
Under review as a conference paper at ICLR 2020

LEARNING SCALABLE AND TRANSFERABLE
MULTI-ROBOT/MACHINE SEQUENTIAL ASSIGNMENT
PLANNING VIA GRAPH EMBEDDING

Anonymous authors
Paper under double-blind review

ABSTRACT

There has recently been some success in the use of reinforcement learning meth-
ods for single robot combinatorial optimization problems. In this paper, we de-
velop the first learning-based method for multi robot/machine planning problems
with combinatorial nature. One real-world concern is the capability to achieve
transferability to an unseen number of robots and tasks. The method developed
here, for the first time, enables such transferability.
Our method is comprised of three components. First, we illustrate how to repre-
sent a robot planning problem as an extension of probabilistic graphical models
(PGMs) which we refer to as random PGMs. We develop a mean-field inference
method for such random PGMs and use it for Q-function inference. Second, we
show that transferability can be achieved by carefully encoding the problem state
via a two-step sequential process. Third, we resolve the computational scalability
issue of fittedQ-iteration. This is achieved by employing an auction-based heuris-
tic as a substitute for the max operation in the Bellman equation. The auction is
enabled by the transferability achieved.
Our method is applicable to discrete-time, discrete space problems such as multi-
robot reward collection (MRRC). For such problems, with determinsitic assump-
toins, we scalably achieve 97% optimality with transferability. This optimality
is maintained under stochastic contexts. By extending our method to a continu-
ous time, continuous space formulation, the approach is the first learning-based
method for machine scheduling problems. Our method scalably achieves com-
parable performance to popular metaheuristics when applied to identical parallel
machine scheduling (IPMS) problems in a deterministic context.

1 INTRODUCTION

Suppose that we are given a set of robots and seek to serve a set of spatially distributed tasks. A
reward is given for serving each task promptly - resulting in a time-decaying reward collection prob-
lem - or when completing the entire set of tasks - resulting in a makespan minimization problem. As
the capability to control and route individual robots has increased [Li (2017)], efficient orchestration
of robots arises as an important remaining concern for such problems.

Multi-robot planning problems. In this paper, we focus on orchestration problems that can be
formulated as robot planning problems. A key assumption in such orchestration problems is that we
are given information on the “duration of time required for an assigned robot to complete a task”.
This duration may be deterministic (e.g. as in a Traveling Salesman Problem (TSP) or Vehicle
Routing Problem (VRP)) or random with given probability distribution (c.f., [Omidshafiei et al.
(2017)]). 1. We call this duration the task completion time.

Due to their combinatorial nature, robot planning problems suffer from exponential computational
complexity. Even in the context of single-robot scheduling problems (e.g., TSP) scalability is a
concern. Planning for multiple robots exacerbates the scalability issue. While scalable heuristic
methods have been developed for various deterministic multi-robot planning problems (c.f., [Rossi

1For the proposed method, samples of this distribution are sufficient and the distribution itself is not required.

1

Under review as a conference paper at ICLR 2020

et al. (2018)]), no heuristic methods have been developed for stochastic multi-robot planning prob-
lems that are simultaneously both near optimal and scalable.

Learning-based planning methods. Recently, seminal learning-based planning algorithms have
been developed for the scalable solution of TSPs [Bello et al. (2016); Dai et al. (2017); Kool et al.
(2018)]. They showed that learning methods can exploit the recurring structure of TSP and thus
can generate near-optimal solution in a very fast computation time. However, those successes were
restricted to single-robot problems except for special cases when the problem can be modeled as a
variant of single-robot TSP via multiple successive journeys of a single robot [Nazari et al. (2018)].

Near-optimal planning with scalability. In this paper, we address a general type of problem
called Multi-Robot Reward Collection (MRRC) and show that this problem can be scalably solved
by our method with near-optimal performance. Generally, the training requirements for learning-
based methods increase exponentially with the problem size (number of robots and tasks); c.f., [Li
(2017)]. We empirically demonstrate that the training requirements of proposed method scale well
while maintaining near-optimal performance. While we assumed discrete-state discrete-time condi-
tions for MRRC, the method extends to continuous-state continuous-time problems. Our method is
also the first learning-based method with scalable performance that can address machine schedul-
ing problems. The approach achieves scalability (e.g. 10 machines, 100 tasks) with comparable
performance to popular heuristics when applied to Identical Parallel Machine Scheduling (IPMS).

Transferability. The proposed method possesses transferability in that a trained policy can be
applied to new environments with a small loss of performance [Wang et al. (2018)]. Such capability
is important for real-world applications. Engineers are rarely able to train a heuristic on a large-
scale system during operation, but rather use a small-scale testbed for training. Even if the whole
system is available for training, the system design or number of robots may frequently change during
operation. We show that our method achieves transferability with small performance loss.

Proposed methods. In the seminal paper [Dai et al. (2017)], the authors observed that combinatorial
optimization problems such as TSP can be formulated as sequential decision making problems.
Decision making in such a sequential framework relies on an estimate of future costs Q(s, a) for
an existing task sequence s and candidate next task a. With this estimate, given the prior decisions
s at each decision step, they select the next task a to minimize the future cost estimate. [Dai et al.
(2017)]’s solution framework relies on the following three assumptions. 1) For each combinatorial
optimization problem, one can heuristically choose how to induce a graph representation of (s, a).
In the case of TSP, the paper induces a fully connected graph for every possible next task. 2) This
induced graph representation can be considered as a probabilistic graphical model (PGM) [Koller &
Friedman (2009)]. This PGM can be used with a graph-based mean-field inference method called
structure2vec [Dai et al. (2016)] to infer Q(s, a) for use in combinatorial optimization problems. 3)
Inference of Q(s, a) can be learned by the reinforcement framework called fitted Q-iteration.

We create a solution framework to achieve scalability and transferability for multi-robot planning
that builds in numerous directions upon the foundation of [Dai et al. (2017)] as follows:
1. State representation and mean-field inference theory for random PGM. Instead of heuristi-
cally inducing a PGM, we show that a robot scheduling problem exactly induces a random PGM.
Since there exists no mean-field inference theory for random PGM, we develop the theory and cor-
responding new structure2vec iteration.
2. Sequential encoding of information for transferability. To achieve transferability in terms of
the number of robots and tasks, we carefully design a two-step hierarchical mean-field inference
[Ranganath et al. (2015)]. Each step is designed to infer certain information. The first step is de-
signed to infer each task’s relative graphical distance from the robots. The second step is designed
to infer Q(s, a) (a here refers to a joint assignment of robots). While the first step is by its nature
transferable to any number of tasks and robots, the transferability in inference of the second step is
achieved by the scale-free characteristic of fitted Q-iteration [van Hasselt et al. (2015)]. That is, the
relative magnitudes of Q(s, a) values are sufficient to select an action a.
3. Auction-based assignment. Even if we can infer Q(s, a) precisely, the computation time re-
quired to select an action a using the maximum Q(s, a) operation exponentially increases as robots
and tasks increase. To resolve this issue, we suggest a heuristic auction that is enabled by the trans-
ferability of ourQ(s, a) inference. Even though this heuristic auction selects awith only polynomial
computational complexity, it provides surprisingly good choices for a. (In fact, this heuristic auction
increases the performance empirically relative to using the max operation.)

