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Abstract

We introduce graph normalizing flows: a new, reversible graph neural network
model for prediction and generation. On supervised tasks, graph normalizing flows
perform similarly to message passing neural networks, but at a significantly reduced
memory footprint, allowing them to scale to larger graphs. In the unsupervised
case, we combine graph normalizing flows with a novel graph auto-encoder to
create a generative model of graph structures. Our model is permutation-invariant,
generating entire graphs with a single feed-forward pass, and achieves competitive
results with the state-of-the art auto-regressive models, while being better suited to
parallel computing architectures.

1 Introduction

Graph-structured data is ubiquitous in science and engineering, and modeling graphs is an important
component of being able to make predictions and reason about these domains. Machine learning
has recently turned its attention to modeling graph-structured data using graph neural networks
(GNNs) [8, 23, 16, 13, 6] that can exploit the structure of relational systems to create more accurate
and generalizable predictions. For example, these can be used to predict the properties of molecules
in order to aid in search and discovery [5, 6], or to learn physical properties of robots such that new
robots with different structures can be controlled without re-learning a control policy [27].

In this paper, we introduce a new formulation for graph neural networks by extending the framework
of normalizing flows [22, 3, 4] to graph-structured data. We call these models graph normalizing
flows (GNFs). GNFs have the property that the message passing computation is exactly reversible,
meaning that one can exactly reconstruct the input node features from the GNN representation; this
results in GNFs having several useful properties.

In the supervised case, we leverage a similar mechanism to [7] to obtain significant memory savings
in a model we call reversible graph neural networks, or GRevNets. Ordinary GNNs require the
storage of hidden states after every message passing step in order to facilitate backpropagation. This
means one needs to store O(#nodes× #message passing steps) states, which can be costly for large
graphs. In contrast, GRevNets can reconstruct hidden states in lower layers from higher layers
during backpropagation, meaning one only needs to store O(#nodes) states. A recent approach for
memory saving based on recurrent backpropagation (RBP) [1, 20, 18] requires running message
passing to convergence, followed by the approximate, iterative inversion of a large matrix. Conversely,
GRevNets get the exact gradients at a minor additional cost, equivalent to one extra forward pass. We
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show that GRevNets are competitive with conventional memory-inefficient GNNs, and outperform
RBP on standard benchmarks.

In the unsupervised case, we use GNFs to develop a generative model of graphs. Learned generative
models of graphs are a relatively new and less explored area. Machine learning has been quite
successful at generative modeling of complex domains such as images, audio, and text. However,
relational data poses new and interesting challenges such as permutation invariance, as permuting the
nodes results in the same underlying graph.

One of the most successful approaches so far is to model the graph using an auto-regressive pro-
cess [17, 30]. These generate each node in sequence, and for each newly generated node, the
corresponding edges to previously generated nodes are also created. In theory, this is capable of
modeling the full joint distribution, but computing the full likelihood requires marginalizing over all
possible node-orderings. Sequential generation using RNNs also potentially suffers from trying to
model long-range dependencies.

Normalizing flows are primarily designed for continuous-valued data, and the GNF models a dis-
tribution over a structured, continuous space over sets of variables. We combine this with a novel
permutation-invariant graph auto-encoder to generate embeddings that are decoded into an adjacency
matrix in a similar manner to [15, 19]. The result is a fully permutation-invariant model that achieves
competitive results compared to GraphRNN [30], while being more well-suited to parallel computing
architectures.

2 Background

2.1 Graph Neural Networks

Notation: A graph is defined as G = (H,Ω), where H ∈ RN×dn , H = (h(1), · · · ,h(N)) is the
node feature matrix consisting of node features, of size dn, for each of the N nodes (h(v) for node
v) in the graph. Ω ∈ RN×N×(de+1) is the edge feature matrix for the graph. The first channel of Ω
is the adjacency matrix of the graph (i.e. Ωi,j,0 = 1 if eij is an edge in the graph). The rest of the
matrix Ωi,j,1:(de+1) is the set of edge features of size de for each possible edge (i, j) in the graph.

