
Under review as a conference paper at ICLR 2019

LOCAL BINARY PATTERN NETWORKS FOR CHARAC-
TER RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Memory and computation efficient deep learning architectures are crucial to the
continued proliferation of machine learning capabilities to new platforms and sys-
tems, especially, mobile sensing devices with ultra-small resource footprints. In
this paper, we demonstrate such an advance for the well-studied character recogni-
tion problem. We use a strategy different from the existing literature by proposing
local binary pattern networks or LBPNet that can learn and perform bit-wise oper-
ations in an end-to-end fashion. Binarization of operations in convolutional neural
networks has shown promising results in reducing the model size and comput-
ing efficiency. Characters consist of some particularly structured strokes that are
suitable for binary operations. LBPNet uses local binary comparisons and random
projection in place of conventional convolution (or approximation of convolution)
operations, providing important means to improve memory and speed efficiency
that is particularly suited for small footprint devices and hardware accelerators.
These operations can be implemented efficiently on different platforms including
direct hardware implementation. LBPNet demonstrates its particular advantage on
the character classification task where the content is composed of strokes. We ap-
plied LBPNet to benchmark datasets like MNIST, SVHN, DHCD, ICDAR, and
Chars74K and observed encouraging results.

INTRODUCTION

Convolutional Neural Networks (CNN) (LeCun et al., 1989a) have had a notable impact on many ap-
plications. Modern CNN architectures such as AlexNet (Krizhevsky et al., 2012), VGG (Simonyan
& Zisserman, 2015), GoogLetNet (Szegedy et al., 2015), and ResNet (He et al., 2016) have greatly
advanced the use of deep learning techniques (Hinton et al., 2006) into a wide range of computer
vision applications (Girshick et al., 2014; Long et al., 2015). As deep learning models mature and
take on increasingly complex pattern recognition tasks, these demand tremendous computational
resources with correspondingly higher performance machines and accelerators that continue to be
fielded by system designers. It also limits their use to applications that can afford the energy and/or
cost of such systems. By contrast, the universe of embedded devices especially when used as intel-
ligent edge-devices in the emerging distributed systems presents a higher range of potential applica-
tions from augmented reality systems to smart city systems.

Optical character recognition (OCR) particularly in the wild, shown in Fig. 1, has become an es-
sential task for computer vision applications such as autonomous driving and mixed reality. There
existed CNN-based methods (Yin et al., 2013) and other probabilistic learning methods (Yao et al.,
2014a;b) handling the OCR tasks. However, the CNN-based models are computation demanding,
and the probabilistic learning methods required more patches, e.g., empirical rule, clustering, error
correction, or boosting to improve accuracy.

Various methods have been proposed to perform network pruning (LeCun et al., 1989b; Guo et al.,
2016), compression (Han et al., 2015; Iandola et al., 2016), or sparsification(Liu et al., 2015). Im-
pressive results have been achieved lately by using binarization of selected operations in CNNs
(Courbariaux et al., 2015; Hubara et al., 2016; Rastegari et al., 2016). At the core, these efforts seek
to approximate the internal computations from floating point to binary while keeping the underlying
convolution operation exact or approximate, but the nature of character images has not been fully
utilized yet.

1

Under review as a conference paper at ICLR 2019

We propose LBPNet as a light-weighted and compact deep-learning approach that can leverage
the nature of character images since LBPNet is sensitive to discriminative outlines and strokes.
Precisely, we focus on the task of character classification by exploring an alternative using non-
convolutional operations that can be executed in an architectural and hardware-friendly manner,
trained in an end-to-end fashion from scratch (distinct to the previous attempts of binarizing the
CNN operations). We note that this work has roots in research before the current generation of deep
learning methods. Namely, the adoption of local binary patterns (LBP) (Ojala et al., 1996), which
uses a number of predefined sampling points that are mostly on the perimeter of a circle, to compare
with the pixel value at the center. The combination of multiple logic outputs (“1” if the value on a
sampling point is greater than that on the center point and “0” otherwise) gives rise to a surprisingly
rich representation (Wang et al., 2009) about the underlying image patterns and has shown to be
complementary to the SIFT-kind features (Lowe, 2004). However, LBP has been under-explored in
the deep learning research community where the feature learning part in the existing deep learning
models (Krizhevsky et al., 2012; He et al., 2016) primarily refers to the CNN features in a hierarchy.
We found LBP operations particularly suitable in recognizing characters that consist of structured
strokes. Despite recent attempts such as (Juefei-Xu et al., 2017), the logic operation (comparison) in
LBP has not been used in the existing CNN frameworks due to the intrinsic difference between the
convolution and comparison operations.

Figure 1: Examples in character recognition datasets.

Figure 2: The LBPNet architecture. The LBP opera-
tion generates feature maps with comparison and bit-
allocation, while random projection fuses the interme-
diate channels.