2

Under review as a conference paper at ICLR 2020

4. Auction-fitted Q-iteration. The heuristic auction-based action selection can be incorporated into
learning (fitting) Q(s, a). To be specific, we use the auction-based action selection scheme, instead
of the typical max-operator based action selection, in the Bellman equation during fitted Q-iteration.
We call this new learning framework as auction-fitted Q-iteration.

2 MULTI-ROBOT/MACHINE SCHEDULING PROBLEM FORMULATION

We consider centralized sequential assignment planning problems. We assume perfect communica-
tion, that is, the decision maker can always determine the distribution of task completion times.

2.1 MULTI-ROBOT REWARD COLLECTION (MRRC)

While we consider extended versions of the problem in Appendix A2, here we formulate an MRRC
as a discrete-time, discrete-state planning problem. The initial location and ending location of robots
and tasks are arbitrary on a grid (e.g., grid world). We assume that a task is served immediately after
a robot arrives. Under these assumptions, at each time-step, we can assign every robot to every
remaining task. This MRRC problem can be cast as a Markov Decision Process (MDP) whose state,
action, and reward are defined as follows.

State. The state st at time step t is a directed graph Gt = (Rt ∪ Tt, Et). Rt is the set of available
robots at time step t. Tt is the set of all remaining unserved tasks at time step t. The set of directed
edges Et = ERTt ∪ ETTt . A directed edge εritj ∈ ERTt has a random variable as its weight which
denotes the task completion time for robot i in Rt if it is assigned at time step t to serve task j in
Tt (note this time subsumes the information about the robot’s present location). A directed edge
εtitj ∈ ETTt has as its weight the task completion time for a robot which just finished serving task i
in Tt (and is therefore located where task i resided prior to its completion) to serve task j in Tt if it
is assigned at time step t.

Action. The action at at time step t is the joint assignment of robots given the current state st = Gt.
Feasible actions should satisfy two constraints: (i) no two robots can be assigned to the same task
and (ii) a robot may not be assigned when the number of robots exceeds the number of remaining
tasks3. To articulate an action, note first that the two set of nodes Rt and Tt are disjoint. As such,
the sub-graph (Rt ∪ Tt, ERTt) of graph Gt is bipartite. We thus define an action at at time t as a
maximal bipartite matching in the bipartite sub-graph (Rt ∪ Tt, ERTt). For example, robot i in Rt
is matched with task j in Tt in an action at if we assign robot i to task j at time step t. We denote
the set of all possible actions at time step t as At.
Reward. In MRRC, each task has an arbitrarily determined initial age. At each time-step, the age
of each task increases by one. When a task is served, a reward is determined based only on its age
at the time of service. Note that the state and assignment information st, at and st+1 is sufficient to
determine the reward at time step t+ 1. As such we denote the reward as R(st, at, st+1).

Objective. We can now define an assignment policy φ as a function that maps a state st to an action
at. Given an initial state s0, the MRRC seeks to maximize the sum of expected rewards through
time by the selection of an assignment policy φ∗ satisfying

φ∗ = argmax
φ

E

[∞∑
t=0

R (st, at, st+1) |s0

]
.

2.2 IDENTICAL PARALLEL MACHINE SCHEDULING (IPMS) MAKE-SPAN MINIMIZATION

IPMS is a continuous-time continuous-state problem consisting of diverse tasks which must be
served by identical machines. Once service of a task i begins, it requires a deterministic duration of

2In Appendix A, we discuss how an MRRC can be formulated with continuous-time and continuous-state
and addressed by our methods. Further, we explain how our method can be easily extended to address setup
times and processing times.

3We assume also that when the number of tasks is greater or equal to the number of robots, all robots will
receive an assignment. However, because robots can be reassigned at any decision epoch, there is no loss of
optimality in this assumption.

3

Under review as a conference paper at ICLR 2020

time τi to complete - we call this the processsing time. This time is the same independent of which
machine serves the task. We incorporate one popular extension and allow ‘sequence-dependent
setup times’. In this case, a machine must conduct a setup prior to serving each task. The duration
of this setup depends on the current task i and the task j that was previously served on that machine
- we call this the setup time. The completion time for each task is thus the sum of the setup time
and processing time. Under this setting, we solve the IPMS problem for make-span minimization
as discussed in [Kurz et al. (2001)]. That is, we seek to minimize the total time spent from the start
time to the completion of the last task. The IPMS formulation resembles our MRRC formulation in
continuous-time and continuous-space and we relegate the detailed formulation to Appendix B.

3 CHOICE OF ASSIGNMENT AT EACH TIME-STEP

In Section 2, we formulated multi-robot/machine planning problems as sequential joint assignment
decision problems. As in [Dai et al. (2017)], we will select a joint assignment using a Q-function
based policy. Since we thus choose action at with the largest inferred Q(st, at) value in state st,
the development of a Q(st, at) inference method is a key issue. Toward this end and motivated
by these robot planning problems, we provide new results in random PGM-based mean-field in-
ference methods and a subsequent extension of the graph-neural network based inference method
called structure2vec [Dai et al. (2016)] in Section 3.1. In Section 3.2, we discuss how a careful
encoding of information using the extended structure2vec of Section 3.1 enables precise and trans-
ferable Q(st, at) inference. Since the computational complexity required to identify the best joint
assignment is exponential with respect to the number of robots and tasks, Section 3.3 discusses how
the transferability of our Q(st, at) inference method enables a good action choice heuristic with
polynomial computational complexity.

3.1 ROBOT SCHEDULING AS RANDOM PGM-BASED MEAN-FIELD INFERENCE

PGM. Given random variables {Xk}, suppose that joint distribution of {Xk} can be factored as
P (X1, . . . , Xn) = 1

Z

∏
i φ

i
(
Di
)

where φi(Di) denotes a marginal distribution or conditional dis-
tribution on a set of random variables Di. Z is a normalizing constant. Then {Xk} is called a
probabilistic graphical model (PGM). In a PGM, Di is called a clique and φi(Di) is called a clique
potential for Di. When we suppress φi(Di) as φi, Di is referred to as the scope of φi.

PGM-based mean-field inference. One popular use of this PGM information is PGM-based
mean-field inference. In mean-field inference, we find a surrogate distribution Q(X1, . . . , Xn) =∏
iQi(xi) that has smallest Kullback-Leibler distance to original joint distribution P (X1, . . . , Xn).

We then use this surrogate distribution to solve the original inference problem. [Koller & Friedman
(2009)] shows that when we are given PGM information, {Qi(xi)} can be analytically computed
by a fixed point equation. Despite that this usefulness, in most inference problems it is unrealistic to
assume we know or can infer probability distributions of a PGM. This limitation was addressed in
[Dai et al. (2016)] using a method called structure2vec.