Graph Neural Networks (GNNs) or Message Passing Neural Nets (MPNNs) [6] are a generaliza-
tion/unification of a number of neural net architectures on graphs used in literature for a variety of
tasks ranging from molecular modeling to network relational modeling. In general, MPNNs have two
phases in the forward pass – a message passing (MP) phase and a readout (R) phase. The MP phase
runs for T time steps, t = 1, . . . , T and is defined in terms of message generation functions Mt and
vertex update functions Ut. During each step in the message passing phase, hidden node features
h
(v)
t at each node in the graph are updated based on messages m(v)

t+1 according to
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where Agg is an aggregation function (e.g., sum), and N (v) denotes the set of neighbours to node v
in the graph. The R phase converts the final node embeddings at MP step T into task-specific features
by e.g., max-pooling.

One particularly useful aggregation function is graph attention [26], which uses attention [2, 25] to
weight the messages from adjacent nodes. This involves computing an attention coefficient α between
adjacent nodes using a linear transformation W , an attention mechanism a, and a nonlinearity σ,

e
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Multi-headed attention [25] applies attention with multiple weights W and concatenates the results.
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2.2 Normalizing Flows

Normalizing flows (NFs) [22, 3, 4] are a class of generative models that use invertible mappings to
transform an observed vector x ∈ Rd to a latent vector z ∈ Rd using a mapping function z = f(x)
with inverse x = f−1(f(x)). The change of variables formula relates a density function over x,
P (x) to one over z by

P (z) = P (x)

∣∣∣∣∂f(x)

∂x

∣∣∣∣−1
With a sufficiently expressive mapping, NFs can learn to map a complicated distribution into one
that is well modeled as a Gaussian; the key is to find a mapping that is expressive, but with an
efficiently computable determinant. We base our formulation on non-volume preserving flows, a.k.a
RealNVP [4]. Specifically, the affine coupling layer involves partitioning the dimensions of x into
two sets of variables, x(0) and x(1), and mapping them onto variables z(0) and z(1) by

z(0) = x(0)

z(1) = x(1) � exp(s(x(0))) + t(x(0))

Where s and t are nonlinear functions and � is the Hadamard product. The resulting Jacobian is
lower triangular and its determinant is therefore efficiently computable.

3 Methods

3.1 Reversible Graph Neural Networks (GRevNets)

GRevNets are a family of reversible message passing neural network models. To achieve reversibility,
the node feature matrix of a GNN is split into two parts along the feature dimension–H(0)

t and H(1)
t .

For a particular node in the graph v, the two parts of its features at time t in the message passing
phase are called h0

t and h1
t respectively, such that h(v)

t = concat(h0
t ,h

1
t ).

One step of the message passing procedure is broken down into into two intermediate steps, each
of which is denoted as a half-step. F1(·), F2(·), G1(·), and G2(·) denote instances of the MP
transformation given in Equations (1) and (2), with F1/G1 and F2/G2 indicating whether the
function is applied to scaling or translation. These functions consist of applying Mt and then Ut to
one set of the partitioned features, given the graph adjacency matrix Ω. Figure 1 depicts the procedure
in detail.
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This architecture is easily reversible given H(0)
t+1 and H(1)

t+1, with the reverse procedure given by,
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3.2 GNFs for Structured Density Estimation

In the same spirit as NFs, we can use the change of variables to give us the rule for exact density
transformation. If we assume Ht ∼ P (Ht), then the density in terms of P (Ht−1) is given by

P (Ht−1) = det

∣∣∣∣∂Ht−1

∂Ht

∣∣∣∣P (Ht) so that

P (G) = det

∣∣∣∣∂HT

∂H0

∣∣∣∣P (HT )= P (HT )

T∏
t=1

det

∣∣∣∣ ∂Ht

∂Ht−1

∣∣∣∣
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Figure 1: Architecture of 1 step of message passing in a GRevNet: H(0)
t , H(1)

t denote the two parts
of the node-features of a particular node. F1(·), F2(·) and G1(·), G2(·) are 1-step MP transforms
consisting of applying Mt and Ut once each, with F1, G1 performing scaling and F2, G2 performing
translation.

Figure 2: A summary of our graph generation pipeline using GNFs. The learned node features X
from the auto-encoder are used to train the GNF. At generation time, the GNF generates node features
which are then fed into the decoder to get the predicted adjacency matrix.

with H0 being the input node features. The Jacobians are given by lower triangular matrices, hence
making density computations tractable.

