of real-world scenes. The results
also indicate the flexibility and robustness of our method with
respect to the number of clusters.
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V. CONCLUDING REMARKS

In this paper, we generalize the basic centroidal Voronoi tes-
sellation model for image segmentation to a new edge-weighted
centroidal Voronoi tessellation model and develop some effi-
cient algorithms for its implementation in practical applications.
The EWCVT-based algorithms are essentially classical clus-
tering algorithms so that they are often computationally less ex-
pensive than the popular and powerful partial differential equa-
tion based segmentation methods. Through extensive examples
presented in the preceding section, we demonstrate many ad-
vantages of our method such as the efficiency in computational
cost, the ability to handle any number of clusters, the robustness
with respect to noises, and the flexibility to control the segmen-
tation accuracy. Some of our future work includes the intensity
inhomogeneous image segmentation and reconstruction of mul-
tichannel images based on our EWCVT model.
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