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ABSTRACT

We apply a reinforcement learning (RL) based approach to learning optimal syn-
chronization policies used for Parameter Server-based distributed training of ma-
chine learning models with Stochastic Gradient Descent (SGD). Utilizing a formal
synchronization policy description in the PS-setting, we are able to derive a suit-
able and compact description of states and actions, allowing us to efficiently use
the standard off-the-shelf deep Q-learning algorithm. As a result, we are able to
learn synchronization policies which generalize to different cluster environments,
different training datasets and small model variations and (most importantly) lead
to considerable decreases in training time when compared to standard policies
such as bulk synchronous parallel (BSP), asynchronous parallel (ASP), or stale
synchronous parallel (SSP). To support our claims we present extensive numerical
results obtained from experiments performed in simulated cluster environments.
In our experiments training time is reduced by 44% on average and learned poli-
cies generalize to multiple unseen circumstances.

1 INTRODUCTION

In recent years, Stochastic gradient descent (SGD) Bottou (2012) and its variants Kingma & Ba
(2014); Chen et al. (2016), have been adopted as the main work horse for training machine learning
(ML) models. To be able to train large models, which are both computationally demanding or require
very large training datasets, SGD is often parallelized across several machines, with the well-known
parameter-server (PS) framework being one of the most widely adopted distribution strategies. In
the PS setting, there commonly exist one (or several) parameter servers and multiple worker nodes.
The parameter server maintains the globally shared model parameters and aggregate updates from
workers. Each worker node pulls the latest model parameters from the server, computes all gradients
and pushes them back for updating. As this approach generally reduces the amount of inter-node
communication, it may provide for considerably reduced training time.

Challenges of Distributed SGD in PS. In the PS setting, a central task is to design a synchroniza-
tion policy, which coordinates the execution progress of all workers. This synchronization policy
determines in each step, i.e. whenever a gradient is pushed by some worker, the state (“run” or
“wait”) of each worker, until the next update arrives at the parameter server. Thus, it directly deter-
mines the overall training time. However, finding a good synchronization policy is difficult, as this
will at least depend on the properties of the underlying optimization problem and the nature of the
cluster used for training.

We briefly review some existing policies and discuss their limitations: In the simple bulk syn-
chronous parallel (BSP) policy Valiant (1990), the parameter server waits for all workers to push
their updated gradients, and then lets them pull the same latest model parameters for the next step.
However, in a heterogeneous cluster, it is common that some workers, also referred to as stragglers,
run much slower than others. Waiting for these straggler workers certainly decreases the number of
SGD iterations per unit of time and leads less optimal usage of available computational resources.

The asynchronous parallel (ASP) policy alleviates the straggling problem by allowing each worker
to run immediately after it pushes its gradients. Therefore, fast workers can move ahead without
waiting for others. However, worker may push stale gradients that are evaluated on an older version
of the model parameters, which may have a negative impact on the overall convergence speed Chen
et al. (2016); Cui et al. (2016). Thus, neither BSP nor ASP consistently outperform the other on
different models and datasets Zinkevich et al. (2009); Dutta et al. (2018).
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A better policy is, for instance, given by the stale synchronous parallel (SSP) policy Ho et al. (2013);
Dai et al. (2015), which can be considered as a trade off between BSP and AP. For SSP one defines
a fixed threshold s, such that the fastest worker is allowed to outpace the slowest one by at most s
steps (“bounded staleness”). However, an optimal value of s is hard to specify without enough prior
knowledge. Moreover, the optimal value of smay change during the entirety of the training process.
Other synchronization policies (see in Section 2) may either degenerate to the above mentioned three
policies or may need extensive manual tuning of hyper-parameters. Now, the key problem addressed
in this work is the following: how can we design a synchronization policy to automatically and
adaptively optimize the overall training time of SGD in PS? Note that in the following, whenever
we speak of “overall training time” or “time until convergence”, we specifically mean the amount of
time needed until a model reaches a certain pre-defined accuracy on a validation dataset.