GNFs can model expressive distributions in continuous spaces over sets of vectors. We choose the
prior P (HT ) =

∏N
i=1N (hi|0, I) to be a product of independent, standard Gaussian distributions.

Sampling simply involves sampling a set of Gaussian vectors and running the inverse mapping. One
free variable is the number of nodes that must be generated before initiating message passing. We
simply model this as a fixed prior P (N), where the distribution is given by the empirical distribution
in the training set. Sampling graphs uniformly from the training set is equivalent to sampling N from
this distribution, and then sampling G uniformly from the set of training graphs with N nodes.

Notice that the graph message passing induces dependencies between the nodes in the input space,
which is reflected in the Jacobian. This also allows us to cast the RealNVP in the GNF framework:
simply remove the edges from the graph so that all nodes become independent. Then each node
transformation will be a sequence of reversible non-linear mappings, with no between-node depen-
dencies3. We use this as a baseline to demonstrate that the GNF benefits when the nodes must model
dependencies between each other.

3This formulation is specifically applicable to unstructured vector spaces, as opposed to images, which would
involve checkerboard partitions and other domain-specific heuristics.
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In the absence of a known graph structure, as is the case for generation, we use a fully connected
graph neural network. This allows the model to learn how to organize nodes in order to match a
specific distribution. However, this poses a problem for certain aggregation functions like sum and
mean. In the sum case, the message variance will increase with the number of nodes, and in both sum
and mean cases, the messages from each node will have to contend with the messages from every
other node. If there is a salient piece of information being sent from one node to another, then it could
get drowned out by less informative messages. Instead, we opt to use graph attention as discussed in
Section 2.1. This allows each node to choose the messages that it deems to be the most informative.

The result of using a fully connected graph is that the computational cost of message passing is
O(N2), similar to the GraphRNN. However, each step of the GNF is expressible in terms of matrix
operations, making it more amenable to parallel architectures. This is a similar justification for using
transformers over RNNs [25].

3.3 Graph Auto-Encoders

While GNFs are expressive models for structured, continuous spaces, our objective is to train a
generative model of graph structures, an inherently discrete problem. Our strategy to solve this is to
use a two-step process: (1) train a permutation invariant graph auto-encoder to create a graph encoder
that embeds graphs into a continuous space; (2) train a GNF to model the distribution of the graph
embeddings, and use the decoder to generate graphs. Each stage is trained separately. A similar
strategy has been employed in prior work on generative models in [15, 19].

Note that in contrast to the GraphVAE [12], which generates a single vector to model the entire
graph, we instead embed a set of nodes in a graph jointly, but each node will be mapped to its own
embedding vector. This avoids the issue of having to run a matching process in the decoder.

The graph auto-encoder takes in a graph G and reconstructs the elements of the adjacency matrix,
A, where Aij = 1 if node vi has an edge connecting it to node vj , and 0 otherwise. We focus on
undirected graphs, meaning that we only need to predict the upper (or lower) triangular portion of A,
but this methodology could easily extend to directed graphs.

The encoder takes in a set of node features H ∈ RN×d and an adjacency matrix A ∈ {0, 1}N×
N
2 (N2

since the graph is undirected) and outputs a set of node embeddings X ∈ RN×k. The decoder takes
these embeddings and outputs a set of edge probabilities Â ∈ [0, 1]

N×N
2 . For parameters θ, we use

the binary cross entropy loss function,

L(θ) = −
N∑
i=1

N
2∑

j=1

Aij log(Âij) + (1−Aij) log(1− Âij). (5)

We use a relatively simple decoder. Given node embeddings xi and xj , our decoder outputs the edge
probability as

Âij =
1

1 + exp(C(‖xi − xj‖22 − 1))
(6)

where C is a temperature hyperparameter, set to 10 in our experiments. This reflects the idea that
nodes that are close in the embedding space should have a high probability of being connected.

The encoder is a standard GNN with multi-head dot-product attention, that uses the adjacency matrix
A as the edge structure (and no additional edge features). In order to break symmetry, we need some
way to distinguish the nodes from each other. If we are just interested in learning structure, then we
do not have access to node features, only the adjacency matrix. In this case, we generate node features
H using random Gaussian variables hi ∼ N (0, σ2I), where we use σ2 = 0.3. This allows the graph
network to learn how to appropriately separate and cluster nodes according to A. We generate a new
set of random features each time we encode a graph. This way, the graph can only rely on the features
to break symmetry, and must rely on the graph structure to generate a useful encoding.