Structure2vec. [Dai et al. (2016)] suggests that an inference problem with graph-structured data
(e.g. a molecule classification problem) can be seen as a particular PGM structure that con-
sists of two types of random variables. One type of random variables {Xk} is one that serves
as input of inference problem (e.g. Xk denotes atomic number of atom k). Another type of
random variables {Hk} is latent random variable where Hk is a latent random variable related
to Xk. Existence of probabilistic relationships among {Hk} are assumed heuristically from
graph structure of data. Then the particular PGM structure they assume is P ({Hk} , {Xk}) ∝∏
k∈V φ (Hk|Xk)

∏
k,i∈V φ (Hk|Hi), where V denotes the set of vertex indexes. The goal of

mean-field inference problem is to find a surrogate distribution Qk(hk) for posterior marginal
P ({hk}|{xk}). However, we can’t compute {Qk(hk)} since we are not given φ (Hk|Hi) nor
φ (Hk|Xk). To overcome this limitation, [Dai et al. (2016)] develops a method called structure2vec
that only requires the structure of the PGM for mean-field inference. structure2vec embeds the
mean-field inference procedure, i.e. fixed point iteration on {Qk(hk)}, into fixed point iterations of
neural networks on vectors {µ̃k}. Derivation of such fixed point iterations of neural networks can be
found in Dai et al. (2016) and can be written as µ̃k = σ

(
W1xk +W2

∑
j 6=k µ̃j

)
where σ denotes

Relu function and W denotes parameters of neural networks.

4

Under review as a conference paper at ICLR 2020

Robot scheduling as random PGM-based mean-field inference. All applications of structure2vec
in [Dai et al. (2016; 2017)] heuristically decide the structure of PGM of each data point from its
graph structure. The key observation we make is that inference problems in robot scheduling exactly
induce a ‘random’ PGM structure (to be precise, a ‘random’ Bayesian Network). Given that we start
from state st and action at, consider a random experiment “sequential decision making using policy
φ”. In this experiment, we can define an event as ‘How robots serve all the remaining tasks in which
sequence’. We call one such event a ‘scenario’. For each task ti ∈ Tt, define a random variable Xi

as ‘a characteristic of task ti’ (e.g. when task i is served). Given a scenario, the relationships among
{Xi} satisfy as a Bayesian Network. For details, see Appendix C)

Note that we do not know which scenario will occur from time t and thus do not know which PGM
will be realized. Besides, the inference of probability of each scenario is challenging. Putting aside
this problem for a while, we first define a ‘random PGM’ and ‘semi-cliques’. Denote the set of all
random variables in the inference problem as X = {Xi}. A random PGM is a probabilistic model of
how a PGM is randomly chosen from a set of all possible PGMs on X 4. Next, denote the set of all
possible probabilistic relationships on X as CX . We call them ‘semi-cliques’. In robot scheduling
problem, a semi-cliqueDij ∈ CX is a conditional dependenceXi|Xj . The semi-cliqueDij presents
as an actual clique if and only if the robot which finishes task ti chooses task tj as the next task.

We will now prove that we don’t have to infer the probability of each scenario, i.e. random PGM
model itself. The following theorem for mean-field inference with random PGM is an extension
of mean-field inference with PGM [Koller & Friedman (2009)] and suggests that only a simple
inference task is required: inference of the presence probability of each semi-cliques.

Theorem 1. Random PGM based mean field inference Suppose we are given a random PGM
on X = {Xk}. Also, assume that we know presence probability {pm} for all semi-cliques CX =
{Dm}. The latent variable distribution {Qk(xk)} in mean-field inference is locally optimal only if

Qk (xk) =
1

Zk
exp

{ ∑
m:Xk∈Dm

pmE(Dm−{Xk})∼Q [lnφm (Dm, xk)]

}

where Zk is a normalizing constant and φm is the clique potential for clique m.

From this new result, we can develop the structure2vec inference method for random PGM. As in
[Dai et al. (2016)], we restrict our discussion to when every semi-clique is between two random
variables. In this case, a semi-clique can be written as Dij with its presence probability pij .

Lemma 1. Structure2vec for random PGM. Suppose we are given a random PGM model
with X = {Xk}. Also, assume that we know presence probability {pij} for all semi-cliques
CX = {Dij}. The fixed point iteration in Theorem 1 for posterior marginal P ({Hk}|{xk}) can
be embedded in a nonlinear function mapping with embedding vector µ̃k as

µ̃k = σ

W1xk +W2

∑
j 6=k

pkj µ̃j

 .

Proof of Thorem 1 and lemma 1. For brevity, proofs are relegated to the Appendix D and E.

Corollary 1. For a robot scheduling problem with set of tasks ti ∈ Tt, the random PGM represen-
tation for structure2vec in lemma 1 is ((Tt, ETTt), {pij}) where {pij} denotes the probability of a
robot choosing task ti after serving tj .

{pij} inference procedure employed in this paper is as follows. Denote ages of task i, j as agei,
agej . Note that if we generate M samples of εij as {ekij}Mk=1, then 1

M

∑M
k=1 f(ekij , agei, agej) is an

unbiased and consistent estimator of E[f(εij , agei, agej)]. For each sample k, for each task i and
task j, we form a vector of ukij = (ekij , agei, agej) and compute gij =

∑M
k=1

1
MW1(relu(W2u

k
ij).

We obtain {pij} from {gij} using softmax. Algorithm details are in Appendix F.

4The concept of ‘random choice among all possible PGM might look unfamiliar, but this concept has been
studied in various PGM literature; for example, see [Ritchie et al. (2016)] to see applications in probabilistic
programming language (PPL).

5

Under review as a conference paper at ICLR 2020

Figure 1: Illustration of overall pipeline of our method

3.2 INFERENCE OF Q-FUNCTION USING NEW STRUCTURE2VEC

In this section, we show how Q(st, at) can be precisely and transeferably inferred using a two-step
structure2vec inference method (For theoretical justifications on hierarchical variational inference,
see Ranganath et al. (2015)). We here assume that we are given (Tt, ETTt) and inferred {pij} so that
Corollary 1 can be applied. For brevity, we illustrate the inference procedure for the special case
when task completion time is deterministic (Appendix G illustrates how we can combine random
sampling to inference procedure to deal with task completion times as a random variable).

Step 1. Distance Embedding. The output vectors {µ̃1
k} of structure2vec embeds a local graph

information around that vector node [Dai et al. (2016)]. We here focus on embedding information
of robot locations around a task node and thus infer each task’s ‘relative graphical distance’ from
robots around it. As the input of first structure2vec ({xk} in lemma 1), we only use robot assignment
information (if tk is an assigned task, we set xk as ‘task completion time of assignment’; if tk is
not an assigned task:, we set xk = 0). This procedure is illustrated in Figure 1. According to [Dai
et al. (2016)], the output vectors {µ̃1

k} of structure2vec will include sufficient information about the
relative graphical distance from all robots to each task.

