
A Preliminary Logic-based Approach for Explanation Generation

Stylianos L. Vasileiou
Computer Science and Engineering
Washington University in St. Louis
v.stylianos@wustl.edu

William Yeoh
Computer Science and Engineering
Washington University in St. Louis

wyeoh@wustl.edu

Tran Cao Son
Computer Science

New Mexico State University
tson@cs.nmsu.edu

Abstract

In an explanation generation problem, an agent needs to
identify and explain the reasons for its decisions to an-
other agent. Existing work in this area is mostly confined
to planning-based systems that use automated planning
approaches to solve the problem. In this paper, we ap-
proach this problem from a new perspective, where we
propose a general logic-based framework for explana-
tion generation. In particular, given a knowledge base
KB1 that entails a formula φ and a second knowledge
base KB2 that does not entail φ, we seek to identify an
explanation ε that is a subset ofKB1 such that the union
ofKB2 and ε entails φ. We define two types of explana-
tions, model- and proof-theoretic explanations, and use
cost functions to reflect preferences between explana-
tions. Further, we present our algorithm implemented for
propositional logic that compute such explanations and
empirically evaluate it in random knowledge bases and
a planning domain.

Introduction
With increasing proliferation and integration of AI sys-
tems in our daily life, there is a surge of interest in
explainable AI, which includes the development of AI
systems whose actions can be easily understood by hu-
mans. Driven by this goal, machine learning (ML) re-
searchers have begun to classify commonly used ML al-
gorithms according to different dimensions of explain-
ability (Guidotti et al. 2018); improved the explainabil-
ity of existing ML algorithms (Vaughan et al. 2018; Al-
varez Melis and Jaakkola 2018; Petkovic et al. 2018); as
well as proposed new ML algorithms that trade off ac-
curacy for increasing explainability (Dong et al. 2017;
Gilpin et al. 2018).1

Copyright c© 2019, Association for the Advancement of Arti-
ficial Intelligence (www.aaai.org). All rights reserved.

1While the term interpretability is more commonly used
in the ML literature and can be used interchangeably with ex-
plainability, we use the latter term as it is more commonly
used broadly across different subareas of AI.

In contrast, researchers in the automated planning
community have mostly taken a complementary ap-
proach. While there is some work on adapting planning
algorithms to find easily explainable plans2 (i.e., plans
that are easily understood and accepted by a human
user) (Zhang et al. 2017), most work has focused on
the explanation generation problem (i.e., the problem
of identifying explanations of plans found by planning
agents that when presented to users, will allow them
to understand and accept the proposed plan) (Lang-
ley 2016; Kambhampati 1990). Within this context, re-
searchers have tackled the problem where the model
of the human user may be (1) inconsistent with the
model of the planning agent (Chakraborti et al. 2017b);
(2) must be learned (Zhang et al. 2017); and (3) a
different form or abstraction than that of the planning
agent (Sreedharan et al. 2018; Tian et al. 2016). How-
ever, a common thread across most of these works is
that they, not surprisingly, employ mostly automated
planning approaches. For example, they often assume
that the models of both the agent and human are en-
coded in PDDL format.

In this paper, we approach the explanation genera-
tion problem from a different perspective – one based
on knowledge representation and reasoning (KR). We
propose a general logic-based framework for explana-
tion generation, where given a knowledge base KB1

(of an agent) that entails a formula φ and a knowledge
base KB2 (of a human user) that does not entail φ, the
goal is to identify an explanation ε ⊆ KB1 such that
KB2 ∪ ε entails φ. We define two types of explana-
tions, model- and proof-theoretic explanations, and use
cost functions to reflect preferences between explana-
tions. Further, we present an algorithm, implemented
for propositional logic, that computes such explanations
and evaluate its performance experimentally in random
knowledge bases as well as in a planning domain.

In addition to providing an alternative approach to

2Also called explicable plans in the planning literature.

solve the same explanation generation problem tack-
led thus far by the automated planning community, our
approach has the merit of being more generalizable to
other problems beyond planning problems as long as
they can be modeled using a logical KR language.

Preliminaries
Logic
A logic L is a tuple (KBL, BSL, ACCL) where KBL

is the set of well-formed knowledge bases (or theories)
of L – each being a set of formulae. BSL is the set
of possible belief sets; each element of BSL is a set
of syntactic elements representing the beliefs L may
adopt. ACCL : KBL → 2BSL describes the “seman-
tics” of L by assigning to each element of KBL a set
of acceptable sets of beliefs. For each KB ∈ KBL

and B ∈ ACCL(KB), we say that B is a model of
KB. A logic is monotonic if KB ⊆ KB′ implies
ACCL(KB′) ⊆ ACCL(KB).

Example 1 Assume that L refers to the propositional
logic over an alphabet P . Then, KBL is the set of
propositional theories over P , BSL = 2P , and ACCL

maps each theory KB into the set of its models in the
usual sense.

We say that a KB is consistent if ACCL(KB) 6= ∅.
A formula ϕ in the logic L is entailed by KB, denoted
by KB |=L ϕ, if ACCL(KB) 6= ∅ and ϕ ∈ B for
every B ∈ ACCL(KB).

