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Abstract

We investigate low-bit quantization to reduce computational cost of deep neural1

network (DNN) based keyword spotting (KWS). We propose approaches to fur-2

ther reduce quantization bits via integrating quantization into keyword spotting3

model training, which we refer to as quantization-aware training. Our experi-4

mental results on large dataset indicate that quantization-aware training can re-5

cover performance models quantized to lower bits representations. By combining6

quantization-aware training and weight matrix factorization, we are able to signif-7

icantly reduce model size and computation for small-footprint keyword spotting,8

while maintaining performance.9

Index Terms: keyword spotting, quantization-aware training, small-footprint.10

1 Introduction11

Keyword spotting is the task of detecting particular words of interest in an audio stream. It has12

been an active research area in speech recognition and widely used in applications. With recent13

increase in the popularity of voice assistant systems, small-footprint keyword spotters (KWS) have14

been attracting much attention [1–3]. For example, Alexa on Amazon Tap requires the KWS to15

run continuously under tight CPU, memory, latency, and power constraints. The device only starts16

streaming audio to the cloud when the KWS detects the wake word. Such embedded KWS must have17

high recall to make devices easy to use, as well as low false accepts to mitigate privacy concerns.18

One type of small-footprint KWS are systems based on a single DNN or convolutional neural net-19

work (CNN) [1, 4–6]. The keyword posterior calculated by such DNN or CNN are smoothed with20

a sliding window and the keyword detection event is triggered if the smoothed posterior exceeds a21

pre-defined threshold. The trade off between balancing false rejects and false accepts is performed22

by tuning a threshold. Context information is incorporated by stacking frames in the input. When23

deployed on device such KWS are always quantized. 16 bit and 8 bit quantizations are common in24

the industry [7–13]. Since the keyword models in such KWS are usually trained using full-precision25

arithmetic, quantization degrades their performance on device. One approach to mitigate that degra-26

dation is by using quantization-aware training. Quantization-aware training considers the quantized27

weights in full precision representation in order to inject the quantization error into training. This28

method enables the weights to be optimized against quantization errors.29

In this work, we use quantization-aware training to build a very small-footprint low-power KWS. To30

train the wake word model, we employ quantization-aware training as a final training stage. We find31

that 8 bit and 4 bit quantized KWS models can be trained successfully by using quantization-aware32

training.33

The paper is organized as follows: Section 2 introduces keyword spotting system and quantization-34

aware training approach. Experiments follow in Section 3. Conclusions are in Section 4.35
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Figure 1: (a) Single-stage DNN KWS architecture used in this work. The DNN consists of 3 pairs of
SVD-bottlenecks (light gray) followed by softmax (diagonal stripes). Each pair of SVD-bottleneck
transformations is a sequence of 2 affine transforms with a simple linear activation between them,
followed by a sigmoid activation layer (dark gray). (b) Scheme of quantization-aware training.

2 Keyword Spotting System and Quantization-Aware Training36

Our keyword spotter is a single-stage DNN with 50k parameters [14]. The DNN operates on 20-37

dimensional log mel filter-bank energies (LFBE) acoustic features calculated over 25ms frames with38

a 10ms frame shift and stacked in 620-dimensional input windows, with 20 frames left and 10 frames39

right context. The DNN has 6 hidden layers with dimensions 39 and 128, shown in Figure 1a. The40

128-unit layers are followed by sigmoid activation. There is simple linear activation after 39-unit41

layers. Such pairs of affine transformations represent an SVD approximation of one dense 128×12842

layer [15, 16, 6]. The output layer in the DNN is softmax over 2 output states and represents the43

posterior distribution over the states {‘triphone ∈ keyword’, ‘triphone 6∈ keyword’}. The DNN is44

trained using multi-target cross-entropy loss [14].45

We use dynamic quantization approach, where shifts and scales for quantizing DNN weight matrices46

are calculated independenlty column-wise. This is similar to ”buketing” [17] or ”per-channel” [18]47

quantization with technical differences. Also, the inputs are quantized row-wise on the fly during the48

forward pass. This approach has better precision than static, single shift and scale quantization [11]49

(cf. TensorRT implemenation [19]). The software forward propagation implementation leverages50

hardware-specific SIMD operations to accelerate and parallelize quantized multiplications.51

The accuracy loss due to quantization is incorporated via quantization-aware training, Figure 1b).52

We inject quantization errors at each DNN component C by enabling quantization of weights W53

and inputs during forward propagation. This transfers the quantization errors to the loss function54

L during back-propagation, calculated in full precision using quantized forward activation values55