Step 2. Value Embedding. The second step is designed to infer ’How much value is likely in the
local graph around each task’. Remind that vectors {µ̃1

k}, output vectors of the first step, carries
information about the relative graphical distance from all robots to each task. We concatenate ‘age’
of each tasks {agek} to each corresponding vector in {µ̃1

k} and use the resulting graph as an input
({xk} in lemma 1) of second structure2vec, as illustrated in Figure 1. Again, vectors {µ̃2

k} of the
output graph of second structure2vec operation embeds a local graph structure around each node.
Our intuition is that {µ̃2

k} includes sufficient information about ’How much value is likely in the
local graph around each task’.

Step 3. ComputingQ(st, at). To inferQ(st, at), we aggregate the embedding vectors for all nodes,
i.e., µ̃2 =

∑
k µ̃

2
k to get one vector µ̃2 which embeds the ‘value likeliness’ of the global graph. We

then use a layer of neural network to map µ̃2 into Q(st, at). The detailed algorithm of above whole
procedure (combined with random task completion times) is illustrated in Appendix G.

Why are each inference steps transferable? For the first step, it is trivial; the inference problem is
a scale-free task. In the second step, the ‘value likeliness’ will be underestimated or overestimated
according to the ratio of (number of robots/number of tasks) in a local graph: underestimated if
the ratio in training environment is smaller than the ratio in the testing environment; overestimated
otherwise. The key idea solving this problem is that this over/under-estimation does not matter
in Q-function based action decision [van Hasselt et al. (2015)] as long as the order of Q-function
value among actions are the same. While analytic justification of this order invariance is beyond this
paper’s scope, the fact that there is no over/underestimation issue in the first step inference problem
helps this justification.

6

Under review as a conference paper at ICLR 2020

3.3 ACTION SELECTION USING HEURISTIC AUCTION

In Q-function based action choice, at each time-step t, we find an action with largest Q(st, at). We
call this action choice operation ’max-operation’. The problem in max-operation in the multi-robot
setting is that the number of computation exponentially increases as the number of robots and tasks
increases. In this section, we show that transferability of Q-function inference enables designing an
efficient heuristic auction that replaces max operation. We call it auction-based policy(ADP) and
denote it as φQθ , where Qθ indicates that we compute φQθ using current Qθ estimator.

At time-step t, a state st is a graph Gt = (Rt∪Tt, Et) as defined in section 2.1. Our ADP, φQθ , finds
an action at (which is a matching in bipartite graph ((Rt∪Tt), ERTt) of graph Gt) through iterations
between two phases: the bidding phase and the consensus phase. We start with a bidding phase. All
robots initially know the matching determined in previous iterations. We denote this matching as Y ,
a bipartite subgraph of ((Rt∪Tt), ERTt). When making a bid, a robot ri ignores all other unassigned
robots. For example, suppose robot ri considers tj for bidding. For ri, Y ∪ εij is a proper action
(according to definition in section 2.1) in a ‘unassigned robot-ignored’ problem. Robot ri thus can
compute Q(st,Y ∪ εritj) of ‘unassigned robot-ignored’ problem for all unassigned task tj . If task
t∗ is with the highest value, robot ri bids {εrit∗ , Q(st,Y ∪ εrit∗)} to auctioneer. Since number of
robots ignored by ri is different at each iteration, transferability of Q-function inference plays key
role. The consensus phase is simple. The auctioneer finds the bid with the best value, say {ε∗, bid
value with ε∗}. Then auctioneer updates everyone’s Y as Y ∪ {ε∗}.
These bidding and consensus phases are iterated until we can’t add an edge to Y anymore. Then
the central decision maker chooses Y as φQθ (sk). One can easily verify that the computational
complexity of computing φQθ is O (|LR| |LT |), which is only polynomial. While theoretical per-
formance guarantee of this heuristic auction is out of this paper’s scope, in section 5 we show that
empirically this heuristic achieves near-optimal performance.

4 LEARNING ALGORITHM

4.1 AUCTION-FITTED Q-ITERATION FRAMEWORK

In fitted Q-iteration, we fit θ of Qθ(st, at) with stored data using Bellman optimality equation. That
is, chooses θ that makes E

[
Qθ (sk, ak)−

[
r (sk, ak) + γmaxa′

(
Qθ
(
s′k+1, a

′
k+1

))]
small. Note

that every update of θ needs at least one max-operation.

To solve this issue, we suggest a learning framework we call auction-fitted Q-iteration.
What we do is simple: when we update θ, we use auction-based policy(ADP) defined in
section 3.3 instead of max-operation. That is, we seek the parameter θ that minimizes
E
[
Qθ (sk, ak)−

[
r (sk, ak) + γ

(
Qθ
(
s′k+1, φQθ

(
s′k+1

)))]
.

4.2 EXPLORATION FOR AUCTION-FITTED Q-ITERATION

How can we conduct exploration in Auction-fitted Q-iteration framework? Unfortunately, we can’t
use ε-greedy method since such randomly altered assignment is very likely to cause a catastrophic
result in problems with combinatorial nature.

In this paper, we suggest that parameter space exploration [Plappert et al. (2017)] can be applied.
Recall that we useQθ (sk, ak) to get policy φQθ (sk). Note that θ denotes all neural network param-
eters used in the structure2vec iterations introduced in Section 5. Since Qθ (sk, ak) is parametrized
by θ, exploration with φQθ (sk) can be performed by exploration with parameter θ. Such exploration
in parameter space has been introduced in the policy gradient RL literature. While this method was
originally developed for policy gradient based methods, exploration in parameter space can be par-
ticularly useful in auction-fitted Q-iteration.

The detailed application is as follows. When conducting exploration, apply a random perturbation
on the neural network parameters θ in structure2vec. The resulting a perturbation in the Q-function
used for decision making via the auction-based policy φQθ (sk) throughout that problem. Similarly,
when conducting exploitation, the current surrogate Q-function is used throughout the problem.

7

Under review as a conference paper at ICLR 2020

Updates for the surrogate Q-function may only occur after each problem is complete (and typically
after a group of problems).

5 EXPERIMENT

5.1 MRRC

For MRRC, we conduct a simulation experiment for a discrete time, discrete state environment. We
use maze (see Figure 1) generator of UC Berkeley CS188 Pacman project [Neller et al. (2010)] to
generate large size mazes. We generated a new maze for every training and testing experiments.

Under the deterministic environment, the robot succeeds its movement 100%. Under stochastic
environment, a robot succeeds its intended movement in 55% on the grid with dots and for every
other direction 15% each; on the grid without dots, the rates are 70% and 10%. As described
in section 2, routing problems are already solved. That is, each robot knows how to optimally
(in expectation) reach a task. To find an optimal routing policy, we use Dijkstra’s algorithm for
deterministic environments and dynamic programming for stochastic environments. The central
assignment decision maker has enough samples of task completion time for every possible route.

We consider two reward rules: Linearly decaying rewards obey f(age) = 200− age until reaching
0, where age is the task age when served; For nonlinearly decaying rewards, f(t) = λt for λ = 0.99.
Initial age of tasks were uniformly distributed in the interval [0, 100].

Performance test. We tested the performance under four environments: deterministic/linear re-
wards, deterministic/nonlinear rewards, stochastic/linear rewards, stochastic/nonlinear rewards.