Our Key Contributions. To tackle this problem, we focus on designing automatic synchronization
policies for distributed SGD in a PS setting. Instead of relying on expert experience we try to learn a
better synchronization policy using a reinforcement learning (RL) approach with training data being
obtained by observing the execution process of PS-based distributed SGD.

To this end, we first represent the synchronization problem in the distributed SGD training in a
unified framework, allowing us to formally describe both existing (BSP, ASP and SSP) and learned
policies. Based on this framework, we formulate the synchronization policy design problem as an
RL problem, where we reward those policies requiring less training time. To train an RL-based
synchronization policy (RLP), we carefully design the state and action space of the RL model, such
that it is able to generalize to different training data, models and cluster environments, while still
ensuring efficient policy learning process.

Our model is trained using the off-the-shelf deep Q-Learning algorithm Mnih et al. (2013); Van Has-
selt et al. (2016). Furthermore, we design a pre-training process to speed up the convergence. Em-
pirical results demonstrate the validity of our approach and the advantages of our learned RLP policy
in terms of training efficiency and generalization ability. In our experiments, RLP improves overall
training time by 44% on average in comparison to the best existing policy. More over, RLP is able
to generalize to multiple unseen circumstances.

Limitations. We note the following limitations of this work: First, our experiments are based on
“plain” SGD in its simplest form, e.g. without momentum or other adjustments. While our frame-
work may in principle be used with any first-order optimization scheme, we have chosen to refrain
from using more commonly used methods, such as Adam Kingma & Ba (2014) in order to reduce
the number of hyper-parameters and allow for a clearer differentiation between different policies.

Second, we note that all of our experiments were performed in a simulated cluster environment,
allowing us to easily change the number of workers used and artificially create training instances
characterized by different levels of straggling workers, resp. gradient staleness.

Third, due to resource constraints, we have not applied our approach to the training of very demand-
ing models, such as deep Convolutional Neural Networks Krizhevsky et al. (2012) or transformer-
based models like BERT Devlin et al. (2018), which are now considered the “state of the art” in
Computer Vision and NLP, respectively. We leave experiments on this scale for future work.

Despite the above limitations, we argue that our results clearly indicates the applicability of our
approach in practice. In our experiments, we were not only able to demonstrate the mere existence
of optimal synchronization policies for an individual pair of underlying model and training data,
but also show that learned policies are able to provide significant speedups, even when applied to
training slightly different models on different training datasets and different cluster environments.

2 RELATED WORK

PS-based training with distributed SGD can be considered a standard method for training large ML
models. Finding proper synchronization policies coordinating all workers to reduce training time
has been a long-standing problem. For example, the classic BSP policy Valiant (1990) has been di-
rectly applied for distributed SGD in a PS-setting. As the performance of BSP is heavily diminished
by the straggling problem, other variants, such as the K-sync BSP and K-batch-sync BSP have
been proposed in Dutta et al. (2018). They alleviate the straggling problem by slightly relaxing the
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synchronization condition. However, as the global synchronization barrier still exists, workers tend
to spend a considerable amount of time in an idle state. Other ways to speed up the BSP policy
include reassigning data Harlap et al. (2016) and adding backup workers Chen et al. (2016). How-
ever, they may case additional, non-negligible communication overhead Jiang et al. (2017). Another
extreme is to run distributed SGD using the ASP policy, which avoids the straggling problem but
typically forces one to consider the staleness problem. The negative effects of staleness have been
shown in Zinkevich et al. (2009); Chen et al. (2016); Cui et al. (2016); Dutta et al. (2018); Dai et al.
(2019) on typical ML models, where Dai et al. (2019) performed a comprehensive experimental
analysis. To correct bias caused by staleness, Hadjis et al. (2016); Mitliagkas et al. (2016); Zheng
et al. (2017) proposed some methods to compensate for delayed gradients or tune the momentum
parameter, which also increases the overall computational costs.