Putting the GNF together with the graph encoder, we map training graphs from H to X and use this
as training inputs for the GNF. Generating involves sampling Z ∼ N (0, I) followed by inverting the
GNF, X = f−1(Z), and finally decoding X into A and thresholding to get binary edges.

4 Supervised Experiments
In this section we study the capabilities of the supervised GNF, the GrevNet architecture.
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Datasets/Tasks: We experiment on two types of tasks. Transductive learning tasks consist of
semi-supervised document classification in citation networks (Cora and Pubmed datasets), where we
test our model with the author’s dataset splits [28], as well as 1% train split for a fair comparison
against [18]. Inductive Learning tasks consist of PPI (Protein-Protein Interaction Dataset) [31]
and QM9 Molecule property prediction dataset [21]. For transductive learning tasks we report
classification accuracy, for PPI we report Micro F1 score, and for QM9, Mean Absolute Error (MAE).
More details on datasets are provided in the supplementary material.

Baselines: We compare GRevNets to: (1) A vanilla GNN architecture with an identical architecture
and the same number of message-passing steps; (2) Neumann-RBP [18] – which, to the best of our
knowledge, is the state-of-the-art in the domain of memory-efficient GNNs.

4.1 Performance on benchmark tasks

Table 1 compares GRevNets to GNNs and Neumann RBP (NRBP). 1% train uses 1% of the data
for training to replicate the settings in [18]. For these, we provide average numbers for GNN and
GRevNet and best numbers for NRBP. The GRevNet architecture is competitive with a standard
GNN, and outperforms NRBP.

We also compare GRevNets to the GAT architecture [26]. While GAT outperforms the naive GRevNet,
we find that converting GAT into a reversible model by using it as the F and G functions within a
GRevNet (GAT-GRevNet) only leads to a small drop in performance while allowing the benefits of a
reversible model.

Dataset/Task GNN GRevNet Neumann RBP GAT GAT-GRevNet
Cora Semi-Supervised 71.9 74.5 56.5 83.0 82.7
Cora (1% Train) 55.5 55.8 54.6 – –

Pubmed Semi-Supervised 76.3 76.0 62.4 79.0 78.6
Pubmed (1% Train) 76.6 77.0 58.5 – –

PPI Inductive 0.78 0.76 0.70 – –

Model mu alpha HOMO LUMO gap R2
GNN 0.474 0.421 0.097 0.124 0.170 27.150

GrevNet 0.462 0.414 0.098 0.124 0.169 26.380

Model ZPVE U0 U H G Cv
GNN 0.035 0.410 0.396 0.381 0.373 0.198

GrevNet 0.036 0.390 0.407 0.418 0.359 0.195

Table 1: Top: performance in terms of accuracy (Cora, Pubmed) and Micro F1 scores (PPI). For
GNN and GrevNet, number of MP steps is fixed to 4. For Neumann RBP, we use 100 steps of MP.
For GAT and GAT-GRevNet, we use 8 steps of MP. These values are averaged out over 3-5 runs
with different seeds. Bottom: performance in terms of Mean Absolute Error (lower is better) for
independent regression tasks on QM9 dataset. Number of MP steps is fixed to 4. The model was
trained for 350k steps, as in [6].

4.2 Analysis of Memory Footprint

We first provide a more rigorous theoretical derivation for the memory footprint and then provide
some quantitative results. Let us assume that the node feature dimension is d, and the maximum
number of nodes in a graph isN . Let us assume weights (parameters) of the message passing function
is a matrix of size W . For simplicity, assume a parameter-free aggregation function that sums over
messages from neighbouring nodes. Finally, assume that the final classifier weights are C in size.
Suppose we run K message passing steps. Total memory that needs to be allocated for a run of GNN
(ignoring gradients for now; gradients will scale by a similar factor) is W + C + K × N × d (=
memory allotted to weights + intermediate graph-sized tensors generated + adjacency matrix). For
a GNF, the total memory is W + C + N × d. Note the lack of multiplicative dependence on the
number of message passing steps in the latter term.
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MODEL MOG (NLL) MOG RING (NLL) 6-HALF MOONS (NLL)

REALNVP 4.2 5.2 -1.2
GNF 3.6 4.2 -1.7

Table 2: Per-node negative log likelihoods (NLL) on synthetic datasets for REALNVP and GNF.