There are three baselines used for performance test: exact baseline, heuristic baseline, and indirect
baseline. For the experiment with deterministic with linearly decaying rewards, an exact optimal
solution for mixed-integer exists and can be used as a baseline. We solve this program using Gurobi
with 60-min cut to get the baseline. We also implemented the most up-to-date heuristic for MRRC
in [Ekici & Retharekar (2013)]. For any other experiments with nonlinearly decaying rewards or
stochastic environment, such an exact optimal solution or other heuristics methods does not exist.
In these cases, we should be conservative when talking about performance. Our strategy is to con-
struct a indirect baseline using a universally applicable algorithm called Sequential greedy algorithm
(SGA) [Han-Lim Choi et al. (2009)]. SGA is a polynomial-time task allocation algorithm that shows
decent scalable performance to both linear and non-linear rewards. For stochastic environments, we
use mean task completion time for task allocation and re-allocate the whole tasks at every time-
steps. We construct our indirect baseline as ‘ratio between our method and SGA for experiments
with deterministic-linearly decaying rewards’. Showing that this ratio is maintained for stochastic
environments in both linear/nonlinear rewards suffices our purpose.

Table 1 shows experiment results for (# of robots, # of tasks) = (2, 20), (3, 20), (3, 30), (5, 30),
(5, 40), (8, 40), (8, 50); For linear/deterministic rewards, our proposed method achieves near-
optimality (all above 95% optimality). While there is no exact or comparable performance base-
line for experiments under other environments, indirect baseline (%SGA) at least shows that our
method does not lose %SGA for stochastic environments compared with %SGA for deterministic
environments in both linear and nonlinear rewards.

Scalability test. We count the training requirements for 93% optimality for seven problem sizes
(# of robots NR, # of tasks NT) = (2, 20), (3, 20), (5, 30), (5, 40), (8, 40), (8, 50) with determinis-
tic/linearly decaying rewards (we can compare optimality only in this case). As we can see in Table
2, the training requirement shown not to scale as problem size increases.

Transferability test. Suppose that we trained our learning algorithm with problems of three robots
and 30 Tasks. We can claim transferability of our algorithm if our algorithm achieves similar per-
formance for testing with problems of 8 robots and 50 tasks when compared with the algorithm
specifically trained with problems of 8 robots and 50 tasks, the same size as testing. Table 3 shows
our comprehensive experiment to test transeferability. The results in the diagonals (where training
size and testing size is the same) becomes a baseline, and we can compare how the networks trained
with different problem size did well compare to those results. We could see that lower-direction
transfer tests (trained with larger size problem and tested with smaller size problems) shows only a

8

Under review as a conference paper at ICLR 2020

Table 1: Performance test (50 trials of training for each cases)

Reward Environment Baseline Robots (R) / Tasks (T)
2R/20T 3R/20T 3R/30T 5R/30T 5R/40T 8R/40T 8R/50T

Linear
Deterministic

Optimal 98.31% 97.50% 97.80% 95.35% 96.99% 96.11% 96.85%
±4.23 ±4.71 ±5.14 ±5.28 ±5.42 ±4.56 ±3.40

Ekisi et al. 99.45% 100% 82.65% 86.35% 92.25% 91.85% 80.60%
(%SGA) (137.3) (120.6) (129.7) (110.4) (123.0) (119.9) (119.8)

Stochastic Optimal N/A
(%SGA) (130.9) (115.7) (122.8) (115.6) (122.3) (113.3) (115.9)

Nonlinear
Deterministic Optimal N/A

(%SGA) (111.5) (118.1) (118.0) (110.9) (118.7) (111.2) (112.6)

Stochastic Optimal N/A
(%SGA) (110.8) (117.4) (119.7) (111.9) (120.0) (110.4) (112.4)

Table 2: Scalability test (mean of 20 trials of training, linear & deterministic env.)

Linear & Deterministic Testing size (Robot (R) / Task (T))
2R/20T 3R/20T 3R/30T 5R/30T 5R/40T 8R/40T 8R/50T

Performance with full training 98.31% 97.50% 97.80% 95.35% 96.99% 96.11% 96.85%
Training for 93% optimality 19261.2 61034.0 99032.7 48675.3 48217.5 45360.0 47244.2

small loss in performance. For upper-direction transfer tests (trained with smaller size problem and
tested with larger size problem), the performance loss was up 4 percent.

Ablation study. There are three components in our proposed method: 1) a careful encoding of
information using two-layers of structure2vec, 2) new structure2vec equation with random PGM
and 3) an auction-based assignment. Each component was removed from the full method and tested
to check the necessity of the component.

We test the performance in a deterministic/linearly decaying rewards (so that there is an optimal
solution available for comparison). The experimental results are shown in Figure 2. While the full
method requires more training steps, only the full method achieves near-optimal performance.

5.2 IPMS

For IPMS, we test it with continuous time, continuous state environment. While there have been
many learning-based methods proposed for (single) robot scheduling problems, to the best our
knowledge our method is the first learning method to claim scalable performance among machine-
scheduling problems. Hence, in this case, we focus on showing comparable performance for large
problems, instead of attempting to show the superiority of our method compared with heuristics
specifically designed for IPMS (actually no heuristic was specifically designed to solve our exact
problem (makespan minimization, sequence-dependent setup with no restriction on setup times))

For each task, processing times is determined using uniform [16, 64]. For every (task i, task j)
ordered pair, a unique setup time is determined using uniform [0, 32]. As illustrated in section
2, we want to minimize make-span. As a benchmark for IPMS, we use Google OR-Tools library

Table 3: Transferability test (50 trials of training for each cases, linear & deterministic env.)

Testing size(Robot(R)/Task(T))
Training size

(Robot(R)/Task(T)) 2R/20T 3R/20T 3R/30T 5R/30T 5R/40T 8R/40T 8R/50T

2R/20T 98.31% 93.61% 97.31% 92.16% 92.83% 90.94% 93.44%
3R/20T 95.98% 97.50% 96.11% 93.64% 91.75% 91.60% 92.77%
3R/30T 94.16% 96.17% 97.80% 94.79% 93.19% 93.14% 93.28%
5R/30T 97.83% 94.89% 96.43% 95.35% 93.28% 92.63% 92.40%
5R/40T 97.39% 94.69% 95.22% 93.15% 96.99% 94.96% 93.65%
8R/40T 95.44% 94.43% 93.48% 93.93% 96.41% 96.11% 95.24%
8R/50T 95.69% 96.68% 97.35% 94.02% 94.50% 94.86% 96.85%

9

Under review as a conference paper at ICLR 2020

Figure 2: Tested with 1) single layer, 2) heuristic PGM 3) Max-operation

Table 4: IPMS test results for makespan minimization (our algorithm / best Google OR tool result)

Makespan minimization for # Machines
Deterministic environment 3 5 7 10

Tasks
50 106.7% 117.0% 119.8% 116.7%
75 105.2% 109.6% 113.9% 111.3%

100 100.7% 111.0% 109.1% 109.0%

Google (2012). This library provides metaheuristics such as Greedy Descent, Guided Local Search,
Simulated Annealing, Tabu Search. We compare our algorithm’s result with the heuristic with the
best result for each experiment. We consider cases with 3, 5, 7, 10 machines and 50, 75, 100 jobs.

