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ABSTRACT

We describe an image compression method, consisting of a nonlinear analysis
transformation, a uniform quantizer, and a nonlinear synthesis transformation.
The transforms are constructed in three successive stages of convolutional linear
filters and nonlinear activation functions. Unlike most convolutional neural net-
works, the joint nonlinearity is chosen to implement a form of local gain control,
inspired by those used to model biological neurons. Using a variant of stochastic
gradient descent, we jointly optimize the entire model for rate—distortion perfor-
mance over a database of training images, introducing a continuous proxy for the
discontinuous loss function arising from the quantizer. Under certain conditions,
the relaxed loss function may be interpreted as the log likelihood of a genera-
tive model, as implemented by a variational autoencoder. Unlike these models,
however, the compression model must operate at any given point along the rate—
distortion curve, as specified by a trade-off parameter. Across an independent
set of test images, we find that the optimized method generally exhibits better
rate—distortion performance than the standard JPEG and JPEG 2000 compression
methods. More importantly, we observe a dramatic improvement in visual quality
for all images at all bit rates, which is supported by objective quality estimates
using MS-SSIM.

1 INTRODUCTION

Data compression is a fundamental and well-studied problem in engineering, and is commonly
formulated with the goal of designing codes for a given discrete data ensemble with minimal en-
tropy (Shannon, [1948). The solution relies heavily on knowledge of the probabilistic structure of
the data, and thus the problem is closely related to probabilistic source modeling. However, since all
practical codes must have finite entropy, continuous-valued data (such as vectors of image pixel in-
tensities) must be quantized to a finite set of discrete values, which introduces error. In this context,
known as the lossy compression problem, one must trade off two competing costs: the entropy of
the discretized representation (rate) and the error arising from the quantization (distortion). Differ-
ent compression applications, such as data storage or transmission over limited-capacity channels,
demand different rate—distortion trade-offs.

Joint optimization of rate and distortion is difficult. Without further constraints, the general problem
of optimal quantization in high-dimensional spaces is intractable (Gersho and Gray, |1992). For this
reason, most existing image compression methods operate by linearly transforming the data vector
into a suitable continuous-valued representation, quantizing its elements independently, and then
encoding the resulting discrete representation using a lossless entropy code (Wintz,|1972; Netravali
and Limb, |1980). This scheme is called transform coding due to the central role of the transforma-
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Figure 1: General nonlinear transform coding framework (Ballé, Laparra, and Simoncelli, [2016). A
vector of image intensities © € RY is mapped to a latent code space via a parametric analysis trans-
form, y = g,(x; ¢). This representation is quantized, yielding a discrete-valued vector g € zM
which is then compressed. The rate of this discrete code, R, is lower-bounded by the entropy of
the discrete probability distribution of the quantized vector, H[P,]. To reconstruct the compressed
image, the discrete elements of q are reinterpreted as a continuous-valued vector g, which is trans-
formed back to the data space using a parametric synthesis transform & = gs(¢;8). Distortion is
assessed by transforming to a perceptual space using a (fixed) transform, 2 = g, (&), and evaluating
a metric d(z, 2). We optimize the parameter vectors ¢ and 6 for a weighted sum of the rate and
distortion measures, R + AD, over a set of images.

tion. For example, JPEG uses a discrete cosine transform on blocks of pixels, and JPEG 2000 uses a
multi-scale orthogonal wavelet decomposition. Typically, the three components of transform coding
methods — transform, quantizer, and entropy code — are separately optimized (often through manual
parameter adjustment).

We have developed a framework for end-to-end optimization of an image compression model based
on nonlinear transforms (figure [I). Previously, we demonstrated that a model consisting of linear—
nonlinear block transformations, optimized for a measure of perceptual distortion, exhibited visually
superior performance compared to a model optimized for mean squared error (MSE) (Ballé, La-
parra, and Simoncelli, 2016). Here, we optimize for MSE, but use a more flexible transforms built
from cascades of linear convolutions and nonlinearities. Specifically, we use a generalized divisive
normalization (GDN) joint nonlinearity that is inspired by models of neurons in biological visual
systems, and has proven effective in Gaussianizing image densities (Ballé, Laparra, and Simoncelli,
2015)). This cascaded transformation is followed by uniform scalar quantization (i.e., each element
is rounded to the nearest integer), which effectively implements a parametric form of vector quan-
tization on the original image space. The compressed image is reconstructed from these quantized
values using an approximate parametric nonlinear inverse transform.

For any desired point along the rate—distortion curve, the parameters of both analysis and synthesis
transforms are jointly optimized using stochastic gradient descent. To achieve this in the presence
of quantization (which produces zero gradients almost everywhere), we use a proxy loss function
based on a continuous relaxation of the probability model, replacing the quantization step with
additive uniform noise. The relaxed rate—distortion optimization problem bears some resemblance
to those used to fit generative image models, and in particular variational autoencoders (Kingma and
Welling, [2014; Rezende, Mohamed, and Wierstra, 2014)), but differs in the constraints we impose to
ensure that it approximates the discrete problem all along the rate—distortion curve. Finally, rather
than reporting differential or discrete entropy estimates, we implement an entropy code and report
performance using actual bit rates, thus demonstrating the feasibility of our solution as a complete
lossy compression method.

2 CHOICE OF FORWARD, INVERSE, AND PERCEPTUAL TRANSFORMS

Most compression methods are based on orthogonal linear transforms, chosen to reduce correlations
in the data, and thus to simplify entropy coding. But the joint statistics of linear filter responses
exhibit strong higher order dependencies. These may be significantly reduced through the use of
joint local nonlinear gain control operations (Schwartz and Simoncelli, 2001} Lyu, |2010; Sinz and
Bethge, 2013)), inspired by models of visual neurons (Heeger, [1992; Carandini and Heeger, [2012).
Cascaded versions of such models have been used to capture multiple stages of visual transformation
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(Simoncelli and Heeger, [1998; Mante, Bonin, and Carandini, |2008). Some earlier results suggest
that incorporating local normalization in linear block transform coding methods can improve cod-
ing performance (Malo et al., 2006), and can improve object recognition performance of cascaded
convolutional neural networks (Jarrett et al.,|2009). However, the normalization parameters in these
cases were not optimized for the task. Here, we make use of a generalized divisive normalization
(GDN) transform with optimized parameters, that we have previously shown to be highly efficient
in Gaussianizing the local joint statistics of natural images, much more so than cascades of linear
transforms followed by pointwise nonlinearities (Ballé, Laparra, and Simoncelli, |[2015)).