Several features make LBPNet distinct from previous attempts. All the binary logic operations in
LPBNet are directly learned, which is in a stark distinction to previous attempts that try to either
binarize CNN operations (Hubara et al., 2016; Rastegari et al., 2016) or to approximate LBP with
convolution operations (Juefei-Xu et al., 2017). Further, the LBP kernels in previous works are fixed
upon initialized because the lack of a suitable mechanism to train the sampling patterns. Instead, we
derive a differentiable function to learn the binary pattern and adopt random projection for the fusion
operations. Fig. 2 illustrates the overview of LBPNet. The resulting LBPNet is very suitable for the
character recognition tasks because the comparison operation can capture and comprehend the sharp
outlines and distinct strokes among character images.Experiments show that thus configured LBP-
Net achieves the state-of-the-art results on benchmark datasets while accomplishing a significant
improvement in the parameter size reduction gain (hundreds) and speedup (thousand times faster).
That means LBPNet efficiently utilizes every storage bit and computation unit through the learning
of image representations.

RELATED WORKS

Related works regarding model reduction of CNN fall along four primary dimensions.

Character recognition. Besides CNN-based methods for character recognition like BNN (Hubara
et al., 2016), random forest (Yao et al., 2014a;b) was prevailing as well. However, the random forest
methods usually required one or more techniques such as feature extraction, clustering, or error
correction codes to improve the recognition accuracy. Our method, instead, provides a compact end-
to-end and computation efficient solution to character recognition.

2

Under review as a conference paper at ICLR 2019

Binarization for CNN. Binarizing CNNs to reduce the model size has been an active research
direction (Courbariaux et al., 2015; Hubara et al., 2016; Rastegari et al., 2016). Through binarizing
both weights and activations, the model size was reduced, and a logic operation can replace the
multiplication. Non-binary operations like batch normalization with scaling and shifting are still in
floating-point (Hubara et al., 2016). The XNOR-Net (Rastegari et al., 2016) introduces extra scaling
layer to compensate for the loss of binarization and achieves a state-of-the-art accuracy on ImageNet.
Both BNNs and XNORs can be considered as the discretization of real-numbered CNNs, while the
core of the two works is still based on spatial convolution.

CNN approximation for LBP operation. Recent work on local binary convolutional neural net-
works (LBCNN) in (Juefei-Xu et al., 2017) takes an opposite direction to BNN (Hubara et al., 2016).
LBCNN utilizes subtraction between pixel values together with a ReLU layer to simulate the LBP
operations. During the training, the sparse binarized difference filters are fixed, only the successive
1-by-1 convolution, serving as channel fusion mechanism and the parameters in batch normalization
layers, are learned. However, the feature maps of LBCNN are still in floating-point numbers, result-
ing in significantly increased model complexity as shown in Table 2. By contrast, LBPNet learns
binary patterns and logic operations from scratch, resulting in orders of magnitude reduction in the
memory size and an increase in testing speed over LBCNN.

Active or deformable convolution. Among the notable line of recent work that learns local patterns
are active convolution (Jeon & Kim, 2017) and deformable convolution (Dai et al., 2017), where data
dependent convolution kernels are learned. Both of these are quite different from LBPNet since they
do not seek to improve network efficiency. Our binary patterns learn the position of the sampling
points in an end-to-end fashion as logic operations (without the need for the use of addition opera-
tions). By contrast, directly relevant earlier work (Dai et al., 2017) essentially learns data-dependent
convolutions.

LOCAL BINARY PATTERN NETWORK

Fig. 2 shows an overview of the LBPNet architecture. The forward propagation is composed of two
steps: LBP operation and channel fusion. We introduce the patterns in LBPNets and the two steps in
the following sub-sections and then describe the engineered network structures for LBPNets.

PATTERNS IN LBPNETS

Figure 3: (a) A traditional local binary pattern. (b)-(d)
Our learnable local binary patterns. The red arrows de-
note pushing forces during training.

In LBPNet, multiple patterns defining the posi-
tions of sampling points generate multiple out-
put channels. Patterns are randomly initialized
with a uniform distribution of locations cen-
tered on a predefined square window, and then
subsequently learned in an end-to-end super-
vised learning fashion. Fig. 3 (a) shows a tra-
ditional local binary pattern, which is a fixed
pattern without much variety; there are eight sampling points denoted by green circles, surrounding
a pivot point in the meshed star at the center of pattern; Fig. 3(b)-(d) shows a learnable pattern with
eight sampling points in green and a pivot point as a star at the center. Our learnable patterns are
initialized using a normal distribution of positions within a given area. Different sizes of the green
circle stand for the bit position of the comparison outcome on the output bit array. We allocate the
comparison outcome of the largest green circle to the most significant bit of the output pixel, the
second largest to the second largest bit, and so on. The red arrows represent the driving forces that
can push the sampling points to better positions to minimize the classification error. The model size
of an LBPNet is tiny compared with CNN because the learnable parameters in LBPNets are the
sparse and discrete sampling patterns.

LBP OPERATION

First, LBPNet samples pixels from incoming images and compares the sampled pixel value with the
center sampled point, the pivot. If the sampled pixel value is larger than that of the center one, the
output is a bit “1”; otherwise, the output is set to “0.” Next, we allocate the output bits to a binary
digit array in the output pixel based on a predefined ordering. The number of sampling points defines
the number of bits of an output pixel on a feature map. Then we slide the local binary pattern to the

3

Under review as a conference paper at ICLR 2019

Figure 4: An example of an LBP operation on
multiple input channels. LBP operations for chan-
nel (a) ch.a and (b) ch.b. Each pattern has four
sampling points restricted in a 3-by-3 area.