The results are provided in Table 4. Makespan obtained by our method divided by the makespan
obtained in the baseline is provided. Although our method has limitations in problems with a small
number of tasks, it shows comparable performance to a large number of tasks and shows its value as
the first learning-based machine scheduling method that achieves scalable performance.

6 CONCLUSIONS

We presented a learning-based method that achieves the first success for multi-robot/machine
scheduling problems in both challenges: scalable performance and tranferability. We identified that
robot scheduling problems have an exact representation as random PGM. We developed a mean-
field inference theory for random PGM and extended structure2vec method of Dai et al. (2016).
To overcome the limitations of fitted Q-iteration, a heuristic auction that was enabled by transfer-
ability is suggested. Through experimental evaluation, we demonstrate our method’s success for
MRRC problems under a deterministic/stochastic environment. Our method also claims to be the
first learning-based algorithm that achieves scalable performance among machine scheduling algo-
rithms; our method achieves a comparable performance in a scalable manner.

Our method for MRRC problems can be easily extended to ride-sharing problems or package de-
livery problems. Given a set of all user requests to serve, those problems can be formulated as a
MRRC problem. For both ride-sharing and package delivery, it is reasonable to assume that the
utility of a user depends on when she is completely serviced. We can model how the utility of a
user decreases over time since when it appears and set the objective function of problems as max-
imizing total collected user utility. Now consider a task ‘deliver user (or package) from A to B’.
This is actually a task ”Move to location A and then move to location B”. If we know the comple-
tion time distribution of each move (as we did for MRRC), the task completion time is simply the
sum of two random variables corresponding to task completion time distribution of the moves in the
task. Indeed, ride-sharing or package delivery problems are of such tasks (We can ignore charging
moves for simplicity, and also we don’t have to consider simple relocation of vehicles or robots since
we don’t consider random customer arrivals). Therefore, both ride-sharing problems and package
delivery problems can be formulated as MRRC problems.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural Combi-
natorial Optimization with Reinforcement Learning. Annual Review of Cell and Developmental
Biology, 15(1):81–112, nov 2016. ISSN 1081-0706. doi: 10.1146/annurev.cellbio.15.1.81.

Hanjun Dai, Bo Dai, and Le Song. Discriminative Embeddings of Latent Variable Models for
Structured Data. 48:1–23, 2016. doi: 1603.05629.

Hanjun Dai, Elias B Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning Combinatorial
Optimization Algorithms over Graphs. (Nips), 2017.

Ali Ekici and Anand Retharekar. Multiple agents maximum collection problem with time depen-
dent rewards. Computers and Industrial Engineering, 64(4):1009–1018, 2013. ISSN 03608352.
doi: 10.1016/j.cie.2013.01.010. URL http://dx.doi.org/10.1016/j.cie.2013.
01.010.

Google. Google OR-Tools, 2012. URL https://developers.google.com/
optimization/.

Han-Lim Choi, Luc Brunet, and J.P. How. Consensus-Based Decentralized Auctions for Robust
Task Allocation. IEEE Transactions on Robotics, 25(4):912–926, aug 2009. ISSN 1552-3098.
doi: 10.1109/TRO.2009.2022423.

Daphne Koller and Nir Friedman. Probabilistic graphical models : principles and techniques, page
449-453. The MIT Press, 1st edition, 2009. ISBN 9780262013192.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, Learn to Solve Routing Problems! mar
2018.

M E Kurz, R G Askin, M E Kurzy, and R G Askiny. Heuristic scheduling of parallel machines
with sequence-dependent set-up times. International Journal of Production Research, 39(16):
3747–3769, 2001. ISSN 0020-7543. doi: 10.1080/00207540110064938.

Yuxi Li. DEEP REINFORCEMENT LEARNING: AN OVERVIEW. 2017. URL https://
arxiv.org/pdf/1701.07274.pdf.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, and Martin Takáč. Reinforcement
Learning for Solving the Vehicle Routing Problem. feb 2018.

Todd Neller, John DeNero, Dan Klein, Sven Koenig, William Yeoh, Xiaoming Zheng, Kenny
Daniel, Alex Nash, Zachary Dodds, Giuseppe Carenini, David Poole, and Chris Brooks. Model
AI Assignments. Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence
(AAAI-10), pp. 1919–1921, 2010.

Shayegan Omidshafiei, AliAkbar AghaMohammadi, Christopher Amato, ShihYuan Liu, Jonathan P
How, and John Vian. Decentralized control of multi-robot partially observable Markov decision
processes using belief space macro-actions. The International Journal of Robotics Research, 36
(2):231–258, 2017. doi: 10.1177/0278364917692864.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter Space Noise for Explo-
ration. pp. 1–18, 2017.

Rajesh Ranganath, Dustin Tran, and David M. Blei. Hierarchical Variational Models. 2015.

Daniel Ritchie, Paul Horsfall, and Noah D. Goodman. Deep Amortized Inference for Probabilistic
Programs. pp. 1–31, 2016. URL http://arxiv.org/abs/1610.05735.

Federico Rossi, Saptarshi Bandyopadhyay, Michael Wolf, and Marco Pavone. Review of Multi-
Agent Algorithms for Collective Behavior: a Structural Taxonomy. IFAC-PapersOnLine, 51(12):
112–117, 2018. ISSN 24058963. doi: 10.1016/j.ifacol.2018.07.097.

Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double
Q-learning. 2015.

11

http://dx.doi.org/10.1016/j.cie.2013.01.010
http://dx.doi.org/10.1016/j.cie.2013.01.010
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://arxiv.org/pdf/1701.07274.pdf
https://arxiv.org/pdf/1701.07274.pdf
http://arxiv.org/abs/1610.05735

Under review as a conference paper at ICLR 2020

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. NerveNet: Learning Structured Policy
with Graph Neural Networks. In International Conference on Learning Representations, 2018.

A MRRC WITH CONTINUOUS STATE/CONTINUOUS TIME SPACE
FORMULATION, OR WITH SETUP TIME AND PROCESSING TIME

In continuous state/continuous time space formulation, the initial location and ending location of
robots and tasks are arbitrary on R2. At every moment at least a robot finishes a task, we make
assignment decision for a free robot(s). We call this moments as ‘decision epochs’ and express them
as an ordered set (t1, t2, . . . , tk, . . .). Abusing this notation slightly, we use (·)tk = (·)k.