Note that some training algorithms for deep convolutional networks incorporate “batch normaliza-
tion”, rescaling the responses of linear filters in the network so as to keep it in a reasonable operating
range (loffe and Szegedy, [2015). This type of normalization is different from local gain control
in that the rescaling factor is identical across all spatial locations. Moreover, once the training is
completed, the scaling parameters are typically fixed, which turns the normalization into an affine
transformation with respect to the data — unlike GDN, which is spatially adaptive and can be highly
nonlinear.

Specifically, our analysis transform g, consists of three stages of convolution, subsampling, and
divisive normalization. We represent the ith input channel of the kth stage at spatial location (m, n)

(k) (0)

as u; ' (m,n). The input image vector « corresponds to u, '(m,n), and the output vector y is

u§3) (m,n). Each stage then begins with an affine convolution:
v (m,n) = Z(hk,ij * U§k))(m’ n) + cr,i, )
J
where * denotes 2D convolution. This is followed by downsampling:

(k)

w® (m,n) = v (sym, syn), )

where sy, is the downsampling factor for stage k. Each stage concludes with a GDN operation:

(k+1) wi(

; (m,n) =
(5k,z‘ + Zj Vk,ij (wj(‘k) (m, n))2> 2

The full set of h, ¢, £, and  parameters (across all three stages) constitute the parameter vector ¢
to be optimized.

m,n)

U

3)

|

Analogously, the synthesis transform g, consists of three stages, with the order of operations re-
versed within each stage, downsampling replaced by upsampling, and GDN replaced by an approx-

imate inverse we call IGDN (more details in the appendix). We define ﬂgk) (m,n) as the input to the

kth synthesis stage, such that § corresponds to fELZ(-O) (m,n), and & to ﬁl(»?’) (m,n). Each stage then

consists of the IGDN operation:

N|=

. ) 5 . . 2
@ (m,m) = (m,n) - (B + D A (@ mm))*) 7, )
J
which is followed by upsampling:
73(k)(m n) = wgk)(m/ék,n/ék) if m/8;, and n/3y are integers, 5)
! ’ 0 otherwise,

where §j, is the upsampling factor for stage k. Finally, this is followed by an affine convolution:

a§k+1)(m, n) = Z(ﬁk” * @](k))(m, n) + C.i- (6)
J
Analogously, the set of }AL ¢, B and 4 make up the parameter vector 6. Note that the down-
/upsampling operations can be implemented jointly with their adjacent convolution, improving com-
putational efficiency.



Published as a conference paper at ICLR 2017

compression

model

A=\ compression
model

generative
models
A — 00

Figure 2: Left: The rate—distortion trade-off. The gray region represents the set of all rate—distortion
values that can be achieved (over all possible parameter settings). Optimal performance for a given
choice of A corresponds to a point on the convex hull of this set with slope —1/A. Right: One-
dimensional illustration of relationship between densities of y; (elements of code space), y; (quan-
tized elements), and y; (elements perturbed by uniform noise). Each discrete probability in py,
equals the probability mass of the density p,, within the corresponding quantization bin (indicated
by shading). The density py, provides a continuous function that interpolates the discrete probability
values py, at integer positions.

In previous work, we used a perceptual transform g,,, separately optimized to mimic human judge-
ments of grayscale image distortions (Laparra et al.,|2016), and showed that a set of one-stage trans-
forms optimized for this distortion measure led to visually improved results (Ballé, Laparra, and
Simoncelli, 2016). Here, we set the perceptual transform g, to the identity, and use mean squared
error (MSE) as the metric (i.e., d(2, 2) = ||z — £||3). This allows a more interpretable comparison
to existing methods, which are generally optimized for MSE, and also allows optimization for color
images, for which we do not currently have a reliable perceptual metric.

3 OPTIMIZATION OF NONLINEAR TRANSFORM CODING MODEL

Our objective is to minimize a weighted sum of the rate and distortion, R+ A D, over the parameters
of the analysis and synthesis transforms and the entropy code, where A governs the trade-off between
the two terms (figure |2 left panel). Rather than attempting optimal quantization directly in the
image space, which is intractable due to the high dimensionality, we instead assume a fixed uniform
scalar quantizer in the code space, and aim to have the nonlinear transformations warp the space in
an appropriate way, effectively implementing a parametric form of vector quantization (figure [1)).
The actual rates achieved by a properly designed entropy code are only slightly larger than the
entropy (Rissanen and Langdon, [1981)), and thus we define the objective functional directly in terms
of entropy:

Liga,gs, Pl = — I['E[log2 Pq] + )\E[d(z, 2)}, @)
where both expectations will be approximated by averages over a training set of images. Given a
powerful enough set of transformations, we can assume without loss of generality that the quan-
tization bin size is always one and the representing values are at the centers of the bins. That is,

i = q; = round(y;), ®)
where index ¢ runs over all elements of the vectors, including channels and spatial locations. The
marginal density of g; is then given by a train of discrete probability masses (Dirac delta functions,
figure 2| right panel) with weights equal to the probability mass function of g;:

1

2

n+i
P, (n)= / : py, () dt, foralln € Z. 9

Note that both terms in (7)) depend on the quantized values, and the derivatives of the quantization
function (8) are zero almost everywhere, rendering gradient descent ineffective. To allow optimiza-
tion via stochastic gradient descent, we replace the quantizer with an additive i.i.d. uniform noise
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Figure 3: Representation of the relaxed rate—distortion optimization problem as the encoder and
decoder graphs of a variational autoencoder. Nodes represent random variables, and gray shading
indicates observed data; small filled nodes represent parameters; arrows indicate dependency; and
nodes within boxes are per-image.

source Ay, which has the same width as the quantization bins (one). This relaxed formulation has
two desirable properties. First, the density function of § = y + Ay is a continuous relaxation of the
probability mass function of g (figure 2] right panel):

pg(n) = Py(n), forallm e ZM, (10)

which implies that the differential entropy of ¢ can be used as an approximation of the entropy
of g. Second, independent uniform noise approximates quantization error in terms of its marginal
moments, and is frequently used as a model of quantization error (Gray and Neuhoff,|1998)). We can
thus use the same approximation for our measure of distortion. We examine the empirical quality of
these rate and distortion approximations in section 4]

We assume independent marginals in the code space for both the relaxed probability model of y
and the entropy code, and model the marginals py, non-parametrically to reduce model error.
Specifically, we use finely sampled piecewise linear functions which we update similarly to one-
dimensional histograms (see appendix). Since py, = p,, * U(0, 1) is effectively smoothed by a
box-car filter — the uniform density on the unit interval, ¢/(0, 1) — the model error can be made
arbitrarily small by decreasing the sampling interval.