Figure 5: An example of LBP channel fusing. The
two 4-bit responses from Fig. 3 are fused and as-
signed to pixel s13 on the output feature map.

next location and perform the aforementioned steps until a feature map is generated. In most cases,
the incoming image has multiple channels; hence we perform the LBP operation on every input
channel.

Fig. 4 shows a snapshot of the LBP operations. Given two input channels, ch.a and ch.b, we perform
the LBP operation on each channel with different kernel patterns. The two 4-bit response binary
numbers of the intermediate output are shown on the bottom. For clarity, we use green dashed
arrows to mark where the pixels are sampled and list the comparison equations under the resulting
bits. A logical problem has emerged: we need a channel fusion mechanism to avoid the explosion of
the exponential growing channel numbers.

CHANNEL FUSION WITH RANDOM PROJECTION

Figure 6: Basic LBPNet blocks. (a) the well-known building block
of residual networks. (b) The transition-type building block uses a
1-by-1 convolutional layer for the channel fusion of a preceding
LBP layer. (c) The multiplication and accumulation (MAC) free
building block for LBPNet.

We use random projection (Bingham
& Mannila, 2001) as a dimension-
reducing and distance-preserving
process to select output bits among
intermediate channels for the con-
cerned output channel as shown in
Fig. 5. The random projection is
implemented with a predefined map-
ping table for each output channel,
i.e., we fix the projection map upon
initialization. All output pixels on
the same output channel share the
same mapping. Random projection
not only solves the channel fusion with a bit-wise operation but also simplifies the computation,
because we do not have to compare all sampling points with the pivots. For example, in Fig. 5, the
two pink arrows from intermediate ch.a, and the two yellow arrows from intermediate ch.b bring
the four bits for the composition of an output pixel. Only the MSB and LSB on ch.a and the middle
two bits on the ch.b need to be computed. If the output pixel is n-bit, for each output pixel, there
will be n comparisons needed, which is irrelevant to the number of input channels. The more input
channels bring the more combinations of representations in a random projection table.

Throughout the forward propagation, there are no multiplication or addition operations. Only com-
parison and memory access are used. Therefore, the design of LBPNets is efficient in the aspects of
both software and hardware.

NETWORK STRUCTURES FOR LBPNET

The network structure of LBPNet must be carefully designed. Owing to the nature of the comparison,
the outcome of an LBP layer is very similar to the outlines in the input image. In other words, our
LBP layer is good at extracting high-frequency components in the spatial domain but relatively
weak at understanding low-frequency components. Therefore, we use a residual-like structure to
compensate for this weakness of LBPNet. Fig. 6 shows three kinds of residual-net-like building

4

Under review as a conference paper at ICLR 2019

blocks. Fig. 6 (a) is the typical building block for residual networks. The convolutional kernels
learn to obtain the residual of the output after the addition. Our first attempt is to introduce the
LBP layer into this structure as shown in Fig. 6 (b), in which we utilize a 1-by-1 convolution to
learn a combination of LBP feature maps. However, the convolution incurs too many multiplication
and accumulation operations especially when the LBP kernels increases. Then, we combine LBP
operation with a random projection as shown in Fig. 6 (c). Because the pixels in the LBP output
feature maps are always positive, we use a shifted rectified linear layer (shifted-ReLU) to increase
nonlinearities. The shifted-ReLU truncates any magnitudes below half of the maximum of the LBP
output. More specifically, if a pattern has n sampling points, the shifted-ReLU is defined as Eq. 1.

f(x) =

{
x , x > 2n−1 − 1

2n−1 − 1 , otherwise (1)

As mentioned earlier, the low-frequency components reduce as the information passes through sev-
eral LBP layers. To preserve the low-frequency components while making the block MAC-free,
we introduce a joint operation cascading the input tensor of the block and the output tensor of the
shifted-ReLU along the channel dimension. The number of channels is under controlled since the
increasing trend is linear to the number of input channels.

HARDWARE BENEFITS

Table 1: The number of logic gates for arithmetic
units. Energy use data for technology node: 45nm.

Device #bits #gates Energy (J) #cycle

Adder 4 20 ≤ 3E-14 1
32 160 9E-13 1

Multiplier 32 ≥144 3.7E-12 4
Comparator 4 11 ≤ 3E-14 1

LBPNet saves in hardware cost by avoiding the con-
volution operations. Table 1 lists the reference num-
bers of logic gates of the concerned arithmetic units.
A ripple-carry full-adder requires 5 gates for each
bit. A 32-bit multiplier includes a data-path logic and
a control logic. Because there are too many feasi-
ble implementations of the control logic circuits, we
conservatively use an open range to express the sense of the hardware expense. The comparison can
be made with a pure combinational logic circuit of 11 gates, which also means only the infinitesimal
internal gate delays dominate the computation latency. The comparison is not only cheap regarding
its gate count but also fast due to a lack of sequential logic inside. Slight difference in numbers of
logic gates may apply if different synthesis tools or manufacturers are chosen. With the capability
of an LBP layer as strong as a convolutional layer concerning classification accuracy, replacing the
convolution operations with comparison gives us a 27X saving of hardware cost.