For our later use, we will assume that a negation op-
erator ¬ over formulas exists; and ϕ and ¬ϕ are con-
tradictory with each other in the sense that for any KB
and B ∈ ACCL(KB), if ϕ ∈ B then ¬ϕ 6∈ B; and if
¬ϕ ∈ B then ϕ 6∈ B. ε ⊆ KB is called a sub-theory
of KB. A theory KB subsumes a theory KB′, denoted
by KB �KB′ if ACCL(KB) ⊂ ACCL(KB′).

Conclusions of a knowledge base can also be derived
using rules. A rule system ΣL of a logic L is a set of
rules of the form

ϕ1, . . . , ϕk `L ϕ0 (1)

where ϕi are formulas. The left hand side could be
empty. For a rule r of the form (1), body(r) (resp.
head(r)) denotes the left (resp. right) side of r. Intu-
itively, a rule r states that if the body is true then the
head is also true.

Given a knowledge base KB and a rule system ΣL,
we say KB `ΣL

ϕ if either ϕ ∈ KB or there ex-
ists a sequence of rules r1, . . . , rn in ΣL such that
body(r1) ⊆ KB, head(rn) = ϕ, head(ri) ∈ KB for
i = 1, . . . , n − 1, and body(ri) ⊆ KB or body(ri) ⊆
body(r1) ∪ {head(rj) | j = 1, . . . , i − 1} for every
i = 2, . . . , n. We call the sequence ε = 〈r1; . . . ; rn〉 as
a proof from KB for ϕ w.r.t. ΣL and say that the proof
ε has the length n.

ΣL is said to be sound if for every ϕ, KB `ΣL
ϕ

implies KB |=L ϕ. It is complete if for every ϕ,
KB |=L ϕ implies KB `ΣL

ϕ.

Classical Planning as Boolean Satisfiability
A classical planning problem (Russell and Norvig
2009) can be naturally encoded as an instance of propo-
sitional satisfiability (Kautz et al. 1992). The basic idea
is the following: Given a planning problem P , find a
solution for P of length n by creating a propositional
formula that represent the initial state, goal, and the ac-
tion dynamics for n time steps. This is referred to as
the bounded planning problem (P, n), and we define the
formula for (P, n) such that: any model of the formula
represents a solution to (P, n) and if (P, n) has a solu-
tion, then the formula is satisfiable.

We encode (P, n) as a formula Φ such that
〈a0, a1, . . . , an−1〉 is a solution for (P, n) if and only
if Φ can be satisfied in a way that makes the fluents
a0, a1, . . . , an−1 true. The formula Φ is a conjunction
of the following formulae:
• Initial State: Let F be the set of possible facts in the

planning problem:∧
{f0|f ∈ s0} ∧

∧
{¬f0|f ∈ F \ {s0}}

• Goal: Let G be the set of goal facts:∧
{fn|f ∈ G}

• Action Scheme: For every action ai at time step i:

ai ⇒
∧
{fi|f ∈ Precondition(a)}

ai+1 ⇒
∧
{fi+1|f ∈ Add(a)}

ai+1 ⇒
∧
{¬fi+1|f ∈ Delete(a)}

• Explanatory Frame Axioms: Formulae describing
what does not change between steps i and i+ 1:

¬fi ∧ fi+1 ⇒
∨
{ai|f ∈ ADD(a)}

fi ∧ ¬fi+1 ⇒
∨
{ai|f ∈ DEL(a)}

• Complete Exclusion Axioms: Only one action can
occur at each time step:

¬ai ∨ ¬bi
Finally, we can extract a plan by finding an assign-

ment of truth values that satisfies Φ (i.e., for i =
0, . . . , n − 1, there will be exactly one action a such
that ai = True). This could be easily done by using a
satisfiability algorithm, such as the well-known DPLL
algorithm (Davis et al. 1962).

In this paper, we will mostly use examples from
propositional logic. We make use of the fact that the res-
olution rule is sound and complete in first-order logic
(Robinson 1965), and hence, in propositional logic.
This allows us to utilize the DPLL algorithm in com-
puting proofs for a formula given a knowledge base.

2

Two Accounts of Explanations
In this section, we introduce the notion of an explana-
tion in the following setting:

Explanation Generation Problem: Given two
knowledge bases KB1 and KB2 and a formula
ϕ in a logic L. Assume that KB1 |=L ϕ and
KB2 6|=L ϕ. The goal is to identify an explana-
tion (i.e., a set of formulas) ε ⊆ KB1 such that
KB2 ∪ ε |= ϕ.

We first define the notion of a support of a formula w.r.t.
a knowledge base.

Definition 1 (Support) Assume that KB |=L ϕ. We
say that ε ⊆ KB is a support of ϕ w.r.t. KB if ε |=L ϕ.
Assume that ε is a support of ϕ w.r.t. KB. We say that
ε ⊆ KB is a ⊆-minimal support of ϕ if no proper sub-
theory of ε is a support of ϕ. Furthermore, ε is a �-
general support of ