
Dex: array programming with typed indices

Dougal Maclaurin1, Alexey Radul1, Matthew J. Johnson1, and Dimitrios Vytiniotis2

1Google Research
2DeepMind

Abstract

Array programming is harder than it should be. Ma-
jor pain points are managing bulk operations on
high-rank arrays, and the associated shape and in-
dexing errors. We describe Dex, a functional ar-
ray processing language in the Haskell/ML family.
Dex introduces a lightweight looping construct and
a type system that captures common patterns of ar-
ray shapes. We hope the language ideas we present
here can influence the design of existing array pro-
gramming systems.

1 Introduction

The Matlab/NumPy model of array programming
avoids explicit loops and indexing and it can be im-
pressively concise. But it can also feel obfuscated.
For example, here’s a NumPy function to compute
the matrix of pairwise L1 distances between the rows
of a matrix (or is it the columns?).

def pairwiseL1(x):

return sum(abs(x.T - x[..., newaxis]), axis=1)

The traditional scalar loops of Fortran and C are
more explicit, but much heavier. They require at-
tention to the details of array initialization, iteration
ranges, and order of mutating writes.

void pairwiseL1(const vector<vector<float> > & x,

vector<vector<float> > & out) {

for (int i = 0; i < x.size(); i++) {

for (int j = 0; j < x.size(); j++) {

out[i][j] = 0;

for (int k = 0; k < x[i].size(); k++) {

out[i][j] += abs(x[i][k] - x[j][k]);}}}}

Can we have the best of both? The clarity of in-
dexing explicitly and the succinctness of looping im-

plicitly? Perhaps! In Dex (named after “index”) we
write pairwiseL1 like this:

pairwiseL1 :: n=>d=>Real -> n=>n=>Real

pairwiseL1 x = for i j.

sum (for k. abs (x.i.k - x.j.k))

The key innovation is to treat index sets as types
rather than values, and use conventional type infer-
ence to infer iteration spaces. Leaning on inference
leads to a lightweight and expressive looping syntax.
In addition, all shape and indexing errors are static,
and opportunities for parallelism are exposed to the
compiler.

Our starting point is an analogy between arrays
and functions.

2 Arrays are like functions

Mathematically, arrays are functions on finite index
sets. In programming languages we distinguish ar-
rays from functions, but not always by much! For
example:

f(x, y) # function application

x[i, j] # array indexing

But where’s the array equivalent of lambda? Let’s
create one. We’ll call it an index comprehension and
write it as for i. <expr>. It constructs an array
whose elements are the result of evaluating <expr> at
each index i. To illustrate, consider the problem of
swapping the arguments of a two-argument function
f. Here are three ways to write it in a Haskell-like
language.

g = flip f -- pointfree style

g = lam x y. f y x -- pointed style

g x y = f y x -- pointed syntactic sugar

1



The analogous problem for arrays is to transpose the
axes of a 2-dimensional array x. Here are the three
corresponding ways to write it in Dex.1

y = transpose x -- pointfree style

y = for i j. x.j.i -- pointed style

y.i.j = x.j.i -- pointed syntactic sugar

The first version is how we transpose arrays in MAT-
LAB/NumPy, using a built-in transpose function.
The second version shows Dex’s pointed alternative:
the index comprehension. The third version, just
syntactic sugar for the previous one, feels a lot like
mathematical index notation. To finish the analogy,
we introduce the type of arrays a=>b, meaning an
array with index set a and element type b, in analogy
with the type of functions a -> b. (=> associates to
the right and binds tighter than ->.)

We can think of Dex as a generalization of the pop-
ular einsum DSL for tensor contractions. Here are
some examples with their einsum equivalents (writ-
ten backwards to make the comparison clearer).

outer :: i=>Real -> j=>Real -> i=>j=>Real

outer x y = for i j. x.i * y.j

-- 'ij<-i,j' in einsum (written output-first)

matvec :: i=>j=>Real -> j=>Real -> i=>Real

matvec x y = for i. sum (for j. x.i.j * y.j)

-- i<-ij,j

matmul :: i=>k=>Real -> k=>j=>Real -> i=>j=>Real

matmul x y = for i j. sum (for k. x.i.k * y.k.j)

-- ij<-ik,kj

trace :: i=>i=>Real -> Real

trace x = sum (for i. x.i.i)

-- <-ii

These functions are all rank monomorphic. To
map over extra dimensions we use more index com-
prehensions. Given a stack of square matrices,
z::n=>d=>d=>Real we could obtain the stack of
scalar-valued traces as for i. trace z.i.