To combine the advantages of BSP and ASP together, Ho et al. (2013); Dai et al. (2015) proposed
the SSP policy as a trade-off. SSP may often lead to faster convergence when compared to both
BSP and ASP. However, the threshold s in SSP which bounds the staleness is hard to tune and
fixed during the training process. To overcome this, Jiang et al. (2017); Zhao et al. (2019) proposed
a dynamic SSP policy where s is tuned during the training process. Fan et al. (2018) proposed a
more flexible adaptive asynchronous parallel policy to allow different values of s for each worker.
Although more adaptive, they need manual tuning of hyper-parameters. As a result, until now, there
appears to exist no synchronization policy that is both fully adaptive and automatic.

This paper, for the best of our knowledge, marks the first instance where RL is used find synchro-
nization policy for distributed SGD in a completely data-driven fashion. RL has been successful
applied to control robotics Duan et al. (2016) and games Mnih et al. (2013); Silver et al. (2016).
Recently, it has been widely used to optimize problems such as task scheduling Mao et al. (2019),
resource management Mao et al. (2016) and optimization Li & Malik (2016); Marcus et al. (2019).
Here, we formulate the search for efficient synchronization policies as an RL problem and derive
RL-based policies (RLP) which can be applied to training a specific underlying model (and varia-
tions thereof): Once such a policy has been learned, it can be reapplied to future training instances.
This is particularly relevant in situations where the same model (or type of model) is trained regu-
larly on different training data sets on the same cluster of machines (or similar cluster in the case of
e.g. dynamically allocated cloud computing resources).

Overall, to the best of our knowledge, our proposed RLP provides for the first time synchronization
policies which are adaptive, automatic and avoid both the straggling and staleness problems.

3 METHOD

We describe the technical details of our proposed method in this section. First of all, we present
a unified framework to represent the synchronization problem of distributed SGD in the PS-setting
in Section 3.1. Based on this, we formalize the synchronization policy design problem as an RL
problem in Section 3.2. Section 3.3 discusses how to train the RL-based policy.

3.1 A UNIFIED FRAMEWORK

We introduce a unified framework generalizing all existing policies (BSP, ASP and SSP) and pro-
viding us convenience and flexibility to design new synchronization policies. The pseudo-code of
the framework is shown in Algorithm 1.

In a PS environment, let S be the parameter server holding the global parameter ω and W =
{W1,W2, . . . ,Wk} be a set of workers. For each worker Wi, we regard its computation process
as a series of steps. In each step, the state of worker Wi is either active or idle. An active worker
pulls the latest parameter ω from S, performs the SGD computation on a mini-batch of data and
pushes the gradient∇ω back to S. Then, Wi is scheduled by S to run or wait. On the server side, S
iteratively receives gradients sent by workers and coordinates their execution progress until the con-
verge condition is met. S maintains the global parameter ω and a set I of all idle workers. Initially,
we set I = ∅. To avoid ambiguity, we refer to the period of S receiving two consecutive gradients
as an iteration. In each iteration, S receives a gradient ∇ω submitted by a worker Ws and updates
the global parameter ω according to the SGD update rule. After that, Ws is added into the idle set I ,
and S selects a subset of active workers A ⊆ I according to the synchronization policy. All workers
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Algorithm 1: Unified Synchronization Policy Framework
Input: a server S and a set of workersW = W1,W2, . . . ,Wk

Output: trained global parameter ω and total time cost t
1: I ← ∅, t gets0
2: initialize the global parameter ω
3: set all workers inW to be active
4: while stopping condition of SGD is not met do
5: S receives gradient∇ω submitted by worker Ws

6: update parameter ω to ω′ by the SGD rule
7: I ← I ∪ {Ws}
8: select set A ⊆ I according to the synchronization policy
9: record time cost ∆t and set t← t+ ∆t

10: end while
11: return ω and t

in A are allowed to run while all other workers in I −A keep idle. Let ∆t denote the iteration time
cost. The global parameter ω and total time t =

∑
∆t is returned after convergence (i.e. when a

certain stopping criterion is met).