Another important benefit is energy saving. The energy demand for each arithmetic device has been
shown in (Horowitz, 2014). If we replace all convolution operations with comparisons, the energy
consumption is reduced by 153X.

Moreover, the core of LBPNet is composed of bit shifting and bitwise-OR, and both of them have no
concurrent accessing issue. If we are implementing an LBPNet hardware accelerator, no matter on
FPGA or ASIC flow, the absence of the concurrent issue resulted from convolution’s accumulation
process will guarantee a speedup over CNN hardware accelerator. For more justification, please refer
to the forward algorithm in the appendix.

BACKWARD PROPAGATION OF LBPNET

To train LBPNets with gradient-based optimization methods, we need to tackle two problems: 1).
The non-differentiability of comparison; and 2). The lack of a source force to push the sampling
points in a pattern.

DIFFERENTIABILITY

The first problem can be solved if we approximate the comparison operation with a shifted and
scaled hyperbolic tangent function as shown in Eq. 2.

Ilbp > Ipivot
approximated→ 1

2
(tanh(

Ilbp − Ipivot
k

) + 1), (2)

where k is the scaling parameters to accommodate the number of sampling points from a previous
LBP layer, Ilbp is the sampled pixel in a learnable LBP kernel, and Ipivot is the sampled pixel on
the pivot. We provide a sensitivity analysis of k w.r.t. classification accuracy in the appendix. The
hyperbolic tangent function is differentiable and has a simple closed-form for the implementation.

5

Under review as a conference paper at ICLR 2019

DEFORMATION WITH OPTICAL FLOW THEORY

To deform the local binary patterns, we resort to the concept from optical flow theory. Assuming the
image content in the same class share the same features, even though there are certain minor shape
transformations, chrominance variations or different view angles, the optical flow on these images
should share similarities with each other. ∂I

∂xVx+ ∂I
∂yVy = −∂I

∂t The equation above shows the optical
flow theory, where I is the pixel value, a.k.a luminance, Vx and Vy represent the two orthogonal
components of the optical flow among the same or similar image content. The LHS of optical flow
theory can be interpreted as a dot-product of image gradient (∂I

∂x x̂ + ∂I
∂y ŷ) and optical flow (Vxx̂ +

Vy ŷ), and this product is the negative derivative of luminance versus time across different images,
where x̂ and ŷ denote the two orthogonal unit vectors on the 2-D coordinate.

To minimize the difference between images in the same class is equivalent to extract similar features
of the images in the same class for classification. However, both the direction and magnitude of
the optical flow underlying the dataset are unknown. The minimization of a dot-product cannot be
done by changing the image gradient to be orthogonal with the optical flow. Therefore, the only
feasible path to minimize the magnitude of the RHS is to minimize the image gradient. Please note
the sampled image gradient can be changed by deforming the apertures, which are the sampling
points of local binary patterns.

When applying calculus chain rule on the cost of LBPNet with regard to the position of each sam-
pling point, one can easily conclude that the last term of the chain rule is the image gradient. Since
the sampled pixel value is the same as the pixel value on the image, the gradient of sampled value
with regard to the sampling location on a pattern is equivalent to the image gradient on the incoming
image. Eq. 3 shows the gradient from the output loss through a fully-connected layer with weights,
wj , toward the image gradient.

∂cost

∂position
=
∑
j

(∆jwj)
∂g(s)

∂s

∂s

∂Ilbp
(

dIlbp
dx

x̂ +
dIlbp
dy

ŷ), (3)

where ∆j is the backward propagated error, ∂g(s)
∂s is the derivative of activation function, and ∂s

∂Ilbp
is

the gradient of Eq. 2. Please refer to the appendix for more details of the forward-backward training
algorithm.

EXPERIMENTS

In this section, we conduct a series of experiments on five datasets and their subsets: MNIST, SVHN,
DHCD, ICDAR2005, and Chars74K to verify the capability of LBPNet. Some typical images of
these character datasets are shown in Fig. 1. Please refer to the appendix for the description of
datasets. We additionally evaluate LBPNet on a few broader categories such as face, pedestrian, and
affNIST and have observed promising results for object classification.

EXPERIMENT SETUP

In all of the experiments, we use all training examples to train LBPNets and directly validate on test
sets. To avoid peeping, we do not employ the validation errors in the backward propagation. There
are no data augmentations used in the experiments.

We implement two versions of LBPNet using the two building blocks shown in Fig. 6 (b) and (c).
For the remaining parts of this paper, we call the LBPNet using 1-by-1 convolution as the channel
fusion mechanism LBPNet(1x1) (has convolution in the fusion part), and the version of LBPNet
utilizing random projection LBPNet(RP) (totally convolution-free). The number of sampling points
in a pattern is set to 4, and the area size for the pattern to deform is 5-by-5.