1Note that we use ‘.’ for indexing as well as for terminating
formal parameter lists.

3 Index sets as types

So far, we’ve skirted around a central question: what
does the index i range over in for i. <expr>? The
answer is that i ranges over all the values in its
type, which must be a finite index set. The type-
class IndexSet admits literal sets, tuples of index
sets and (constrained) type variables, but not Int,
Real, a -> b, or a=>b.

The type system is a very straightforward
Hindley-Milner variant. We can choose to explic-
itly annotate the index binder with its type, as
for i::n. <expr>. But we usually let type infer-
ence supply the annotation for us. For example,
here’s our earlier L1 example with the explicit type
annotations filled in:

pairwiseL1 :: A n d. n=>d=>Real -> n=>n=>Real

pairwiseL1 =

lam x::(n=>d=>Real) .

for i::n.

for j::n.

sum @d (for k::d. abs (x.i.k - x.j.k))

This is a lot closer to a C program. The loops have
explicit ranges now, but the ranges are type vari-
ables rather than ordinary terms. The scoping rules
are similar to Haskell’s lexically scoped type vari-
ables: n and d are bound by the universal quan-
tifier A. These are actually type arguments to the
function, just like the array-length arguments in our
C example. We also see an example of type ap-
plication, sum @d, passing a type argument d to
sum :: A n. n=>Real -> Real.

4 Structured Index Sets

Is our Hindley-Milner-based type language expres-
sive enough to admit the programs that numeri-
cal programmers want to write? What about the
dreaded reshape, which would seem to require type-
level arithmetic? We hypothesize that the main use
of reshape is to group dimensions together, rather
than to arbitrarily reinterpret the data buffer. This
common case is better served with actual groups—
Dex allows product types for index sets for this rea-
son.

2



As an example, imagine wanting to compute pair-
wise L1 distances within a batch of images. In
NumPy, we would reshape each image into a flat
vector to use our pairwiseL1 function:

Nbatch, Nx, Ny = images.shape

vecs = np.reshape(images, (Nbatch, Nx * Ny))

dists = pairwiseL1(vecs)

In Dex, our pairwiseL1 function is polymorphic in
the index set represented by d, which allows it to
be used with a product index set (Nx,Ny). We can
rearrange the two spatial indices to be a single index
of pairs:2

-- images :: Nbatch=>Nx=>Ny=>Real

vecs :: Nbatch=>(Nx,Ny)=>Real

vecs.i.(j,k) = images.i.j.k

dists = pairwiseL1 vecs

By using pattern matching to group axes, we avoid
a whole class of bugs that can arise from getting the
shape arithmetic wrong or forgetting how dimen-
sions are ordered [1, 8]. And while type inference
with shape arithmetic easily becomes undecidable,
type inference for product types is straightforward.

5 Dynamic shapes

What about truly data-dependent shapes? The clas-
sic example is filter, which selects some number of
elements of an array based on a predicate. Dex uni-
formly bails out of these situations using existential
types:

filter :: (a -> Bool) -> m=>a -> E n. n=>a

filter returns a standard existential package [6]. At
runtime, this carries both a concrete index set n and
a value of type n=>a, just like arrays in other lan-
guages are packaged together at runtime with their
sizes.

Putting an existential quantifier on the right-
hand side of a table arrow gives us a ragged
array: n=>(E m. m=>Real). The inner sizes m are
not only statically unknown, but can also vary

2The transformation from x to x_vec is analogous to un-
currying a function as f' (x, y) = f x y.

based on the index n. The other arrays we have
seen so far have all been rectangular—in a type
like n=>m=>Real, the m cannot depend on n because
it is bound outside the scope of the table arrow n=>.