Given this continuous approximation of the quantized coefficient distribution, the loss function for
parameters 6 and ¢ can be written as:

L(oa ¢) = Em,Ay

N Z log, g, (9a(x; @) + Ay; ™)

+ Xd(9, (95 (9 (3 0) + Ay 9)),gp<as))] .an

where vector 1(*) parameterizes the piecewise linear approximation of py, (trained jointly with 6
and ¢). This is continuous and differentiable, and thus well-suited for stochastic optimization.

3.1 RELATIONSHIP TO VARIATIONAL GENERATIVE IMAGE MODELS

We derived our formulation directly from the classical rate—distortion optimization problem. How-
ever, once the transition to a continuous loss function is made, the optimization problem resembles
those encountered in fitting generative models of images, and can more specifically be cast in the
context of variational autoencoders (Kingma and Welling, |2014; Rezende, Mohamed, and Wierstra,
2014). In Bayesian variational inference, we are given an ensemble of observations of a random
variable x along with a generative model p,,(z|y). We seek to find a posterior py,(y|z), which
generally cannot be expressed in closed form. The approach followed by Kingma and Welling
(2014) consists of approximating this posterior with a density ¢(y|x), by minimizing the Kullback—
Leibler divergence between the two:

DxL [qllpyje] = Ey~glog q(ylz) — Eyqlog pyjs(yla)
= Eyqlogq(ylr) — Ey~qlogpayy(z|y) — Eyqlog py(y) + const. (12)
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This objective function is equivalent to our relaxed rate—distortion optimization problem, with dis-
tortion measured as MSE, if we define the generative model as follows (figure 3)):

Paig(®|T; A, 0) = N (25 95(5;0), (20)~'1), (13)
pg(@ @, M, ) = [ pa (G 9D), (14)

and the approximate posterior as follows:
q(@lm; @) = [[U(Gisvi, 1) withy = ga(a; @), (15)

where U (Y;;y;, 1) is the uniform density on the unit interval centered on y,;. With this, the first
term in the Kullback—Leibler divergence is constant; the second term corresponds to the distortion,
and the third term corresponds to the rate (both up to additive constants). Note that if a perceptual
transform g, is used, or the metric d is not Euclidean, Dz|j is no longer Gaussian, and equivalence
to variational autoencoders cannot be guaranteed, since the distortion term may not correspond to a
normalizable density. For any affine and invertible perceptual transform and any translation-invariant
metric, it can be shown to correspond to the density

Pm|g($|’£7; /\7 0) = ﬁ exXp </\ d(gp (gs (377 0))a gp(w))> ) (16)

where Z(\) normalizes the density (but need not be computed to fit the model).

Despite the similarity between our nonlinear transform coding framework and that of variational
autoencoders, it is worth noting several fundamental differences. First, variational autoencoders are
continuous-valued, and digital compression operates in the discrete domain. Comparing differential
entropy with (discrete) entropy, or entropy with an actual bit rate, can potentially lead to misleading
results. In this paper, we use the continous domain strictly for optimization, and perform the evalu-
ation on actual bit rates, which allows comparison to existing image coding methods. We assess the
quality of the rate and distortion approximations empirically.

Second, generative models aim to minimize differential entropy of the data ensemble under the
model, i.e., explaining fluctuations in the data. This often means minimizing the variance of a
“slack” term like @]), which in turn maximizes A. Transform coding methods, on the other hand,
are optimized to achieve the best trade-off between having the model explain the data (which in-
creases rate and decreases distortion), and having the slack term explain the data (which decreases
rate and increases distortion). The overall performance of a compression model is determined by
the shape of the convex hull of attainable model distortions and rates, over all possible values of
the model parameters. Finding this convex hull is equivalent to optimizing the model for particular
values of X (see figure[2). In contrast, generative models operate in a regime where ) is inferred and
ideally approaches infinity for noiseless data, which corresponds to the regime of lossless compres-
sion. Even so, lossless compression methods still need to operate in a discretized space, typically
directly on quantized luminance values. For generative models, the discretization of luminance val-
ues is usually considered a nuisance (Theis, van den Oord, and Bethge, |2015), although there are
examples of generative models that operate on quantized pixel values (van den Oord, Kalchbrenner,
and Kavukcuoglu, 2016)).

Finally, although correspondence between the typical slack term of a generative model (figure[3]
left panel) and the distortion metric in rate—distortion optimization holds for simple metrics (e.g.,
Euclidean distance), a more general perceptual measure would be considered a peculiar choice from
a generative modeling perspective, if it corresponds to a density at all.

4 EXPERIMENTAL RESULTS

We jointly optimized the full set of parameters ¢, 6, and all 1 over a subset of the ImageNet
database (Deng et al., [2009)) consisting of 6507 images using stochastic descent. This optimization
was performed separately for each ), yielding separate transforms and marginal probability models
for each value.
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Figure 4: Scatter plots comparing discrete vs. continuously-relaxed values of the two terms of the
objective function, evaluated for the optimized GDN model. Points correspond to different values
of A between 32 and 2048 (inclusive), for images drawn from a random subset of 2169 images (one
third) from the training set. Left: distortion term, evaluated for g,(9) vs. gs(). Right: rate term,
H[P,,] vs. h[pg,] (summed over 7).

For the grayscale analysis transform, we used 128 filters (size 9 x 9) in the first stage, each sub-
sampled by a factor of 4 vertically and horizontally. The remaining two stages retain the number of
channels, but use filters operating across all input channels (5 x 5 x 128), with outputs subsampled
by a factor of 2 in each dimension. The net output thus has half the dimensionality of the input. The
synthesis transform is structured analogously. For RGB images, we trained a separate set of models,
with the first stage augmented to operate across three (color) input channels. For the two largest
values of A, and for RGB models, we increased the network capacity by increasing the number of
channels in each stage to 256 and 192, respectively. Further details about the parameterization of
the transforms and their training can be found in the appendix.