By specifying a different set A of active workers in each iteration, our framework can describe vari-
ous synchronization policies. For example:
• BSP: we set A = ∅ if |I| < k and A = I otherwise, so all workers execute together only when
all of them finish a computation step;
• ASP: we set A = {Ws}, so that all workers always continue running after submitting the gradi-
ents;
• SSP: let pi denote the number of computation steps performed by worker Wi. Given a thresh-
old s, for the submitted worker Ws, if 0 < ps − minj pj < s, we set A = {Ws}; otherwise if
ps − minj pj = s, we set A = ∅; otherwise when ps = minj pj , we set A = I , so all workers
outpace the slowest one by no more than s steps.

In each iteration, there exist at most 2|W| different choices. Finding a better policy using some
combinatorial search algorithms or hand-crafted heuristic rules seems intractable due to the large
search size. Thus, we aim at designing a method to automatically learn a synchronization policy.

3.2 FORMULATION AS AN RL PROBLEM

Based on the unified framework, we can formulate the synchronization policy design problem as an
RL problem. To lay foundation, we briefly review some preliminaries of RL. The general setting of
RL is shown in Fig. 1, where an agent continuously interacts with an environment. In each step n,
the agent observes some state Sn of the environment and is asked to take an action an. Following
this action, the environment emits a reward rn and transitions to state Sn+1. The state transitions and
rewards are both stochastic and satisfies the Markov property, i.e. the state transitions and rewards
depend only on the state Sn and action an. The goal of the agent is to learn a sequence of actions
chosen by observing the states to maximize the expected cumulative reward E[

∑
n rn].

Notice that, the agent picks actions based on a policy π, which is a probability distribution over
state-action pairs: π(S, a) → [0, 1]. In most practical problems, it is impossible to store the policy
in tabular form but more common to represent it as a function πθ parametrized by θ. Recently,
deep neural networks (DNN) have been widely used to represent πθ in many RL problems Mnih
et al. (2013); Li & Malik (2016); Van Hasselt et al. (2016); Marcus et al. (2019); Mao et al. (2019).
Following this trend, in our work, we also adopt a DNN to represent the RL policy. Feeding it with
a state vector S, it outputs a value π(S, a) for all possible actions a.

We find that the synchronization policy design problem resembles a prototypical RL problem, as
it aims at learning how to choose an active worker set (action) in each iteration based on the SGD
execution progress (state) to optimize the total time cost (reward). Fig. 1 illustrates how to set the
three key components in the RL formulation. The details are elaborated as follows:
• State: we choose features in each SGD iteration to characterize its execution progress. For gener-
alization purposes, the state feature vector should be able to represent clusters with different number
of workers. To this end, we regard the execution of all workers as a black-box and just encode the
information they submitted in the server side. For each iteration n, we just record the feature tuple
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Figure 1: Illustration of formulating the synchronization policy problem as an RL problem.

Tn = (n,L(ω), L(ω′) − L(ω), `n), where L(ω) and L(ω′) are the loss values before and after one
iteration. `n records the number of pushed gradients by other workers during the execution step of
this submitted worker, which reflects the level of staleness of the submitted gradients. Notice that,
Tn is irrelevant to the number of workers in the cluster. Meanwhile, we do not use the gradient in-
formation in our features since it is highly dependent on the underlying ML models and would thus
impede generalization. The state vector Sn = (Tn, Tn−1, . . . , Tn−H+1) keeps track of the features
of the H most recent iterations. At the very beginning, we pad the historical information all by zero.
• Action: the largest action space contains at most 2|W| possible actions, which is relevant to the
worker number and impossible to train for large clusters. In our setting, we choose a very small but
still powerful action space. Let the action an ∈ {∅, {Ws},W}. That means we have three valid
actions in each iteration: ∅ keeps all idle worker to be idle; {Ws} allows the submitted worker itself
to run; and {W} allows all idle workers to run. Setting such a small size action space enables faster
training of the RL policy. As we have shown earlier in Section 3.1, this action space is enough to
represent and switch between the existing policies BSP, ASP and SSP with different threshold s.
Moreover, it can also represent more complex policies.
• Reward: we directly set the reward signal in each iteration as rn = −∆t. Hence, maximizing
the cumulative reward corresponds to finding policies minimizing the total time cost.

3.3 TRAINING RL POLICY

It has been shown in Gu et al. (2016) that the off-policy RL algorithms such as Q-learning can be
more sample efficient than their policy gradient counterparts. This is largely due to the fact that
policy gradient methods require on-policy samples for the new policy obtained after each update
of the policy parameters. Therefore, we adopt the standard deep Q-learning method Mnih et al.
(2013); Van Hasselt et al. (2016) to perform an end-to-end training of our RL policy. Our policy
network is a two-layer neural networks with 64 and 32 units in each hidden layer, respectively.
Leaky rectified activation units are used in the two hidden layers. We present the detailed training
process in Algorithm 2.

The RL policy training process is embedded into the SGD algorithm. Each training episode corre-
sponds to training the underlying ML models once by SGD. To stabilize the learned policy, we apply
an evaluation policy network Q and a targeted policy network Q∗ with parameters θ and θ∗, respec-
tively. The parameters of Q are copied to Q∗ every c iterations. We maintain an experience replay
pool D with size N to store transitions (S′, a, r, S), where S′ is the previous state of S. In each iter-
ation, we sample a mini-batch B of transitions fromD. For each transition (Si−1, ai−1, ri−1, Si), let
yi = Q(Si−1, ai−1; θ) and ŷi = ri−1 +γmaxaQ(Si, a; θ) denote the estimated and targeted cumu-
lative reward of the current state with discount factor γ ∈ (0, 1]. We apply a square loss ‖yi − ŷi‖2
to train the parameters θ of Q. After that, we choose the action a in an ε-greedy manner in order to
decide the execution status of workers. Finally, the policy network Q∗ is returned for inference.

In our synchronization policy design problem, we observe that interval of possible training times
of SGD under different policies has large overlaps due to the stochastic nature of SGD. To help
the policy network to distinguish the difference of synchronization policies earlier and speed up the
converge, we integrate the policy network with some prior knowledge on existing synchronization
policies. Specifically, we apply a pre-training process to train the policy network in advance. We
execute SGD with existing policies (BSP, ASP and SSP with different thresholds s) and record
the information state S and action a for each iteration. After SGD finishes, we obtain the truly
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Algorithm 2: Training RL Policy
1: initialize the experience replay pool D with size N
2: for episode← 1 to T do
3: while the stopping condition of SGD is not met do
4: obtain the current state vector S and reward r ← −∆t
5: store the transition (S′, a, r, S) into the replay pool D
6: sample a mini-batch B of transitions from D
7: train the parameters θ of Q by the squared loss of yi and ŷi on B
8: copy the parameters θ of Q to θ∗ of Q∗ every c iterations

9: choose action a←

{
random action with probability ε
arg maxaQ

∗(S, a; θ∗) with probability1− ε
10: apply action at to set the execution status of workers
11: S′ ← S
12: end while
13: end for
14: return policy network Q∗ with parameters θ∗

cumulative reward −t, i.e. the training time left until the end, for each iteration. Then, we apply
the squared loss on the difference of Q(S, a; θ) and −t over all iterations to train the parameters of
the policy network. We observed that using pre-training policy exploration time may be saved and
faster convergence achieved.

4 EXPERIMENTS

We implement RLP in a simulated cluster/PS environment. This allows for convenient creation of
various training instances. We now report our evaluation results in this section.

Instance Generation Method. We train the RLP by training a DNN model consisting of several
fully connected layers on a simulated cluster of 10 workers. In the following we refer to this model
as the “underlying” model (as opposed to the RL policy model).

For each training instance, we need to configure both the cluster and the underlying model. To
simulate stragglers, we have a probability p = 0.3 to activate the sleep() function in each worker
in the cluster. The sleeping time obeys a Gaussian distribution. For the underlying DNN model,
we randomly choose a number h ∈ {0, 1, 2, 3} as the number of hidden layers. When h = 0,
DNN degenerates to a multi-class logistic regression model. Each hidden layer contains 256 units
with rectified activation functions. We use cross-entropy as the loss function. In each instance, we
randomly sample 50% data from the MNIST dataset and run the standard SGD for training.