LBPNet also has an additional multilayer perceptron (MLP) block, which is made with two fully-
connected layers of 512 and #classes neurons. Besides the nonlinearities, there is one batch-
normalization layer. The MLP block’s performance without any convolutional layers or LBP layers
on the three datasets is shown in Table 2, 3. The model size and speed of the MLP block are excluded
in the comparisons since all models have an MLP block.

To understand the capability of LBPNet when compared with existing convolution-based methods,
we build two feed-forward streamline CNNs as our baseline for each dataset. CNN-baseline is de-
signed in the same number of layers and number of kernels with the LBPNet; the other, CNN-lite, is

6

Under review as a conference paper at ICLR 2019

designed subject to the same memory footprint with the LBPNet(RP). The basic block of the CNNs
contains a spatial convolution layer (Conv) followed by a batch normalization layer (BatchNorm)
and a rectified linear layer (ReLU).

In the BNN (Hubara et al., 2016) paper, the classification on MNIST is done with a binarized mul-
tilayer perceptron network (MLP). We adopt the binarized convolutional neural network (BCNN)
in (Hubara et al., 2016) for SVHN to perform the classification and re-produce the same accuracy as
shown in (Lin et al., 2017) on MNIST.

EXPERIMENTAL RESULTS

Table 2 and 3 show the experimental results of LBPNet on MNIST and SVHN together with the
baseline and previous works. We list the classification error rate, model size, latency of the inference,
and the speedup compared with the baseline CNN. The best value of each column is shown in
bold. Please note the calculation of latency in cycles is made with an assumption that no SIMD
parallelism and pipelining optimization is applied. Because we need to understand the total number
of computations in every network but both floating-point and binary arithmetics are involved, we
cannot use FLOPs as a measure. Therefore, we adopt typical cycle counts shown in Table 1 as the
measure of latencies. For the calculation of model size, we exclude the MLP blocks and count the
required memory for necessary variables to focus on the comparison between the intrinsic operations
in CNNs and LBPNets, respectively the convolution and the LBP operation.

Table 2: The performance of LBPNet on MNIST.

Error ↓ Size ↓ Latency ↓ Speedup ↑(Bytes) (cycles)
MLP Block 24.22% - - -
CNN-baseline 0.44% 1.41M 222.0M 1X
CNN-lite 1.20% 456 553K 401.4X
BCNN 0.47% 1.89M 306.1M 0.725X
LBCNN 0.49% 12.2M 8.78G 0.0253X

LBPNet (this work)
LBPNet (1x1) 0.50% 1.27M 27.73M 8.004X
LBPNet (RP) 0.50% 397.5 651.2K 340.8X

Table 3: The performance of LBPNet on SVHN.

Error ↓ Size ↓ Latency ↓ Speedup ↑(Bytes) (cycles)
MLP Block 77.78% - - -
CNN-baseline 8.30% 15.96M 9.714G 1X
CNN-lite 69.14% 2.80K 1.576M 6164X
BCNN 2.53% 1.89M 312M 31.18X
LBCNN 5.50% 6.70M 7.098G 1.369X

LBPNet (this work)
LBPNet (1x1) 8.33% 1.51M 9.175M 1059X
LBPNet (RP) 7.31% 2.79K 4.575M 2123X

MNIST. The CNN-baseline and LBPNet(RP) share the same network structure, 39-40-80, and the
CNN-lite is limited to the same memory size so that the network structure is 2-3. The baseline
CNN achieves the lowest classification error rate 0.44%. The BCNN possesses a decent speedup
while maintaining the classification accuracy. While LBCNN claimed its saving in memory foot-
print, to achieve 0.49% error rate, 75 layers of LBCNN basic blocks are used. As a result, LBCNN
loses speedups. The 3-layer LBPNet(1x1) with 40 LBP kernels and 40 1-by-1 convolutional kernels
achieves 0.50%. The 3-layer LBPNet(RP) reaches 0.50% error rate as well. Although LBPNet’s
performance is slightly inferior, the model size of LBPNet(RP) is reduced to 397.5 bytes, and the
speedup is 340.8X faster than the baseline CNN. Even BCNN cannot be on par with such a vast
memory reduction and speedup. The CNN-lite delivering the worst error rate demonstrates that if
we shrink a CNN model down to the same memory size as the LBPNet(RP), the classification error
of CNN(lite) is greatly sacrificed.

SVHN. Table 3 shows the experimental results of LBPNet on SVHN together with the baseline
and previous works. The CNN-baseline and LBPNet(RP) share the same network structure, 67-70-
140-280-560, and the CNN-lite is limited to the same memory size so that the network structure
is 8-17. BCNN outperforms our baseline and achieves 2.53% with smaller memory footprint and
higher speed. LBCNN also achieve a good memory reduction and 1.369X speed-up. The 5-layer
LBPNet(1x1) with 8 LBP kernels and 32 1-by-1 convolutional kernels achieve 8.33%, which is close
to our baseline CNN’s 8.30%. The convolution-free LBPNet(RP) for SVHN is built with 5 layers of
LBP basic blocks, 67-70-140-280-560, and achieves 7.31% error rate. Compared with CNN(lite)’s
high error rate, the learning of LBPNet’s sampling point positions is proven to be effective and
economical.