We first verified that the continuously-relaxed loss function given in section [3] provides a good ap-
proximation to the actual rate—distortion values obtained with quantization (figure d). The relaxed
distortion term appears to be mostly unbiased, and exhibits a relatively small variance. The relaxed
(differential) entropy provides a somewhat positively biased estimate of the discrete entropy for the
coarser quantization regime, but the bias disappears for finer quantization, as expected. Note that
since the values of A do not have any intrinsic meaning, but serve only to map out the convex hull of
optimal points in the rate—distortion plane (figure[2] left panel), a constant bias in either of the terms
would simply alter the effective value of A, with no effect on the compression performance.

We compare the rate—distortion performance of our method to two standard methods: JPEG and
JPEG 2000. For our method, all images were compressed using uniform quantization (the contin-
uous relaxation using additive noise was used only for training purposes). To make the compar-
isons more fair, we implemented a simple entropy code based on the context-based adaptive binary
arithmetic coding framework (CABAC; Marpe, Schwarz, and Wiegand, 2003). All sideband in-
formation needed by the decoder (size of images, value of A, etc.) was included in the bit stream
(see appendix). Note that although the computational costs for training our models are quite high,
encoding or decoding an image with the trained models is efficient, requiring only execution of
the optimized analysis transformation and quantizer, or the synthesis transformation, respectively.
Evaluations were performed on the Kodak image dataseﬂ an uncompressed set of images com-
monly used to evaluate image compression methods. We also examined a set of relatively standard
(if outdated) images used by the compression community (known by the names “Lena”, “Barbara”,
“Peppers”, and “Mandrill”’) as well as a set of our own digital photographs. None of these test
images was included in the training set. All test images, compressed at a variety of bit rates us-
ing all three methods, along with their associated rate—distortion curves, are available online at
http://www.cns.nyu.edu/~1cv/iclr2017.

"Downloaded from http://www.cipr.rpi.edu/resource/stills/kodak.html
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JPEG, 4283 bytes (0.121 bit/px), PSNR: luma 24.85 dB/chroma 29.23 dB, MS-SSIM: 0.8079

Proposed method, 3986 bytes (0.113 bit/px), PSNR: luma 27.01 dB/chroma 34.16 dB, MS-SSIM: 0.9039

JPEG 2000, 4004 bytes (0.113 bit/px), PSNR: luma 26.61 dB/chroma 33.88 dB, MS-SSIM: 0.8860

Figure 5: A heavily compressed example image, 752 x 376 pixels. Note the appearance of artifacts,
especially near edges, in both the JPEG and JPEG2000 images.
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Figure 6: Cropped portion of an image compressed at three different bit rates. Middle row: the
proposed method, at three different settings of A\. Top row: JPEG, with three different quality

settings. Bottom row: JPEG 2000, with three different rate settings. Bit rates within each column
are matched.
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Figure 7: Rate—distortion curves for the luma component of image shown in figure [5| Left: per-
ceptual quality, measured with multi-scale structural similarity (MS-SSIM; Wang, Simoncelli, and
Bovik (2003)). Right: peak signal-to-noise ratio (10 log; (2552 /MSE)).

Although we used MSE as a distortion metric for training, the appearance of compressed images is
both qualitatively different and substantially improved, compared to JPEG and JPEG 2000. As an
example, figure[5]shows an image compressed using our method optimized for a low value of A (and
thus, a low bit rate), compared to JPEG/JPEG 2000 images compressed at equal or greater bit rates.
The image compressed with our method has less detail than the original (not shown, but available
online), with fine texture and other patterns often eliminated altogether, but this is accomplished in
a way that preserves the smoothness of contours and sharpness of many of the edges, giving them a
natural appearance. By comparison, the JPEG and JPEG 2000 images exhibit artifacts that are com-
mon to all linear transform coding methods: since local features (edges, contours, texture elements,
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etc.) are represented using particular combinations of localized linear basis functions, independent
scalar quantization of the transform coefficients causes imbalances in these combinations, and leads
to visually disturbing blocking, aliasing, and ringing artifacts that reflect the underlying basis func-
tions.

Remarkably, we find that the perceptual advantages of our method hold for all images tested, and at
all bit rates. The progression from high to low bit rates is shown for an example image in figure [6]
(additional examples provided in appendix and online). As bit rate is reduced, JPEG and JPEG 2000
degrade their approximation of the original image by coarsening the precision of the coefficients of
linear basis functions, thus exposing the visual appearance of those basis functions. On the other
hand, our method appears to progressively simplify contours and other image features, effectively
concealing the underlying quantization of the representation. Consistent with the appearance of
these example images, we find that distortion measured with a perceptual metric (MS-SSIM; Wang,
Simoncelli, and Bovik, 2003), indicates substantial improvements across all tested images and bit
rates (figure [/} additional examples provided in the appendix and online). Finally, when quantified
with PSNR, we find that our method exhibits better rate—distortion performance than both JPEG and
JPEG 2000 for most (but not all) test images, especially at the lower bit rates.

5 DISCUSSION

We have presented a complete image compression method based on nonlinear transform coding, and
a framework to optimize it end-to-end for rate—distortion performance. Our compression method of-
fers improvements in rate—distortion performance over JPEG and JPEG 2000 for most images and
bit rates. More remarkably, although the method was optimized using mean squared error as a dis-
tortion metric, the compressed images are much more natural in appearance than those compressed
with JPEG or JPEG 2000, both of which suffer from the severe artifacts commonly seen in linear
transform coding methods. Consistent with this, perceptual quality (as estimated with the MS-SSIM
index) exhibits substantial improvement across all test images and bit rates. We believe this visual
improvement arises because the cascade of biologically-inspired nonlinear transformations in the
model have been optimized to capture the features and attributes of images that are represented in
the statistics of the data, parallel to the processes of evolution and development that are believed
to have shaped visual representations within the human brain (Simoncelli and Olshausen, [2001}).
Nevertheless, additional visual improvements might be possible if the method were optimized using
a perceptual metric in place of MSE (Ballé, Laparra, and Simoncelli, 2016).

For comparison to linear transform coding methods, we can interpret our analysis transform as a
single-stage linear transform followed by a complex vector quantizer. As in many other optimized
representations — e.g., sparse coding (Lewicki and Olshausen, |1998)) — as well as many engineered
representations — e.g., the steerable pyramid (Simoncelli, Freeman, et al., [1992), curvelets (Candes
and Donoho, 2002), and dual-tree complex wavelets (Selesnick, Baraniuk, and Kingsbury, 2005)
— the filters in this first stage are localized and oriented and the representation is overcomplete.
Whereas most transform coding methods use complete (often orthogonal) linear transforms with
spatially separable filters, the overcompleteness and orientation tuning of our initial transform may
explain the ability of the model to better represent features and contours with continuously varying
orientation, position and scale (Simoncelli, Freeman, et al.,|{1992)).

Our work is related to two previous publications that optimize image representations with the goal
of image compression. Gregor, Besse, et al. (2016)) introduce an interesting hierarchical representa-
tion of images, in which degradations are more natural looking than those of linear representations.
However, rather than optimizing directly for rate—distortion performance, their modeling is genera-
tive. Due to the differences between these approaches (as outlined in section [3.1)), their procedure
of obtaining coding representations from the generative model (scalar quantization, and elimination
of hierarchical levels of the representation) is less systematic than our approach and unlikely to be
optimal. Further, no entropy code is provided, and the authors therefore resort to comparing entropy
estimates to bit rates of established compression methods, which can be unreliable. The model
developed by Toderici et al. (2016) is optimized to provide various rate—distortion trade-offs and
directly output a binary representation, making it more easily comparable to other image compres-
sion methods. Moreover, their formulation has the advantage over ours that a single representation
is sought for all rate points. However, it is not clear whether their formulation necessarily leads to
rate—distortion optimality (and their empirical results suggest that this is not the case).

10
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We are currently testing models that use simpler rectified-linear or sigmoidal nonlinearities, to de-
termine how much of the performance and visual quality of our results is due to use of biologically-
inspired joint nonlinearities. Preliminary results indicate that qualitatively similar results are achiev-
able with other activation functions we tested, but that rectified linear units generally require a sub-
stantially larger number of model parameters/stages to achieve the same rate—distortion performance
as the GDN/IGDN nonlinearities. This suggests that GDN/IGDN transforms are more efficient for
compression, producing better models with fewer stages of processing (as we previously found for
density estimation; Ballé, Laparra, and Simoncelli, [2015]), which might be an advantage for de-
ployment of our method, say, in embedded systems. However, such conclusions are based on a
somewhat limited set of experiments and should at this point be considered provisional. More gen-
erally, GDN represents a multivariate generalization of a particular type of sigmoidal function. As
such, the observed efficiency advantage relative to pointwise nonlinearities is expected, and a variant
of a universal function approximation theorem (e.g., Leshno et al.,[1993)) should hold.

The rate—distortion objective can be seen as a particular instantiation of the general unsupervised
learning or density estimation problems. Since the transformation to a discrete representation may
be viewed as a form of classification, it is worth considering whether our framework offers any
insights that might be transferred to more specific supervised learning problems, such as object
recognition. For example, the additive noise used in the objective function as a relaxation of quan-
tization might also serve the purpose of making supervised classification networks more robust to
small perturbations, and thus allow them to avoid catastrophic “adversarial” failures that have been
demonstrated in previous work (Szegedy et al., 2013). In any case, our results provide a strong
example of the power of end-to-end optimization in achieving a new solution to a classical problem.

ACKNOWLEDGMENTS

We thank Olivier Hénaff and Matthias Bethge for fruitful discussions.

REFERENCES

Ballé, Johannes, Valero Laparra, and Eero P. Simoncelli (2015). “Density Modeling of Images Using
a Generalized Normalization Transformation”. In: arXiv e-prints. Presented at the 4th Int. Conf.
for Learning Representations, 2016. arXiv:|1511.06281.

— (2016). “End-to-end optimization of nonlinear transform codes for perceptual quality”. In: arXiv
e-prints. Presented at 2016 Picture Coding Symposium. arXiv:(1607.05006.

Candes, Emmanuel J. and David L. Donoho (2002). “New Tight Frames of Curvelets and Optimal
Representations of Objects with C? Singularities”. In: Comm. Pure Appl. Math. 57, pp. 219-266.

Carandini, Matteo and David J. Heeger (2012). “Normalization as a canonical neural computation”.
In: Nature Reviews Neuroscience 13. DOI:|10.1038/nrn3136.

Deng, J. et al. (2009). “ImageNet: A Large-Scale Hierarchical Image Database”. In: IEEE Conf. on
Computer Vision and Pattern Recognition. DO1:/10.1109/CVPR.2009.5206848,

Gersho, Allen and Robert M. Gray (1992). Vector Quantization and Signal Compression. Kluwer.
ISBN: 978-0-7923-9181-4.

Gray, Robert M. and David L. Neuhoff (1998). “Quantization”. In: IEEE Transactions on Informa-
tion Theory 44.6. DOI:|10.1109/18.720541.

Gregor, Karol, Frederic Besse, et al. (2016). “Towards Conceptual Compression”. In: arXiv e-prints.
arXiv:|1604.08772|

Gregor, Karol and Yann LeCun (2010). “Learning Fast Approximations of Sparse Coding”. In: Pro-
ceedings of the 27th International Conference on Machine Learning.

Heeger, David J. (1992). “Normalization of cell responses in cat striate cortex”. In: Visual Neuro-
science 9.2. DOI:110.1017/50952523800009640.

Ioffe, Sergey and Christian Szegedy (2015). “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariance Shift”. In: arXiv e-prints. arXiv: 1502 .03167,

Jarrett, Kevin et al. (2009). “What is the Best Multi-Stage Architecture for Object Recognition?” In:
2009 IEEE 12th International Conference on Computer Vision. DOI:|10.1109/ICCV.2009.
54594609.

Kingma, Diederik P. and Jimmy Lei Ba (2014). “Adam: A Method for Stochastic Optimization”.
In: arXiv e-prints. Presented at the 3rd Int. Conf. for Learning Representations, 2015. arXiv:
1412.6980.

11


http://arxiv.org/abs/1511.06281
http://arxiv.org/abs/1607.05006
https://doi.org/10.1038/nrn3136
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/18.720541
http://arxiv.org/abs/1604.08772
https://doi.org/10.1017/S0952523800009640
http://arxiv.org/abs/1502.03167
https://doi.org/10.1109/ICCV.2009.5459469
https://doi.org/10.1109/ICCV.2009.5459469
http://arxiv.org/abs/1412.6980

Published as a conference paper at ICLR 2017

Kingma, Diederik P. and Max Welling (2014). “Auto-Encoding Variational Bayes”. In: arXiv e-
prints. arXiv:|1312.6114.

Laparra, Valero et al. (2016). “Perceptual image quality assessment using a normalized Laplacian
pyramid”. In: Proceedings of SPIE, Human Vision and Electronic Imaging XXI.

Leshno, Moshe et al. (1993). “Multilayer Feedforward Networks With a Nonpolynomial Activation
Function Can Approximate Any Function”. In: Neural Networks 6.6. DO1:110.1016/S0893~-
6080 (05)80131-5|

Lewicki, Michael S. and Bruno Olshausen (1998). “Inferring sparse, overcomplete image codes
using an efficient coding framework™. In: Advances in Neural Information Processing Systems
10, pp. 815-821.

Lyu, Siwei (2010). “Divisive Normalization: Justification and Effectiveness as Efficient Coding
Transform”. In: Advances in Neural Information Processing Systems 23, pp. 1522-1530.

Malo, Jesus et al. (2006). “Non-linear image representation for efficient perceptual coding”. In:
IEEE Transactions on Image Processing 15.1. DO1:'10.1109/TIP.2005.860325.

Mante, Valerio, Vincent Bonin, and Matteo Carandini (2008). “Functional Mechanisms Shaping Lat-
eral Geniculate Responses to Artificial and Natural Stimuli”. In: Neuron 58.4. DOI:|10.1016/
J.neuron.2008.03.011.

Marpe, Detlev, Heiko Schwarz, and Thomas Wiegand (2003). “Context-Based Adaptive Binary
Arithmetic Coding in the H.264/AVC Video Compression Standard”. In: IEEE Transactions on
Circuits and Systems for Video Technology 13.7. DO1:'10.1109/TCSVT.2003.815173.

Netravali, A. N. and J. O. Limb (1980). “Picture Coding: A Review”. In: Proceedings of the IEEE
68.3.DOI:110.1109/PROC.1980.11647.

Oord, Aidron van den, Nal Kalchbrenner, and Koray Kavukcuoglu (2016). “Pixel Recurrent Neural
Networks”. In: arXiv e-prints. arXiv: 1601 .06759.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic Backpropaga-
tion and Approximate Inference in Deep Generative Models”. In: arXiv e-prints. arXiv: 1401 .
4082.

Rippel, Oren, Jasper Snoek, and Ryan P. Adams (2015). “Spectral Representations for Convolutional
Neural Networks”. In: Advances in Neural Information Processing Systems 28, pp. 2449-2457.
Rissanen, Jorma and Glen G. Langdon Jr. (1981). “Universal modeling and coding”. In: [EEE Trans-

actions on Information Theory 27.1. DO1:110.1109/TIT.1981.1056282.

Schwartz, Odelia and Eero P. Simoncelli (2001). “Natural signal statistics and sensory gain control”.
In: Nature Neuroscience 4.8. DOI:|10.1038/90526.

Selesnick, Ivan W., Richard G. Baraniuk, and Nick C. Kingsbury (2005). “The Dual-Tree Complex
Wavelet Transform”. In: IEEE Signal Processing Magazine 22.6. DOI:|10.1109/MSP.2005.
1550194.

Shannon, Claude E. (1948). “A Mathematical Theory of Communication”. In: The Bell System Tech-
nical Journal 27.3. DOI1:/10.1002/7.1538-7305.1948.tb01338.x.

Simoncelli, Eero P., William T. Freeman, et al. (1992). “Shiftable Multiscale Transforms”. In: IEEE
Transactions on Information Theory 38.2. DOI:|10.1109/18.119725.

Simoncelli, Eero P. and David J. Heeger (1998). “A model of neuronal responses in visual area MT”.
In: Vision Research 38.5. DOI1:/10.1016/S0042-6989 (97)00183-1l

Simoncelli, Eero P. and Bruno Olshausen (2001). “Natural image statistics and neural representa-
tion”. In: Annual Review of Neuroscience 24. DOI: |10 . 1146 /annurev .neuro .24 .1.
1193.

Sinz, Fabian and Matthias Bethge (2013). “What Is the Limit of Redundancy Reduction with Divi-
sive Normalization?” In: Neural Computation 25.11. DOI1:|{10.1162/NECO_a_00505}

Szegedy, Christian et al. (2013). “Intriguing properties of neural networks”. In: arXiv e-prints. arXiv:
1312.6199.

Theis, Lucas, Adron van den Oord, and Matthias Bethge (2015). “A note on the evaluation of gen-
erative models”. In: arXiv e-prints. Presented at the 4th Int. Conf. for Learning Representations.
arXiv:|1511.01844.

Toderici, George et al. (2016). “Full Resolution Image Compression with Recurrent Neural Net-
works”. In: arXiv e-prints. arXiv:|1608.05148.

Wang, Zhou, Eero P. Simoncelli, and Alan Conrad Bovik (2003). “Multi-Scale Structural Similarity
for Image Quality Assessment”. In: Conf. Rec. of the 37th Asilomar Conf. on Signals, Systems
and Computers, 2004. DO1:/10.1109/ACSSC.2003.1292216l

Wintz, Paul A. (1972). “Transform Picture Coding”. In: Proceedings of the IEEE 60.7. DOI: 10 .
1109/PROC.1972.8780.

12


http://arxiv.org/abs/1312.6114
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1109/TIP.2005.860325
https://doi.org/10.1016/j.neuron.2008.03.011
https://doi.org/10.1016/j.neuron.2008.03.011
https://doi.org/10.1109/TCSVT.2003.815173
https://doi.org/10.1109/PROC.1980.11647
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1401.4082
http://arxiv.org/abs/1401.4082
https://doi.org/10.1109/TIT.1981.1056282
https://doi.org/10.1038/90526
https://doi.org/10.1109/MSP.2005.1550194
https://doi.org/10.1109/MSP.2005.1550194
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/18.119725
https://doi.org/10.1016/S0042-6989(97)00183-1
https://doi.org/10.1146/annurev.neuro.24.1.1193
https://doi.org/10.1146/annurev.neuro.24.1.1193
https://doi.org/10.1162/NECO_a_00505
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1511.01844
http://arxiv.org/abs/1608.05148
https://doi.org/10.1109/ACSSC.2003.1292216
https://doi.org/10.1109/PROC.1972.8780
https://doi.org/10.1109/PROC.1972.8780

Published as a conference paper at ICLR 2017

6 APPENDIX

6.1 NETWORK ARCHITECTURE AND OPTIMIZATION

As described in the main text, our analysis transform consists of three stages of convolution, down-
sampling, and GDN. The number and size of filters, downsampling factors, and connectivity from
layer to layer are provided in figure 8] for the grayscale transforms. The transforms for RGB images
and for high bit rates differ slightly in that they have an increased number of channels in each stage.
These choices are somewhat ad-hoc, and a more thorough exploration of alternative architectures
could potentially lead to significant performance improvements.

We have previously shown that GDN is highly efficient in Gaussianizing the local joint statistics
of natural images (Ballé, Laparra, and Simoncelli, 2015). Even though Gaussianization is a quite
different optimization problem than the rate—distortion objective with the set of constraints defined
above, it is similar in that a marginally independent latent model is assumed in both cases. When
optimizing for Gaussianization, the exponents in the parametric form of GDN control the tail be-
havior of the Gaussianized densities. Since tail behavior is less important here, we chose to simplify
the functional form, fixing the exponents as well as forcing the weight matrix to be symmetric (i.e.,
Vkyij = Vh,ji)-

The synthesis transform is meant to function as an approximate inverse transformation, so we con-
struct it by applying a principle known from the LISTA algorithm (Gregor and LeCun, 2010) to the
fixed point iteration previously used to invert the GDN transform (Ballé, Laparra, and Simoncelli,
2015). The approximate inverse consists of one iteration, but with a separate set of parameters from
the forward transform, which are constrained in the same way, but trained separately. We refer to
this nonlinear transform as “inverse GDN”’ (IGDN).

The full model (analysis and synthesis filters, GDN and IGDN parameters) were optimized, for
each )\, over a subset of the ImageNet database (Deng et al.,2009) consisting of 6507 images. We
applied a number of preprocessing steps to the images in order to reduce artifacts and other unwanted
contaminations: first, we eliminated images with excessive saturation. We added a small amount of
uniform noise, corresponding to the quantization of pixel values, to the remaining images. Finally,
we downsampled and cropped the images to a size of 256 x 256 pixels each, where the amount of
downsampling and cropping was randomized, but depended on the size of the original image. In
order to reduce high-frequency noise and compression artifacts, we only allowed resampling factors
less than 0.75, discarding images that were too small to satisfy this constraint.
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Figure 8: Parameterization of analysis (g,) and synthesis (g,) transforms for grayscale images.
conv: affine convolution (I)/(6), with filter support (z X y) and number of channels (output xinput).
down-/upsample: regular down-/upsampling (2)/(3) by given factor (implemented jointly with the
adjacent convolution). GDN/IGDN: generalized divisive normalization across channels (3)), and its
approximate inverse (@); see text. Number of parameters for each layer given at the bottom.

13



Published as a conference paper at ICLR 2017

To ensure efficient and stable optimization, we used the following techniques:

e We used the Adam optimization algorithm (Kingma and Ba, 2014) to obtain values for the
parameters ¢ and 0, starting with « = 10~%, and subsequently lowering it by a factor of 10
whenever the improvement of both rate and distortion stagnated, until o = 10~ 7.

e Linear filters were parameterized using their discrete cosine transform (DCT) coefficients.
We found this to be slightly more effective in speeding up the convergence than discrete
Fourier transform (DFT) parameterization (Rippel, Snoek, and Adams, 2015)).

e We parameterized the GDN parameters in terms of the elementwise relationship

Br,i = (ﬂllm)z 2710

The squaring ensures that gradients are smaller around parameter values close to 0, a regime
in which the optimization can otherwise become unstable. To obtain an unambiguous map-

. . / . 75 . .
ping, we projected each 3 ; onto the interval [27°, 00) after each gradient step. We applied
the same treatment to -y ;;, and additionally averaged -y, , ; withits transpose after each step
in order to make it symmetric as explained above. The IGDN parameters were treated in
the same way.

e To remove the scaling ambiguity between the each linear transform and its following
nonlinearity (or preceding nonlinearity, in the case of the synthesis transform), we re-
normalized the linear filters after each gradient step, dividing each filter by the square root
of the sum of its squared coefficients. For the analysis transform, the sum runs over space
and all input channels, and for the synthesis transform, over space and all output channels.

We represented each of the marginals py, as a piecewise linear function (i.e., a linear spline), using
10 sampling points per unit interval. The parameter vector ¥»(*) consists of the value of pg, at these

sampling points. We did not use Adam to update +/(*); rather, we used ordinary stochastic gradient
descent to minimize the negative expected likelihood:

Ly, W, ) = =By Y py (i ™). (17)

and renormalized the marginal densities after each step. After every 105 gradient steps, we used a
heuristic to adapt the range of the spline approximation to cover the range of values of ¢; obtained
on the training set.

6.2 ENTROPY CODE

We implemented an entropy code based on the context-adaptive binary arithmetic coding (CABAC)
framework defined by Marpe, Schwarz, and Wiegand (2003). Arithmetic entropy codes are designed
to compress discrete-valued data to bit rates closely approaching the entropy of the representation,
assuming that the probability model used to design the code describes the data well. The following
information was encoded into the bitstream:

o the size of the image (two 16-bit integers, bypassing arithmetic coding),
o whether the image is grayscale or RGB (one bit, bypassing arithmetic coding),

e the value of A\ (one 16-bit integer, bypassing arithmetic coding), which provides an index
for the parameters of the analysis and synthesis transforms as well as the initial probabil-
ity models for the entropy codes (these are fixed after optimization, and assumed to be
available to encoder and decoder).

e the value of each element of g, iterating over channels, and over space in raster-scan order,
using the arithmetic coding engine.

Since CABAC operates on binary values, the quantized values in g need to be converted to binary
decisions. We follow a simple scheme inspired by the encoding of H.264/AVC transform coefficients
as detailed by Marpe, Schwarz, and Wiegand (2003). For each ¢;, we start by testing if the encoded
value is equal to the mode of the distribution. If this is the case, the encoding of ¢; is completed.
If not, another binary decision determines whether it is smaller or larger than the mode. Following
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i = 4i,mode

qi > i, mode END

qi = qi,mode — 1 q; > qi,mode +1

Qi = Gi,mode — 2 END END @i > Gi,mode T 2
END END
¢ = Qi,mﬂ‘ ‘/\C)\qi > max
EG fallback  END END  EG fallback

Figure 9: Binarization of a quantized value for binary arithmetic coding. Each circle represents
a binary decision encoded with its own CABAC context. Arrows pointing left represent “false”,
arrows pointing right “true”. On reaching END, the encoding of the quantized value is completed.
On reaching EG fallback, the magnitude of ¢; which falls outside of the range [¢; min, ¢; max] is encoded
using an exponential Golomb code, bypassing the arithmetic coding engine.

PSNR [dB]

012 013 0j4
bit rate [bit/px]

Figure 10: Rate—distortion comparison of adaptive vs. non-adaptive entropy coding, averaged (for
each value of \) over the 24 images in the Kodak test set. The non-adaptive entropy code is simulated
by computing the entropy of g assuming the probability model determined during optimization
(which is also used to initialize the adaptive code).

that, each possible integer value is tested in turn, which yields a bifurcated chain of decisions as
illustrated in figure[9] This process is carried out until either one of the binary decisions determines
g;, or some minimum (g; min) Or maximum (g; max) value is reached. In case g; is outside of that
range, the difference between it and the range bound is encoded using an exponential Golomb code,
bypassing the arithmetic coding engine.

Adaptive codes, such as CABAC, can potentially further improve bit rates, and to some extent
correct model error, by adapting the probability model on-line to the statistics of the data. In our
code, this is achieved by sharing the marginal probability model P, of each element in g across
space within each channel. We derived the initial probability models by subsampling the continuous
densities py, determined during optimization, as in (I0). However, note that due to the simple
raster-scan ordering, the coding scheme presented above only crudely exploits spatial adaptation of
the probability model compared to existing coding methods such as JPEG 2000 and H.264/AVC.
Thus, the performance gains compared to a well-designed non-adaptive entropy code are relatively
small (figure[I0)), and likely smaller than those achieved by the entropy code in JPEG 2000, to which
we compare.
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Figure 11: Summary rate—distortion curves, computed by averaging results over the 24 images in
the Kodak test set. Each point is connected by translucent lines to the set of 24 points corresponding
to the individual image R-D values from which it was derived. JPEG results are averaged over
images compressed with identical quality settings. Results of the proposed method are averaged
over images compressed with identical A values (and thus, computed with exactly the same forward
and inverse transforms). The two JPEG 2000 curves are computed with the same implementation,
by averaging over images compressed with the same target rate or the same target quality. Note that
these two methods of selecting points to be averaged lead to significantly different average results.

6.3 EVALUATION DETAILS AND ADDITIONAL EXAMPLE IMAGES

Although it is desirable to summarize and compare the rate—distortion behavior of JPEG, JPEG 2000,
and our method across an image set, it is difficult to do this in a way that is fair and interpretable.
First, rate—distortion behavior varies substantially across bit rates for different images. For example,
for the image in figure[I2] our method achieves the same MSE with roughly 50% of the bits needed
by JPEG 2000 for low rates, and about 30% for high rates. For the image in figure [I7] the gains
are more modest, although still significant through the range. But for the image in figure [I3] our
method only slightly outperforms JPEG 2000 at low rates, and under-performs it at high rates. Note
that these behaviors are again different for MS-SSIM, which shows a significant improvement for
all images and bit rates (consistent with their visual appearance).

Second, there is no obvious or agreed-upon method for combining rate—distortion curves across
images. More specifically, one must decide which points in the curves to combine. For our method,
it is natural to average the MSE and entropy values across images compressed using the same choice
of ), since these are all coded and decoded using exactly the same representation and quantization
scheme. For JPEG, it seems natural to average over images coded at the same “quality” setting,
which appear to be coded using the same quantization choices. The OpenJPEG implementation of
JPEG 2000 we use allows selection of points on the rate—distortion curve either through specification
of a target bit rate, or a target quality. This choice has no effect on rate—distortion plots for individual
images (verified, but not shown), but has a substantial effect when averaging over images, since the
two choices lead one to average over a different set of R-D points. This is illustrated in figure [T1]
Even if points were selected in exactly the same fashion for each of the methods (say, matched to
a given set of target rates), summary plots can still over- or underemphasize high rate vs. low rate
performance.

We conclude that summaries of rate—distortion are of limited use. Instead, we encourage the reader
to browse our extensive collection of test images, with individual rate—distortion plots for each im-
age, available athttp://www.cns.nyu.edu/~1lcv/iclr2017 in both grayscale and RGB.
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In the following pages, we show additional example images, compressed at relatively low bit rates,
in order to visualize the qualitative nature of compression artifacts. On each page, the JPEG 2000
image is selected to have the lowest possible bit rate that is equal or greater than the bit rate of
the proposed method. In all experiments, we compare to JPEG with 4:2:0 chroma subsampling,
and the OpenJPEG implementation of JPEG 2000 with the default “multiple component transform”.
For evaluating PSNR, we use the JPEG-defined conversion matrix to convert between RGB and
Y’CbCr. For evaluating MS-SSIM (Wang, Simoncelli, and Bovik, |[2003), we used only the resulting
luma component. Original images are not shown, but are available online, along with compressed
images at a variety of other bit rates, athttp://www.cns.nyu.edu/~1lcv/iclr2017.
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Figure 12: RGB example, from our personal collection, downsampled and cropped to 752 x 376
pixels.
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Figure 13: RGB example, from our personal collection, downsampled and cropped to 752 x 376
pixels.
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Figure 15: RGB example, from our personal collection, downsampled and cropped to 752 x 376
pixels.
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Figure 16: RGB example, from our personal collection, downsampled and cropped to 752 x 376
pixels.
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JPEG 2000, 6037 bytes (0.171 bit/px), PSNR: 23.47 dB, MS-SSIM: 0.9036

Figure 17: Grayscale example, from our personal collection, downsampled and cropped to 752 x 376
pixels.
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Figure 18: Grayscale example, from our personal collection, downsampled and cropped to 752 x 376
pixels.
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Figure 19: Grayscale example, from our personal collection, downsampled and cropped to 752 x 376
pixels.
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Figure 20: Grayscale example, from our personal collection, downsampled and cropped to 752 x 376
pixels.
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Figure 21: Grayscale example, from the Kodak test set, downsampled and cropped to 752 x 376
pixels.
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