Training and Testing Methods. The hyper-parameters for RLP are set as follows: historical size
H = 10, replay pool size N = 50, mini-batch size |B| = 32, copy rate c = 5, discount factor γ =
0.8, exploration probability ε = 0.1 and learning rate to be 0.01. For the underlying DNN model,
we set its batch size to 16 and learning rate to 0.01. SGD terminates once we attain 88% validation
accuracy. Before training, we apply the existing policies BSP, ASP, and SSP with s = 2, 5, 8 to
pre-train the policy network on 100 instances, respectively. Then, we train the RLP policy until
convergence with about 1,000 instances (episodes). When testing we run each instance 30 times
with different random seeds under the same policy and report the average time cost.

Performance Comparison vs. Existing Synchronization Policies. First of all, we examine the
performance of RLP by comparing its execution time with respect to BSP, ASP, and SSP. The
result of SSP refers to the result for the best threshold s. We report the average results tested on 100
instances in Fig. 2(a). On the whole, our proposed RLP runs 1.56, 1.86 and 1.44 times faster than
BSP, ASP and SSP, respectively. This verifies that our RL-based method can find better synchro-
nization policies in the case of our particular choice of underlying model.

To present more details, we also compare the average testing results on different models and different
cluster environments. Fig. 2(b) reports the results for the underlying model with 0 and 3 hidden
layers. RLP improves the running time by 48% and 43% w.r.t. the best existing policy, respectively.
There exists no significant difference on the speedup ratio of RLP w.r.t. different models. This
is most likely due to very similar loss curves for these model variations. Therefore, the relative
difference of different policies tends to be similar. Fig. 2(c) reports the results on clusters with
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Figure 2: Performance comparison of RLP w.r.t. existing policies. (a) Average results on all testing
cases. (b) Results on DNN models with 0 and 3 hidden layers. (c) Results on clusters with different
number of stragglers.
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Figure 3: Evaluation on the generalization ability of RLP on unseen cases. (a) Results on clusters
with different number of workers. (b) Results on new DNN model and new dataset. (c) Results on
combination of clusters with different number of workers, new DNN model and new dataset.

different number of stragglers. RLP improves the time cost by 2%, 22% and 51% w.r.t. the best
existing policy when having 0, 1 and multiple stragglers, respectively. The speedup ratio is more
obvious when having more stragglers. This is due to when there exists no stragglers, all existing
policies perform in a similar way, so there leaves no room for RLP to improve anymore. By our
observation, RLP performs in the same way as the optimal ASP this time. When there exist more
stragglers, the straggling and staleness problems of all workers become more complex, so there
exists more space for RLP to explore new better policies. These detailed evaluation shows that
RLP is both efficient and adaptive to speed up distributed SGD in different circumstances.

Generalization Ability of RLP. In this set of experiments, we evaluate the generalization ability of
RLP by applying it to process unseen instances with different configuration of clusters and models.
First, we consider the generalization to clusters with different number of workers. We randomly
choose 2, 5 and 8 workers in the cluster and apply RLP to train the underlying DNN model having
one hidden layer. The results are illustrated in Fig. 3(a). We observe that RLP policy trained on
a cluster having 10 workers also performs much better than the existing policies on cluster with
different number of workers. We argue that this is due to the fact that in our RL formulation, both
the state and action representation are irrelevant to the number of workers. Therefore, our RLP policy
is easy to transfer to a different cluster environment. Second, we examine the generalization ability
of RLP w.r.t. new model and new data and show result in Fig. 3(b). For a previously unseen DNN
model with 6 hidden layers and a new CIFAR10 dataset, RLP improves the training time by 33%
and 22% w.r.t. the best existing policy, respectively. This shows that our trained RLP can also
generalize to train similar underlying ML models with unseen training datasets. This could be due
to the fact that we record only the information of the loss value in the state representation of RLP.
Thus, training models with similar loss curve may also speed up by our RLP policy experience.
Third, we combined these testing cases together to evaluate RLP on a new DNN model and dataset
with a different number of workers. Fig. 3(c) shows that RLP also achieves good performance in
this setting. It improves the running time by 69%, 19% and 20% w.r.t. the best existing policy on 2,
5 and 8 workers, respectively. In summary, this set of experimental results shows that our design of
the states and actions for RLP should allow it to generalize to different settings.