Task completion time can consist of three components: travel time, setup time and processing time.
While a robot in the travel phase or setup phase may be reassigned to other tasks, we can’t reassign
a robot in the processing phase. Under these assumptions, at each decision epoch robot ri is given
a set of tasks it can assign itself: if it is in the traveling phase or setup phase, it can be assigned to
any tasks or not assigned; if it is in the processing phase, it must be reassigned to its unfinished task.
This problem can be cast as a Markov Decision Problem (MDP) whose state, action, and reward are
defined as follows:

State. State sk at decision epoch k is a directed graph Gk = (Rk ∪ Tk, Ek): Rk is the set of all
robots and Tk is the set of all tasks; The set of directed edges Ek = ERTk ∪ETTk where a directed edge
εritj ∈ ERTk is a random variable which denotes task completion time of robot i in Rk to service
task j in Tk and a directed edge εtitj ∈ ETTk denotes a task completion time of a robot which just
finished serving task i in Tk to service task j in Tk. ERTk contains information about each robot’s
possible assignments: ERTk = ∪iErik , where Erit is a singleton set if robot i is in the processing phase
and it must be assigned to its unfinished task, and otherwise it is the set of possible assignments from
robot ri to remaining tasks that are not in the processing phase.

Action. The action ak at decision epoch k is the joint assignment of robots given the current state
sk = Gk. The feasible action should satisfy the two constraints: No two robots can be assigned to a
task; some robots may not be assigned when number of robots are more than remaining tasks. To
best address those restrictions, we define an action ak at time t as a maximal bipartite matching in
bipartite sub-graph ((Rk ∪ Tk), ERTk) of graph Gk. For example, robot i inRk is matched with task
j in Tk in an action ak if we assign robot i to task j at decision epoch t. We denote the set of all
possible actions at epoch k as Ak.

Reward. In MRRC, Each task has an arbitrarily determined initial age. At each decision epoch, the
age of each task increases by one. When a task is serviced, a reward is determined only by its age
when serviced. Denote this reward rule as R(k). One can easily see that whether a task is served at
epoch k is completely determined by sk, ak and sk+1. Therefore, we can denote the reward we get
with sk, ak and sk+1 as R(sk, ak, sk+1).

Objective. We can now define an assignment policy φ as a function that maps a state sk to action
ak. Given s0 initial state, an MRRC problem can be expressed as a problem of finding an optimal
assignment policy φ∗ such that

φ∗ = argmax
φ

E

[∞∑
k=0

R (sk, ak, sk+1) |s0

]
.

B IDENTICAL PARALLEL MACHINE SCHEDULING PROBLEM FORMULATION

As written in 2.2, IPMS is a problem defined in continuous state/continuous time space. Machines
are all identical, but processing times of tasks are all different. In this paper, we discuss IPMS
with ‘sequence-dependent setup time’. A machine’s setup time required for servicing a task i is
determined by its previously served task j. In this case, the task completion time is the sum of setup
time and processing time. Under this setting, we solve IPMS problem for make-span minimization
objective discussed in [Kurz et al. (2001)] (The constraints are different in this problem though);
That is, minimizing total time spent from start to end to finish all tasks.

12

Under review as a conference paper at ICLR 2020

Every time there is a finished task, we make assignment decision for a free machine. We call this
times as ‘decision epochs’ and express them as an ordered set (t1, t2, . . . , tk, . . .). Abusing this
notation slightly, we use (·)tk = (·)k.

Task completion time for a machine to a task consists of two components: processing time and
setup time. While a machine in setup phase may be reassigned to another task, we can’t reassign a
machine in the processing phase. Under these assumptions, at each epoch, a machine ri is given a
set of tasks it can assign: if it is in the setup phase, it can be assigned to any tasks or not assigned; if
it is in the processing phase, it must be reassigned to its unfinished task. This problem can be cast
as a Markov Decision Problem (MDP) whose state, action, and reward are defined as follows:

State. State sk at decision epoch k is a directed graph Gk = (Rk ∪ Tk, Ek): Rk is the set of all
machines and Tk is the set of all tasks; The set of directed edges Ek = ERTk ∪ ETTk where a directed
edge εritj ∈ ERTk is a random variable which denotes task completion time of machine i in Rk to
service task j in Tk and a directed edge εtitj ∈ ETTk denotes a task completion time of a machine
which just finished serving task i in Tk to service task j in Tk. ERTk contains information about
each robot’s possible assignments: ERTk = ∪iErik , where Erik is a singleton set if machine i is in the
processing phase and it must be assigned to its unfinished task, and otherwise it is the set of possible
assignments from machine ri to remaining tasks that are not in the processing phase.

Action. Defined the same as MRRC with continuous state/time space.

Reward. In IPMS, time passes between decision epoch t and decision epoch t+1. Denote this time
as Tt. One can easily see that Tt is completely determined by sk, ak and sk+1. Therefore, we can
denote the reward we get with sk, ak and sk+1 as T (sk, ak, sk+1).

Objective. We can now define an assignment policy φ as a function that maps a state sk to action
ak. Given s0 initial state, an MRRC problem can be expressed as a problem of finding an optimal
assignment policy φ∗ such that

φ∗ = argmin
φ

E

[∞∑
k=0

T (sk, ak, sk+1) |s0

]
.

C BAYESIAN NETWORK REPRESENTATION

Here we analytically show that robot scheduling problem randomly induces a random Bayesian
Network from state st. Given starting state st and action at, a person can repeat a random experiment
of “sequential decision making using policy φ”. In this random experiment, we can define events
‘How robots serve all remaining tasks in which sequence’. We call such an event a ‘scenario’. For
example, suppose that at time-step t we are given robots {A,B}, tasks {1, 2, 3, 4, 5}, and policy
φ. One possible scenario S∗ can be {robot A serves task 3 → 1 → 2 and robot B serves task
5 → 4}. Define random variable Xk a task characteristic, e.g. ‘The time when task k is serviced’.
The question is, ‘Given a scenario S∗, what is the relationship among random variables {Xk}’?
Recall that in our sequential decision making formulation we are given all the ‘task completion
time’ information in the st description. Note that, task completion time is only dependent on the
previous task and assigned task. In our example above, under scenario S∗ ‘when task 2 is served’
is only dependent on ‘when task 1 is served’. That is, P (X2|X1, X3, S

∗) = P (X2|X1, S
∗). This

relationship is called ‘conditional independence’. Given a scenario S∗, every relationship among
{Xi|S∗} can be expressed using this kind of relationship among random variables. A graph with
this special relationship is called ‘Bayesian Network’ [Koller & Friedman (2009)], a probabilistic
graphical model.

D PROOF OF THEOREM 1.

We first define necessary definitions for our proof. In a random PGM, a PGM is chosen among
all possible PGMs on {Xk} and semi-cliques C. Denote the set of all possible factorization as
F = {S1,S2, ...,SN} where a factorization with index k is denoted as Sk ⊆ C. Suppose we are
given P ({S = Sm}).

13

Under review as a conference paper at ICLR 2020

For each semi-clique Di in C, define a binary random variable V i: F 7→ {0, 1} with value 0
for the factorization that does not include semi-clique Di and value 1 for the factorization that
include semi-clique Di. Let V be a random vector V =

(
V 1, V 2, . . . , V |C|

)
. Then we can express

P (X1, . . . , Xn|V) ∝
∏|C|
i=1

[
φi
(
Di
)]V i

. We denote
[
φi
(
Di
)]V i

as ψ(Di).

Given {P ({S = Sm})}, each semi-clique Di’s presence probability pi can be simply calculated;
clique i’s presence probability pi is simply the sum of probabilities of all factorizations which in-
clude clique i, that is, pi =

∑
m:Di∈Sm P ({S = Sm}).