(whether universally or existentially). The type-
level distinction between ragged and rectangular ar-
rays lets us smoothly integrate both in the language,
while allowing the compiler to emit efficient indexing
code in the rectangular case.

6 Help wanted

Dex’s type system is still a work in progress. At this
workshop, we’d like help thinking about limitations
such as the following.

6.1 Dynamic indexing

Stencil computations are naturally expressed using
arithmetic on indices. For example, we might want
to write a 1D boxcar blur as:

-- Not valid Dex!

blur :: n=>Real -> (n-2)=>Real

blur x = for i. x.(i-1) + x.i + x.(i+1)

What does it mean to add an integer to an index?
If the index set is a tuple, or a noncontiguous set
of integers, it’s unclear. Even if the index set is a
contiguous set of integers, the new index i+1 may
be out of bounds. Checking this statically requires
reasoning about which values the integer offset could
take, which could be arbitrarily hard. Then, if we
only want to emit the valid subarray, we’d need a
type like blur :: n=>Real -> (n-2)=>Real, in-
troducing arithmetic at the type level too!

One proposal, not yet implemented, is to in-
troduce another typeclass constraint on index
sets. This would require instances to implement
idxAdd :: n -> Int -> n, adding an integer to an
index, returning an index in the same index set.
Importantly, this would entail making a choice, en-
coded in the index set itself, about boundary behav-
ior, for example, wrapping, reflecting, or sticking.
Then blur would return an array of the same shape
as its input.

3



6.2 Other expressiveness limits

How big of a problem is Dex’s lack of shape arith-
metic in practice? In Section 4 we proposed that
most uses of reshape should be doable by grouping
related dimensions into a tuple-structured index set.
Likewise, concat corresponds to a type-level sum of
index sets. Is that enough? What’s a good collec-
tion of example programs on which to check whether
Dex has enough coverage? Will we need some sort
of shape-level casting mechanism to let users escape
from the type system? How often?

6.3 Efficient ragged arrays

While existential types provide a nice surface lan-
guage for expressing ragged array computations, our
development effort has so far focused on efficiently
compiling operations on rectangular arrays. How
should ragged arrays be represented internally? How
should they be computed on? Pointwise operations
seem like a straightforward application of the ideas
from nested data parallelism, e.g. [2]; is there a good
story for zips and reductions? On accelerators?

7 Related work

Index comprehension like Dex’s appears in a few
other systems. Probably the most prominent in the
data science community is the Einstein notation DSL
popularized by NumPy’s einsum and replicated in
machine learning frameworks like TensorFlow and
PyTorch. The major difference is that einsum only
expresses computations that are multilinear in the
indexed dimensions.

A Halide [7] or Tensor Comprehensions [12] pro-
gram specifies the desired computation with a sim-
ilar explicit indexing notation. Halide and TC also
infer iteration ranges, but neither makes the leap to
treating index sets as first-class types. This differ-
ence gives Dex three advantages: One can represent
ragged arrays with existentials (Section 5); one can
annotate the type of a shape-polymorphic function
and have the Dex compiler check it; and shape poly-
morphism extends smoothly to groups of dimensions
packed in a structured index set (Section 4).

Our index comprehension is also reminiscent of
the lazy build combinator, a common feature in
functional programming languages that enables ar-
ray fusion [4, 3]. Recently these ideas have been used
for the implementation of a differentiable array pro-
gramming DSL [9], F-smooth. Unlike F-smooth’s
build, the range of Dex’s for construct is a type,
which can be inferred and statically checked. Pro-
jecting from the F-smooth work, we anticipate au-
tomatic differentiation to be implementable in Dex
even as index spaces become richer, and some of their
compiler optimizations may be fruitfully applicable
as well.

In a different direction, the Remora language [10,
11] is a modern attempt to statically type array pro-
grams, with an emphasis on the pointfree broad-
casting style instead of explicit indexing. Remora
is architected around a cleverly restricted dependent
type system that can handle type-level shape arith-
metic. The advantage is being able to type a wide
range of array programs, including rank polymor-
phism and reshape. A disadvantage is that type
checking Remora is complex to describe and imple-
ment, and type inference remains an open problem.

Funsors [5] exploit a similar analogy between func-
tions and arrays in probabilistic programming, to
uniformly handle continuous and discrete probabil-
ity distributions.

8 Conclusion

We described typed index sets in Dex, a new lan-
guage for array programming. Dex offers an ex-
pressive and lightweight index comprehension syn-
tax, supporting clear and concise array programs.
Tracking iteration ranges in the type system exposes
them to the compiler, supporting optimizations and
parallelism, as well as letting Dex statically detect
common shape errors. Treating the index sets as
first-class types moreover gets them mostly inferred,
and broadens the scope of shape polymorphism to
cover common dimension groupings, obviating most
of the need for type-level arithmetic.

4



9 Acknowledgements

We thank Mart́ın Abadi, Gilbert Bernstein, James
Bradbury, Roy Frostig, Peter Hawkins, Michael Is-
ard, Chris Leary, George Necula, Adam Paszke,
Brian Patton, Dan Piponi, Gordon Plotkin,
Jonathan Ragan-Kelly, Rif A. Saurous, Olin Shivers,
Justin Slepak, Skye Wanderman-Milne, and Alex
Wiltschko for helpful conversations.

References

[1] Barham, P., and Isard, M. Machine learn-
ing systems are stuck in a rut. In Proceedings of
the Workshop on Hot Topics in Operating Sys-
tems (2019), ACM, pp. 177–183.

[2] Chakravarty, M. M., Keller, G.,
Lechtchinsky, R., and Pfannenstiel, W.
Nepal—nested data parallelism in haskell. In
European Conference on Parallel Processing
(2001), Springer, pp. 524–534.

[3] Coutts, D., Leshchinskiy, R., and Stew-
art, D. Stream fusion: From lists to streams
to nothing at all. In Proceedings of the 12th
ACM SIGPLAN International Conference on
Functional Programming (New York, NY, USA,
2007), ICFP ’07, ACM, pp. 315–326.

[4] Gill, A., Launchbury, J., and Pey-
ton Jones, S. L. A short cut to deforestation.
In Proceedings of the Conference on Functional
Programming Languages and Computer Archi-
tecture (New York, NY, USA, 1993), FPCA ’93,
ACM, pp. 223–232.

[5] Obermeyer, F., Bingham, E., Jankowiak,
M., Phan, D., and Chen, J. P. Functional
tensors for probabilistic programming. Program
Transformation Workshop, NeurIPS, 2019.

[6] Pierce, B. C. Types and Programming Lan-
guages, 1st ed. The MIT Press, 2002.

[7] Ragan-Kelley, J., Adams, A., Sharlet,
D., Barnes, C., Paris, S., Levoy, M., Ama-

rasinghe, S., and Durand, F. Halide: De-
coupling algorithms from schedules for high-
performance image processing. Commun. ACM
61, 1 (Dec. 2017), 106–115.

[8] Rush, A. Tensor considered harmful.

[9] Shaikhha, A., Fitzgibbon, A., Vytinio-
tis, D., and Peyton Jones, S. Efficient dif-
ferentiable programming in a functional array-
processing language. Proc. ACM Program.
Lang. 3, ICFP (July 2019), 97:1–97:30.

[10] Slepak, J., Shivers, O., and Manolios,
P. An array-oriented language with static rank
polymorphism. In Proceedings of the 23rd Eu-
ropean Symposium on Programming Languages
and Systems - Volume 8410 (New York, NY,
USA, 2014), Springer-Verlag New York, Inc.,
pp. 27–46.

[11] Slepak, J., Shivers, O., and Manolios, P.
Records with rank polymorphism. In Proceed-
ings of the 6th ACM SIGPLAN International
Workshop on Libraries, Languages and Com-
pilers for Array Programming (New York, NY,
USA, 2019), ARRAY 2019, ACM, pp. 80–92.

[12] Vasilache, N., Zinenko, O., Theodoridis,
T., Goyal, P., DeVito, Z., Moses, W. S.,
Verdoolaege, S., Adams, A., and Co-
hen, A. Tensor comprehensions: Framework-
agnostic high-performance machine learning ab-
stractions. CoRR abs/1802.04730 (2018).

5