As a quantitative example, consider a semi-supervised classification task on the Pubmed network
(N = 19717, d = 500). We assume that the message passing function for a GNN is as follows:
FC(500) → ReLU() → FC(750) → ReLU() → FC(500). Each of the functions F1(·) and
F2(·) (please see Figure 1 in the paper for notation) in the corresponding GNF have the following
architecture: FC(250) → FC(750) → FC(250). We can compute the total memory allocated to
weights/parameters: WGNN = 500 × 750 + 750 × 500,WGNF = 2 × (250 × 750 + 750 × 250).
We perform K = 5 message passing steps for Pubmed. So, the amount of memory allocated to
intermediate tensors in a GNN is 19717× 500× 5 + 19717× 750× 5, and correspondingly for a
GNF is 19717× 500. Summing up, the overall memory requirements are: GNN = 945.9 M and GNF
= 80.2 M. Hence, in this case, GNFs are at least ≥ 10× memory efficient than GNNs. Further, we
use self-attention in our experiments, which scales according to O(N2). GNNs will store attention
affinity matrices for each message passing step. In this case, a similar argument can show that this
causes a difference of 11G memory. When using 12G GPU machines, this difference is significant.

5 Unsupervised Experiments

5.1 Structured Density Estimation

We compare the performance of GNFs with RealNVP for structured density estimation on 3 datasets.
Details of the model architecture can be found in the supplementary material.

Datasets. The first dataset is MIXTURE OF GAUSSIANS (MOG), where each training example is a
set of 4 points in a square configuration. Each point is drawn from a separate isotropic Gaussian, so
no two points should land in the same area. MIXTURE OF GAUSSIANS RING (MOG RING) takes
each example from MOG and rotates it randomly about the origin, creating an aggregate training
distribution that forms a ring. 6-HALF MOONS interpolates the original half moons dataset using 6
points with added noise.

Results. Our results are shown in Table 2. We outperform REALNVP on all three datasets. We
also compare the generated samples of the two models on the MOG dataset in Figure 3.

(a) Training examples (b) GNF samples (c) RealNVP samples

Figure 3: (a) shows the aggregate training distribution for the MOG dataset in gray, as well as 5
individual training examples. Each training example is shown in a different color and is a structured
set of nodes where each node is drawn from a different Gaussian. (b) and (c) each show 5 generated
samples from GNF and RealNVP, selected randomly. Each sample is shown in a different color. Note
that, GNF learns to generate structured samples where each node resembles a sample from a different
Gaussian, while RealNVP by design cannot model these dependencies. Best viewed in color.

5.2 Graph Generation

Baselines. We compare our graph generation model on two datasets, COMMUNITY-SMALL and
EGO-SMALL from GraphRNN [30]. COMMUNITY-SMALL is a procedurally-generated set of 100 2-
community graphs, where 12 ≤ |V | ≤ 20. EGO-SMALL is a set of 200 graphs, where 4 ≤ |V | ≤ 18,
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BINARY CE TOTAL # INCORRECT EDGES TOTAL # EDGES

DATASET TRAIN TEST TRAIN TEST TRAIN TEST

EGO-SMALL 9.8E-4 11E-04 24 32 3758 984
COMMUNITY-SMALL 5E-4 7E-04 10 2 1329 353

Table 3: Train and test binary cross-entropy (CE) as described in equation 5, averaged over the total
number of nodes. TOTAL # INCORRECT EDGES measures the number of incorrect edge predictions
(either missing or extraneous) in the reconstructed graphs over the entire dataset. TOTAL # EDGES
lists the total number of edges in each dataset. As we use Gaussian noise for initial node features, we
averaged 5 runs of our model to obtain these metrics.

drawn from the larger Citeseer network dataset [24]. For all experiments described in this section, we
used scripts from the GraphRNN codebase [29] to generate and split the data. 80% of the data was
used for training and the remainder for testing.