Detailed Insights into RLP. Finally, we look more int the details of the learned RLP policy, To this
end, in Fig. 4, we visualize the execution process of all workers in a typical case with multiple strag-
glers, where the color and gray blocks represent that the worker is running and idle, respectively.
Tab. 1 summarizes statistics for each policy. Based on this, advantages and disadvantages of each
policy become visible and we obtain the following insights:
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(a) BSP (b) ASP

(c) SSP (s = 3) (d) RLP

Figure 4: Visualization of the training process of SGD under different synchronization policies.

Table 1: Statistics for different policies as observed in our experiments.
Policy W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

# % %
iterations idle time inference time

BSP 28 28 28 28 28 28 28 28 28 28 279 54.24% 0
ASP 52 47 100 93 87 31 21 91 70 67 569 0 0
SSP 26 26 26 26 26 25 19 26 26 26 252 43.5% 0
RLP 34 28 53 51 51 19 14 54 38 38 380 8.1% 1.4%
Step 9.17 10.103 4.37 4.47 4.57 15.39 22.189 5.31 4.97 5.07 — — —Time

• Both BSP and SSP force all workers to do almost the same number of computation steps but
spend around half of the time in an idle state. In fact, SSP degenerates to BSP in the later steps.
Therefore, although BSP performs less iterations than ASP, its total training time is longer.
• For ASP, there exists no synchronization barrier for workers to wait, so the number of steps done
by workers are highly correlated to their step time (the correlation coefficient is around −0.9 ).
However, due to the increased staleness level, ASP performs a larger number of iterations (2.4 times
than BSP).
• For RLP, we have two observations. First, RLP only synchronizes workers less times than neces-
sary. We may observe very short idle times (only 8%) for RLP. Thus, RLP appears to never block
the fastest workers. Similar to ASP, the number of steps done by workers is also highly correlated to
their step time. Second, the synchronization barriers chosen by RLP are all worthwhile. We find two
typical cases: 1) at the very beginning when the training loss decreases the fastest, synchronization
can help to avoid staleness of parameters afterwards; 2) when some workers terminate their compu-
tation steps in a similar time, it is worth to spend a small amount of time to synchronize in order to
reduce staleness. Therefore, RLP exhibits a lower level of staleness and needs much less iterations
(only around 58%) than ASP. Moreover, the extra time spent on inference in RLP to generate actions
only takes near 1%, so applying RLP adds very little extra cost to the SGD training process.

5 CONCLUSION AND FUTURE WORK

We have presented an RL-based framework used to learn synchronization policies for PS-based
training with distributed SGD. Based on the results of our experiments we argue the following
points:
• There exist synchronization policies for PS-based training beyond classic BSP, ASP and
SSP which lead to shorter training time and improved resource utilization. It should be a worthwhile
research endeavour to explore this topic for different types of models, in particular computationally
demanding models.
• Such synchronization policies may even provide better results in terms of used computational re-
sources when used with slightly modified models, different cluster environments and training data.
• The additional overhead incurred by having to perform an extra inference step for the RL policy
network in the parameter server may still be less than the overall gain in efficiency from the policy
when compared to BSP, ASP and SSP.
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For future work we plan to deploy RLP in a real-world scenario on a range of different model classes
and gain further insights into its practicability. Moreover, we hope to further formalize our approach
in order to gain theoretical insights into the existence of optimal synchronization policies.

We further believe that reinforcement learning might be a valuable research tool for the distributed
systems community supporting the exploration and discovery of new policies for control problems
which are typically encountered in this field.
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