Q[C]. Quantization aware training is used as a final fine-stage tuning ensuring that the output of the56

final quantized model has matching accuracy with the full precision model. In contrast with [13], the57

model is not considered as floating point during the forward-pass, but the updates computed in true58

quantized form are passed onto floating point weights and then quantized. We do not use stochastic59

perturbation [12].60

We test 16 bit, 8 bit, hybrid 4-8 bit, and 4 bit KWS quantization. For 16 bit, 8 bit and 4 bit61

quantizations, all layers are quantized using indicated bit-width. For 4-8 bit quantization, the first62

SVD-bottleneck pair and each consecutive 2nd bottleneck layer is quantized as 8 bit, and each 1st63

bottleneck layer is 4 bit. This is because the first hidden and each 2nd bottleneck-layer receive non-64

squeezed input with a potentially large dynamic range, and thus may require larger bit-precision for65

quantization. At the same time, the layers following sigmoid activation have inputs in the range66

[0, 1], and therefore may allow lower bit quantization including 4 bits.67

3 Experimental Results68

The keyword ‘Alexa’ is chosen for our experiments. We use an in-house 500 hrs far-field corpus of69

diverse far-field speech data and a similar composition 100 hrs dataset for evaluation. We evaluate all70
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models using end-to-end Detection Error Tradeoff (DET) curves, which describe the models’ miss71

rate vs. false accept rate (FAR), as well as DET area under curve (AUC). For training, we use GPU-72

based distributed DNN training method described in [20]. The training is organized into 3 stages:73

In the 1st stage a small ASR DNN with 3 hidden layers of 128 units is pre-trained from random74

initialization and using full ASR phone-targets obtained from a large, production ASR system. In75

the 2nd stage, the KWS DNN is trained from the 1st-stage ASR DNN by adding keyword targets and76

performing multi-task training with the keyword and the ASR targets as regularization. In the 3rd77

stage, SVD bottlenecks are introduced and the model is multi-task trained with the SVD bottlenecks.78

The 1st-stage DNN is trained for a fixed duration of 12 epochs. The 2nd and 3rd stages are 20 epochs79

each. Exponential decaying learning rate is used with the initial value of 0.000125 and the decay80

factor of 2 for the first few epochs and 1.2 for remaining epochs. The final DNN is first ‘naively’81

quantized using 16 bit, 8 bit, 4 bit, or hybrid 4-8 bit scheme and quantization-aware trained for82

another 20 epochs, using the same exponential learning rate decay schedule.83

The performance of the ‘naively quantized’ models is shown in Table 1. We observe that 16 bit84

and 8 bit quantization show little degradation in KWS accuracy well under 1% AUC, while 4-885

bit hybrid and 4 bit quantization lead to significant performance degradation of 16.8% and 221.6%86

AUC, respectively. Therefore, we are interested in the effect of quantization-aware training on those87

latter two situations. Those results are shown in Table 2. In the hybrid 4-8 bit quantized model,88

quantization-aware training recovers close to 90% of the accuracy loss. After quantization-aware89

training, that model performs only slightly worse than the full-precision model at roughly 10%90

reduction in memory footprint compared to 8 bit-quantized version. The 4-bit quantized model91

shows yet greater performance gains due to quantization-aware training, from 2.2159 AUC to 1.4192

AUC, or 36.4% reduction. A comparison of the end-to-end DET curves in Figure 2 shows that93

that model has significantly more reasonable DET (purple line), while the naively 4-bit quantized94

model is much worse (green line). Thus, if naively quantized 4-bit model showed 4x and 5x FAR of95

the full-precision model at same miss rate, the quantization-aware trained 4-bit model reduced that96

degradation to 40-50% in the range of interesting miss rates 5-15%. Such gains can be interesting for97

low-power applications, considering that the 4 bit-quantized model allows close to 40% additional98

reduction in memory footprint of the KWS.99

Table 1: Relative AUC and model sizes of quan-
tized KWS with respect to the baseline full-
precision model. (Larger AUC is worse.)

16 bit 8 bit 4-8 bit 4 bit

AUC 1.0003 1.0094 1.1684 2.2159
Model size 0.65 0.35 0.32 0.20

Table 2: AUC improvement of quantized models’
performance using quantization-aware training.

4-8 Bit 4 Bit

Quantized 1.1684 2.2159
QAT 1.0213 1.4103

Change -12.6% -36.4%
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Figure 2: DET for full-precision, quan-
tized, and quantization-aware trained 50k
model. The DET curves for 16 bit and 8
bit quantized-models are not shown due to
them not being significantly different from
the full-precision model.

100

4 Conclusions101

We present our work on applying quantization-aware training to reducing quantization bits of small-102

footprint keyword spotting models. Combined with weight matrix factorization, our method can103

significantly reduce the model size and computation cost of keyword spotting systems. Our exper-104

imental results indicate that with quantization-aware training 4-8 bit hybrid quantization maintains105

performance of full-precision model, while for 4-bit quantization performance gap can be signifi-106

cantly reduced.107
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