5.2.1 Graph Auto-Encoder

We first train a graph auto-encoder with attention, as described in Section 3.3. Every training epoch,
we generate new Gaussian noise features for each graph as input to the encoder. The GNN consists of
10 MP steps, where each MP step uses a self-attention module followed by a multi-layer perceptron.
Additional details can be found in the supplementary material.

Table 3 shows that our auto-encoder generalizes well to unseen test graphs, with a small gap between
train and test cross-entropy. The total # of incorrect edges metric shows that the model achieves good
test reconstruction on EGO-SMALL and near-perfect test reconstruction on COMMUNITY-SMALL.

5.2.2 Graph Normalizing Flows for Permutation Invariant Graph Generation

Our trained auto-encoder gives us a distribution over node embeddings that are useful for graph
reconstruction. We then train a GNF to maximize the likelihood of these embeddings using an
isotropic Gaussian as the prior. Once trained, at generation time the model flows N random Gaussian
embeddings sampled from the prior to N node embeddings that describe a graph adjacency when run
through the decoder.

Our GNF consists of 10 MP steps with attention and an MLP for each of F1, F2, G1, and G2. For
more details on the architecture see the supplementary material.

Evaluating Generated Graphs. We evaluate our model by providing visual samples and by using
the quantitative evaluation technique in GraphRNN [30], which calculates the MMD distance [9]
between the generated graphs and a previously unseen test set on three statistics based on degrees,
clustering coefficients, and orbit counts. We use the implementation of GraphRNN provided by the
authors to train their model and their provided evaluation script to generate all quantitative results.

In [29], the MMD evaluation was performed by using a test set of N ground truth graphs, computing
their distribution over |V |, and then searching for a set of N generated graphs from a much larger
set of samples from the model that closely matches this distribution over |V |. These results tend to
exhibit considerable variance as the graph test sets were quite small.

To achieve more certain trends, we also performed an evaluation by generating 1024 graphs for each
model and computing the MMD distance between this generated set of graphs and the ground truth
test set. We report both evaluation settings in Table 4. We also report results directly from [30] on two
other graph generation models, GRAPHVAE and DEEPGMG, evaluated on the same graph datasets.

Results. We provide a visualization of generated graphs from GRAPHRNN and GNF in Figure 4.
As shown in Table 4, GNF outperforms GRAPHVAE and DEEPGMG, and is competitive with
GRAPHRNN. Error margins for GNF and GRAPHRNN and a larger set of visualizations are
provided in the supplementary material.

6 Conclusion
We propose GNFs, normalizing flows using GNNs based on the RealNVP, by making the message
passing steps reversible. In the supervised case, reversibility allows for backpropagation without
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COMMUNITY-SMALL EGO-SMALL

MODEL DEGREE CLUSTER ORBIT DEGREE CLUSTER ORBIT

GRAPHVAE 0.35 0.98 0.54 0.13 0.17 0.05
DEEPGMG 0.22 0.95 0.4 0.04 0.10 0.02

GRAPHRNN 0.08 0.12 0.04 0.09 0.22 0.003
GNF 0.20 0.20 0.11 0.03 0.10 0.001

GRAPHRNN(1024) 0.03 0.01 0.01 0.04 0.05 0.06
GNF(1024) 0.12 0.15 0.02 0.01 0.03 0.0008

Table 4: Graph generation results depicting MMD for various graph statistics between the test set
and generated graphs. GRAPHVAE and DEEPGMG are reported directly from [30]. The second set
of results (GRAPHRNN, GNF) are from evaluating the GraphRNN evaluation scheme with node
distribution matching turned on. We trained 5 separate models of each type and performed 3 trials
per model, then averaged the result over 15 runs. The third set of results (GRAPHRNN (1024), GNF
(1024)) are obtained when evaluating on the test set over all 1024 generated graphs (no sub-sampling
of the generated graphs based on node similarity). In this case, we trained and evaluated the result
over 5 separate runs per model.