Now we prove Theorem 1.

In mean-field inference, we want to find a distribution Q (X1, . . . , Xn) =
∏n
i=1Qi(Xi) such that

the cross-entropy between it and a target distribution is minimized. Following the notation in Koller
& Friedman (2009), the mean field inference problem can written as the following optimization
problem.

min
Q

D

(∏
i

Qi |P (X1, . . . , Xn|V))

)
s.t.

∑
xi

Qi (xi) = 1 ∀i

Here D (
∏
iQi | P (X1, . . . , Xn|V)) can be expressed as D (

∏
iQi | P (X1, . . . , Xn|V)) =

EQ [ln (
∏
iQi)]− EQ [ln (P (X1, . . . , Xn|V))].

Note that

EQ [ln (P (X1, . . . , Xn|V))] = EQ
[
ln

(
1

z
Π
|C|
i=1ψ

i
(
Di, V

))]

= EQ

ln

1

z

|C|∏
i=1

ψi
(
Di, V

)
= EQ

 |C|∑
i=1

V i ln
(
φi
(
Di
))− EQ[ln(Z)]

=

|C|∑
i=1

EQ
[
V i ln

(
φi
(
Di
))]
− EQ[ln(Z)]

=

|C|∑
i=1

EV i
[
EQ
[
V i ln

(
φi
(
Di
))
|V i
]]
− EQ[ln(Z)]

=

|C|∑
i=1

P
(
V i = 1

) [
EQ
[
ln
(
φi
(
Di
))]]
− EQ[ln(Z)]

=

|C|∑
i=1

pi
[
EQ
[
ln
(
φi
(
Di
))]]
− EQ[ln(Z)].

Hence, the above optimization problem can be written as

max
Q

EQ

 |C|∑
i=1

pi ln
(
φi
(
Di
))+ EQ

n∑
i=1

(lnQi)

s.t.
∑
xi

Qi (xi) = 1 ∀i
(1)

14

Under review as a conference paper at ICLR 2020

In Koller & Friedman (2009), the fixed point equation is derived by solving an analogous equation
to (1) without the presence of the pi. Theorem 1 follows by proceeding as in Koller & Friedman
(2009) with straightforward accounting for pi.

E PROOF OF LEMMA 1.

Since we assume semi-cliques are only between two random variables, we can denote C = Dij and
presence probabilities as {pij} where i, j are node indexes. Denote the set of nodes as V .

From here, we follow the approach of Dai et al. (2016) and assume that the joint distribution of
random variables can be written as

p ({Hk} , {Xk}) ∝
∏
k∈V

ψi (Hk|Xk)
∏
k,i∈V

ψi (Hk|Hi) .

Expanding the fixed-point equation for the mean field inference from Theorem 1, we obtain:

Qk (hk) =
1

Zk
exp

 ∑
ψi:Hk∈Di

E(Di−{Hk})∼Q
[
lnψi

(
Hk = hk|Di

)]
=

1

Zk
exp

{
lnφ (Hk = hk|xk) +

∑
i∈V

∫
H
pkiQi (hi) lnφ (Hk = hk|Hi) dhi

}
.

This fixed-point equation for Qk (hk) is a function of {Qj (hj)}j 6=k such that

Qk (hk) = f
(
hk, xk, {pkjQj (hj)}j 6=k

)
.

As in Dai et al. (2016), this equation can be expressed as a Hilbert space embedding of the form

µ̃k = T̃ ◦
(
xk, {pkj µ̃j}j 6=i

)
,

where µ̃k indicates a vector that encodes Qk (hk) . In this paper, we use the nonlinear mapping T̃
(based on a neural network form) suggested in Dai et al. (2016):

µ̃k = σ

W1xk +W2

∑
j 6=k

pkj µ̃j

F PRESENCE PROBABILITY INFERENCE

Let V denote the set of nodes. In lines 1 and 2, the likelihood of the existence of a directed edge
from each node m to node n is computed by calculating W1

(
relu

(
W2u

k
mn

))
and averaging over

the M samples. In lines 3 and 4, we use the soft-max function to obtain pm,n.

1 For m,n ∈ V do
2 gmn = 1

M

∑M
k=1W1

(
relu

(
W2u

k
mn

))
3 For m,n ∈ V do
4 pm,n = egmn/τ∑

j∈v e
gmn/τ

.

G TASK COMPLETION TIME AS A RANDOM VARIABLE

We combine random sampling and inference procedure suggested in section 3.2 and Figure 1. De-
note the set of task with a robot assigned to it as T A. Denote a task in T A as ti and the robot
assigned to ti as rti . The corresponding edge in ERT for this assignment is εrti ti . The key idea is
to use samples of εrti ti to generate N number of sampled Q(s, a) value and average them to get the
estimate of E(Q(s, a)). First, for l = 1 . . . N we conduct the following procedure. For each task ti

15

Under review as a conference paper at ICLR 2020

in T A, we sample one data elrti ti . Using those samples and {pij}, we follow the whole procedure
illustrated in section 3.2 to get Q(s, a)l. Second, we get the average of {Q(s, a)l}l=Nl=1 to get the
estimate of E(Q(s, a)), 1

N

∑l=N
l=1 Q(s, a)l.

The complete algorithm of section 3.2 with task completion time as a random variable is given as
below.

1 agei = age of node i
2 The set of nodes for assigned tasks ≡ TA
3 Initialize {µ(0)

i }, {γ
(0)
i }

4 for l = 1 to N :
5 for ti ∈ T :
5 if ti ∈ T A do:
6 sample elrti ti from εrti ti
7 xi = elrti ti
9 else: xi = 0
10 for t = 1 to T1 do
11 for i ∈ V do
12 li =

∑
j∈V pjiµ

(t−1)
j

13 µ
(t)
i = relu (W3li +W4xi)

14 µ̃l = Concatenate
(
µ
(T1)
i , agei

)
15 for t = 1 to T2 do
16 for i ∈ V do
17 li =

∑
j∈V pjiγ

(t−1)
j

18 γ
(t)
j = relu (W5li +W6µ̃i)

19 Ql = W7

∑
i∈V γ

(T)
i

20 Qavg = 1
N

∑N
l=1Ql

16

	Introduction
	Multi-robot/machine scheduling problem formulation
	Multi-Robot Reward Collection (MRRC)
	Identical parallel machine scheduling (IPMS) make-span minimization

	Choice of assignment at each time-step
	Robot scheduling as Random PGM-based mean-field inference
	Inference of Q-function using new structure2vec
	Action Selection Using Heuristic Auction

	Learning algorithm
	Auction-fitted Q-iteration framework
	Exploration for Auction-fitted Q-iteration

	Experiment
	MRRC
	IPMS

	Conclusions
	MRRC with continuous state/continuous time space formulation, or with setup time and processing time
	Identical parallel machine scheduling problem formulation
	Bayesian Network representation
	Proof of Theorem 1.
	Proof of Lemma 1.
	Presence probability inference
	Task completion time as a random variable