More Results. Table 4 lists the experimental results of LBPNet(RP) on all character recognition
datasets. LBPNets achieve the state-of-the-art accuracies on all of the datasets.
PRELIMINARY RESULTS ON OBJECTS AND DEFORMED PATTERNS

Next, we show results on datasets of general objects.

Pedestrain: We first evaluate LBPNet on the INRIA pedestrian dataset (Dalal & Triggs,
2005), which consists of cropped positive and negative images. Note that we did not im-

7

Under review as a conference paper at ICLR 2019

Table 4: LBPNet structures and experimental results.
Type Structure Error↓ Size↓ Reduction ↑ Latency ↓ Speedup ↑

MNIST CNN-3L 39-40-80 0.44% 1.41M - 222.0M -
LBPNet(RP) 39-40-80 0.50% 397.5 3547X 651.2K 341X

SVHN CNN-5L 67-70-140-280-560 8.30% 15.96M - 9.714G -
LBPNet(RP) 67-70-140-280-560 7.31% 2.79K 5720X 4.575M 348X

DHCD CNN 63-64-128-256 0.72% 4.61M - 1.59G -
LBPNet(RP) 63-64-128-256 0.81% 1.28K 3602X 2.973M 535X

ICDAR-Digits CNN 3-4 0.00% 44.47K - 556.6K -
LBPNet(RP) 3-4 0.00% 317 140X 11.95K 47X

ICDAR-LowerCase CNN 3-4 0.00% 44.47K - 556.6K -
LBPNet(RP) 3-4 0.00% 317 140X 11.95K 47X

ICDAR-UpperCase CNN 3-4 0.00% 44.47K - 556.6K -
LBPNet(RP) 3-4 0.00% 317 140X 11.95K 47X

Chars74K-EnglishImg CNN 63-64-128-256-512 40.54% 12.17M - 6.218G -
LBPNet(RP) 63-64-128-256-512 41.69% 2.56K 4754X 4.19M 1,484X

Chars74K-EnglishHnd CNN 63-64-128 28.68% 1.95M - 434.5M -
LBPNet(RP) 63-64-128 26.63% 637.5 3059X 1.044M 416X

Chars74K-EnglishFnt CNN 63-64-128 21.91% 1.95M - 434.5M -
LBPNet(RP) 63-64-128 22.74% 637.5 3059X 1.044M 416X

plement an image-based object detector due to the focus of our paper. Fig. 7 shows
the trade-off curves of a 3-layer LBPNet (37-40-80) and a 3-layer CNN (37-40-80).
Here we did not exhaustively explore the capability of LBPNet for object classification.

Figure 7: The classification error trade-off
(DET) curves of a 3-layer LBPNet and a 3-
layer CNN on the INRIA pedestrian dataset
(Dalal & Triggs, 2005). We plot the results
on Fig.8(a) of Dollár et al. (2009) for com-
parison with the other five approaches.

Face: We apply our LBPNet on FDDB dataset (Jain &
Learned-Miller, 2010) to verify the face classification
performance of LBPNet. Same as previously, we perform
training and testing on a dataset of cropped images; we
use the annotated positive face examples with cropped
four non-person frames in every training image to create
negative face examples for both training and testing. The
structures of the LBPNet and CNN are the same as before
(37-40-80). LBPNet achieves 97.78%, and the baseline
CNN reaches 97.55%.

affNIST: We conduct an experiment on affNIST 1, which
is composed of 32 translation variations of MNIST (in-
cluding the original MNIST). To accelerate the experi-
ment, we randomly draw three variations of each original
example to get training and testing subsets of affNIST.
We repeat the same process to draw examples and train
the networks ten times to get an averaged result. The network structure of LBPNet and our base-
line CNN are the same, 39-40-80. To improve the translation invariant property of the networks, we
use two max-pooling layers following the first and second LBP layer or convolutional layer. With
the training and testing on the subsets of affNIST, LBPNet achieves 93.18%, and CNN achieves
94.88%.

CONCLUSION AND FUTURE WORK

We have built a convolution-free, end-to-end, and bitwise LBPNet from basic operations and verified
its effectiveness on character recognition datasets with orders of magnitude speedup (hundred times)
in testing and model size reduction (thousand times) when compared with the baseline and the
binarized CNNs. The learning of local binary patterns results in an unprecedentedly efficient model
since, to the best of our knowledge, there is no compression/discretization of CNN can achieve the
KByte level model size while maintaining the state-of-the-art accuracy on the character recognition
tasks. Both the memory footprints and computation latencies of LBPNet and previous works are
listed. LBPNet points to a promising direction for building new generation hardware-friendly deep
learning algorithms to perform computation on the edge devices.

1https://www.cs.toronto.edu/ tijmen/affNIST/

8

Under review as a conference paper at ICLR 2019

REFERENCES

Shailesh Acharya, Ashok Kumar Pant, and Prashnna Kumar Gyawali. Deep learning based large
scale handwritten devanagari character recognition. In SKIMA, pp. 1–6. IEEE, 2015.

Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: applications to
image and text data. In ACM SIGKDD, 2001.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Training Deep Neu-
ral Networks with binary weights during propagations. Advances in Neural Information Process-
ing Systems (NIPS), pp. 3123–3131, 2015.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. In ICCV, 2017.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In CVPR, pp.
886–893, 2005.

Teófilo Emı́dio De Campos, Bodla Rakesh Babu, Manik Varma, et al. Character recognition in
natural images. VISAPP (2), 7, 2009.

Piotr Dollár, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian detection: A benchmark.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 304–
311. IEEE, 2009.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation. In CVPR, 2014.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In NIPS,
2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In ICLR, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. 2016.

G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets. Neural
computation, 18:1527–1554, 2006.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, pp. 10–14.
IEEE, 2014.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In NIPS, pp. 4107–4115, 2016.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Vidit Jain and Erik Learned-Miller. Fddb: A benchmark for face detection in unconstrained settings.
Technical Report UM-CS-2010-009, University of Massachusetts, Amherst, 2010.

Yunho Jeon and Junmo Kim. Active convolution: Learning the shape of convolution for image
classification. In CVPR, 2017.

Felix Juefei-Xu, Vishnu Naresh Boddeti, and Marios Savvides. Local binary convolutional neural
networks. In CVPR, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In NIPS, pp. 1097–1105, 2012.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989a.

9

Under review as a conference paper at ICLR 2019

Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, and Lawrence D Jackel. Optimal
brain damage. In NIPS, 1989b.

Jeng-Hau Lin, Tianwei Xing, Ritchie Zhao, Mani Srivastava, Zhiru Zhang, Zhuowen Tu, and Ra-
jesh Gupta. Binarized convolutional neural networks with separable filters for efficient hardware
acceleration. Computer Vision and Pattern Recognition Workshop (CVPRW), 2017.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convo-
lutional neural networks. In CVPR, 2015.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. CVPR, 2015.

David G Lowe. Distinctive image features from scale-invariant keypoints. International journal of
computer vision, 60(2):91–110, 2004.

Timo Ojala, Matti Pietikäinen, and David Harwood. A comparative study of texture measures with
classification based on featured distributions. Pattern recognition, 29(1):51–59, 1996.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: ImageNet
Classification Using Binary Convolutional Neural Networks. In ECCV, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
CVPR, 2015.

Xiaoyu Wang, Tony X Han, and Shuicheng Yan. An hog-lbp human detector with partial occlusion
handling. In CVPR, 2009.

Cong Yao, Xiang Bai, and Wenyu Liu. A unified framework for multioriented text detection and
recognition. IEEE Transactions on Image Processing, 23(11):4737–4749, 2014a.

Cong Yao, Xiang Bai, Baoguang Shi, and Wenyu Liu. Strokelets: A learned multi-scale representa-
tion for scene text recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4042–4049, 2014b.

Fei Yin, Qiu-Feng Wang, Xu-Yao Zhang, and Cheng-Lin Liu. Icdar 2013 chinese handwriting
recognition competition. In Document Analysis and Recognition (ICDAR), 2013 12th Interna-
tional Conference on, pp. 1464–1470. IEEE, 2013.

10

Under review as a conference paper at ICLR 2019

APPENDIX

FORWARD PROPAGATION ALGORITHM

Algorithm 1: Forward of LBPNet
input : An input tensor X of shape (ci, w, h), previous pattern P of shape (co, ns), and the fixed projection

map M of shape (co, ns). The pattern width k and padding width d =
⌊
k
2

⌋
. Please note every element

of P is a tuple.
output: A scalar predictions y.

1 X ← ZeroPadding(X , d);
2 for io = 1 to co do
3 for ih = to h do
4 for iw = 1 to w do
5 for is = 1 to ns do
6 ii ←M [io, is];
7 (ipx, ipy)← P [io, is];
8 pivot← X[iw + d][iw + d][ii];
9 sample← X[iw + ipx][iw + ipy][ii];

10 if sample > pivot then
11 y[iw][ih][io] | = 1� is
12 end
13 end
14 end
15 end
16 end
17 return y

Alg. 1 describes the forward algorithm of an LBP layer. The three outermost nested loops form
the sliding window operation to generate an output feature maps, and the innermost loop is the LBP
operation. We combine the LBP operation with random projection to skip unnecessary comparisons.
Firstly, we look up the random projection map for the input plane index and then use it to sample
only the necessary pairs for the comparison.

The core of LBPNet is implemented with bit shifting and bitwise-OR, and both of them have no
concurrent accessing issue. That is, we can directly implement it with CUDA programming to ac-
celerate the inference on GPU. If we are implementing an LBPNet hardware accelerator, no matter
on FPGA or ASIC flow, the absence of concurrent issue resulted from CNN’s accumulation process
will guarantee a speedup over CNN’s hardware accelerator.

BACKWARD PROPAGATION ALGORITHM

Algorithm 2: Backward of LBPNet
input : An input tensor X , a gradient tensor of loss w.r.t the output of current layer go(co×wo×ho), previous

pattern P , and the fixed projection map M . The pattern width k and padding width d. During training,
we remember the previous real-valued pattern R of the same shape of P .

output: The gradient of loss w.r.t. the input tensor gi in shape (ci, w, h), and the gradient of loss w.r.t. the
position of sampling point. gP in shape (co, ns). Please note every element of gP is a tuple.

1 5← ImageGradient(X);
2 P ← round(R);
3 D ← LookUpDifference(X , P , M);
4 E ← ConstructExp(tanh(D),P , M);
5 dE ← ConstructDiffExp(1-tanh2(D),P , M);
6 gi ← 1

2
gTo E;

7 gP ← go(dEF5)T ;
8 return gi, gP , R, P

Alg. 2 describes the backward propagation at a high-level point of view. Because LBPNet requires
sophisticated element-wise matrix operation, some of them have no matrix-to-vector or matrix-to-

11

Under review as a conference paper at ICLR 2019

matrix multiplication equivalence but can be implemented and optimized in low-level CUDA codes
for training speed. The ImageGradient(.) function calculates the image gradient vector field of
the input feature map. Then, round(.) function discretize the previous real-valued pattern for the
image sampling later on. LookUpDifference(.) samples the input tensor with the concerned input
plane index from the projection map. This step is similar to the core of Alg. 1, but we calculate the
difference instead of comparing the pairs of sampled pixels.

The ConstructExp(.) function multiplies the hyperbolic tangential difference matrix with the ex-
ponential of 2 corresponding to the position of the comparison result in an output bit array. For
example, if a comparison result is allocated to the MSB, the hyperbolic tangential value will be mul-
tiplied with 2ns , assuming ns sampling pairs per kernel. The ConstructDiffExp(.) performs the
same calculation with ConstructExp(.) except for the first argument is replaced with the derivative
of tanh(.). These two sub-routine functions convert sparse kernels to dense kernels for the follow
matrix-to-matrix multiplications.

The sixth line uses a matrix-to-matrix multiplication to collect and weight the output gradient tensor
from the successive layer. This step is the same with CNN’s backward propagation. The resulting
tensor is also called input gradient tensor and will be passed to the preceding layer to accomplish
the backward propagation.

The seventh line element-wisely times the differential exponential matrix with the image gradient
first and then multiply the result with the output gradient tensor. The resulting tensor carries the
gradient of LBP parameters, ∂cost

∂position , which will be multiplied with an adaptive learning rate for
the update of sampling positions of an LBP kernel.

DATASET DESCRIPTIONS

Images in the padded MNIST dataset are hand-written numbers from 0 to 9 in 32-by-32 grayscale
bitmap format. The dataset is composed of a training set of 60, 000 examples and a test set of
10, 000 examples. Both staff and students wrote the manuscripts. Most of the images can be easily
recognized and classified, but there is still a portion of sloppy images inside MNIST.

SVHN is a photo dataset of house numbers. Although cropped, images in SVHN include some
distracting numbers around the labeled number in the middle of the image. The distracting parts
increase the difficulty of classifying the printed numbers. There are 73, 257 training examples and
26, 032 test examples in SVHN.

Table 5: The datasets we used in the experiment.
Description #Class #Examples CNN Baseline LBPNet (RP) (ours)

DHCD Handwritten Devanagari characters 46 46x2,000 98.47% (Acharya et al., 2015) 99.19%
ICDAR-DIGITS Photos of numbers 10 988 100.00% 100.00%
ICDAR-UpperCase Photos of lower case Eng. char. 26 5,288 100.00% 100.00%
ICDAR-LowerCase Photos of upper case Eng. char. 26 5,453 100.00% 100.00%
Chars74K-EnglishImg Photos, Alphanumeric 62 7,705 47.09% (De Campos et al., 2009) 58.31%
Chars74K-EnglishHnd Handwritten, Alphanumeric 62 3,410 71.32% 73.37%
Chars74K-EnglishFnt Printed Fonts, Alphanumeric 62 62,992 78.09% 77.26%

LEARNING CURVES

Figure 8: Error curves on benchmark datasets. (a) test errors on MNIST; (b) test errors on SVHN.

Fig. 8 shows the learning curves of LBPNets on MNIST and SVHN.

12

Under review as a conference paper at ICLR 2019

SENSITIVITY ANALYSIS OF k

Figure 9: Sensitivity analysis of k w.r.t. training error on MNIST. (a) Training error; (b) training loss; (c) test
error.

Fig 9 shows the sensitivity analysis of the parameter k in Eq. 2 w.r.t. the training accuracy. The
LBPNet structure we use is 3-layer, 39-40-80. We gradually reduce k from 10 to 0.01 to verify the
effect on the learning curves. Sub-figure (a) and (c) shows the smaller k is, the lower the error rate is,
but there exist a saturation when k decreases below 1. Sub-figure (b) shows a smaller k suppresses
the ripple of training loss better. As a summary, because we approximate the comparison function
with a sifted and scaled hyperbolic tangent function. A smaller k implies less error between the
approximation and the original comparison curve, and hence simulate the comparison while securing
differentiability. In this paper, we choose k = 0.1 to balance between classification accuracy and the
overflow risk of the gradient summation during backward propagation.

13