(a) Training data (b) GNF samples (c) GRAPHRNN samples

Figure 4: Dataset examples and samples, drawn randomly, from the generative models. Top row:
EGO-SMALL, bottom row: COMMUNITY-SMALL.

the need to store hidden node states. This provides significant memory savings, further pushing the
scalability limits of GNN architectures. On several benchmark tasks, GNFs match the performance of
GNNs, and outperform Neumann RBP. In the unsupervised case, GNFs provide a flexible distribution
over a set of continuous vectors. Using the pre-trained embeddings of a novel graph auto-encoder,
we use GNFs to learn a distribution over the embedding space, and then use the decoder to generate
graphs. This model is permutation invariant, yet competitive with the state-of-the-art auto-regressive
GraphRNN model. Future work will focus on applying GNFs to larger graphs, and training the GNF
and auto-encoder in an end-to-end approach.
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8 Supplementary Material

8.1 Supervised Experiments Details

8.1.1 Datasets Description

The following datasets were used in the experiments we reported in the main body of the paper.

• Molecule property prediction on QM9 [21]: which consists of about 134k drug-like molecules made
up of Hydrogen (H), Carbon (C), Oxygen (O), Nitrogen (N), and Flourine (F) atoms containing up to
9 heavy (non Hydrogen) atoms.

• Semi-supervised document classification on citation networks: A node of a network represents a
document associated with a bag-of-words feature. Nodes are connected based on the citation links.
Given a portion of nodes labeled with subject categories, e.g., science, history, the task is to predict
the categories for unlabeled nodes within the same network. We use two citation networks from [28]
- Cora and Pubmed. We try this with two settings - one with the author provided dataset splits into
train/test/validation and the other with 1%/49%/50% train/test/validation splits.

• Inductive Learning on Protein-Protein Interaction (PPI) Dataset: PPI consists of graphs corresponding
to different human tissues [31]. The dataset contains 20 graphs for training, 2 for validation and 2 for
testing. Testing graphs remain completely unobserved during training. To construct the graphs, we
used the preprocessed data provided by [10] and [26].

8.1.2 Hyperparameter Tuning and Other Details

The following list describes major hyperparameter settings and some other implementation details for our model.

• L2 parameter regularization: In all models, for all runs, we applied a L2-regularization on the weights
with a coefficient of 0.001.

• Number of message passing steps: We performed a search for the number of message passing steps
over the following set - [1, 2, 4, 5, 10, 20] on Cora and Pubmed. We found that 4 works the best for
GNN and GRevNet, and stuck to that for experiments on all datasets. For Neumann RBP, we tried 100
and 200 message passing steps, of which 100 worked better.

• Selection of the test model: We selected the test model by storing the model with the best performance
in terms of accuracy/Micro F1 score/Mean Squared error (for QM9) on a held-out validation dataset.

• Batch Normalization: It is observed that as the number of message passing steps increases beyond a
limit (in our case it was 20), the GNN/GRevNet model starts to perform worse, and often it is hard
to optimize the whole system well – in an end-to-end manner. Likely, the whole model ends up at a
bad optimum and is unable to recover from it. Similar observations were made by [14]. In order to
tackle this problem, we applied batch norm at each of the layers during message passing. This helps
with training up to about 40 steps. In the results with, 4 and 10 steps of message passing, we don’t use
Batch Normalization.

• Optimization: We used Adam Optimizer [11] for optimizing GNNs and GRevNets. We chose a fixed
learning rate of 1e-4. Changing the learning rate to 1e-3, sometimes doesn’t work and training is
unstable. We applied gradient clipping, allowing a maximum gradient norm of 4.0 in all cases. For
QM9, we chose a learning rate of 1e-3, as the authors specify in the MPNN paper [6]. For Neumann
RBP, we found that Adam doesn’t work well. So, we chose the settings specified by the author, that is
SGD with Momentum of 0.9 and a learning rate of 1e-3.

• Architecture Design: For the message generation step of the message passing phase, we use an MLP
over the node features. For the update step during message passing, we use a GRU-like update to
update the node features. The final classifier/regressor on top of the graph net module was an MLP
with 2 layers.

8.2 Unsupervised Experiment Details

8.2.1 Results with Error Bars

In Table 5, we show the results with error bars for GraphRNN and GNF. GraphVAE and DeepGMG are reported
directly from [30].

8.2.2 More Graph Samples

In Figures 5 and 6 we show the full set of samples on the EGO-SMALL and COMMUNITY-SMALL datasets.
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COMMUNITY-SMALL EGO-SMALL

MODEL DEGREE CLUSTER ORBIT DEGREE CLUSTER ORBIT

GRAPHVAE 0.35 0.98 0.54 0.13 0.17 0.05
DEEPGMG 0.22 0.95 0.4 0.04 0.10 0.02

GRAPHRNN 0.08 ± 0.06 0.12± 0.07 0.04 ±0.04 0.09± 0.10 0.22±0.16 0.003±0.004
GNF 0.20 ± 0.07 0.20±0.07 0.11± 0.07 0.03 ± 0.03 0.10 ± 0.05 0.001 ± 0.0009

GRAPHRNN(1024) 0.03 ± 0.02 0.01± 0.0007 0.01 ±0.009 0.04± 0.02 0.05±0.02 0.06±0.05
GNF(1024) 0.12 ± 0.006 0.15±0.004 0.02± 0.003 0.01 ± 0.003 0.03 ± 0.004 0.0008 ± 0.0002

Table 5: Graph generation results showing MMD for various graph statistics between the test set and
generated graphs. GRAPHVAE and DEEPGMG are reproduced directly from the GraphRNN paper.
The second set of results (GRAPHRNN, GNF) are from running the GraphRNN evaluation script
with node distribution matching turned on. We trained 5 separate models of each type and did 3 runs
per models, then took the average over the 15 runs. The third set of results (GRAPHRNN (1024),
GNF (1024)) are from evaluating on the test set and 1024 generated graphs. Again we trained 5
separate models of each type and evaluated the MMD over 5 separate runs, 1 run per model.

(a) Training data (b) GNF samples (c) GRAPHRNN samples

Figure 5: Left, training data graphs from EGO-SMALL. Middle, generated graphs from GNF. Right,
generated graphs from GRAPHRNN. Samples were picked at random.

8.3 Computing Infrastructure

For all experiments in this section, we trained on a single GPU, either a Tesla P100 or Titan Xp.

8.3.1 Structured Density Estimation

We train a GNF with 12 message passing steps. We apply batch norm to the input at the beginning of each step,
and then we use the same module for F1, F2, G1, and G2. The module consists of a dot-product multi-head
self-attention layer followed by an MLP with 5 layers, latent dimension of 256, and ReLu non-linearities. We
use 8 attention heads.

For RealNVP, we use an analogous architecture, with 12 coupling layers, batch norm at the beginning of each
step followed by an MLP of 5 layers with latent dimension 256 and ReLu non-linearities.

We train both models for 15k steps using the Adam optimizer with a learning rate of 1e-04.
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(a) Training data (b) GNF samples (c) GRAPHRNN samples

Figure 6: Left, training data graphs from COMMUNITY-SMALL. Middle, generated graphs from GNF.
Right, generated graphs from GRAPHRNN. Samples were picked at random.

8.3.2 Graph Auto-encoder

We found that EGO-SMALL and COMMUNITY-SMALL needed differing capacities for the node embedding.
We used an embedding size of 14 for EGO-SMALL and 30 for COMMUNITY-SMALL. We used 10 message
passing steps. Each step uses the same architecture, a batch norm layer, followed by multi-head dot-product
self-attention, and then an MLP with 3 layers, a latent dimension of 2048, and ReLu non-linearities. We used 8
attention heads. We shared weights between message passing steps. For both datasets we trained for 100k steps
using the Adam Optimizer and a learning rate of 1e-04. We use an exponential learning rate decay of 0.99 every
1000 steps.

8.3.3 GNF for Graph Generation

We use the same embedding sizes as the graph auto-encoder, 14 for EGO-SMALL and 30 for COMMUNITY-
SMALL. We used 12 message passing steps. For each message passing step we used the same architecture
for each F1, F2, G1 and G2. We have a batch norm layer followed by a multi-head dot-product self-attention
module, then an MLP with 3 layers, a latent dimension of 2048, and ReLu non-linearities. We used 8 attention
heads. We did not share weights between message passing steps. For both datasets we train for 100k steps using
the Adam Optimizer and a learning rate of 1e-04 for EGO-SMALL and 1e-05 for COMMUNITY-SMALL. We use
an exponential learning rate decay of 0.99 every 1000 steps.
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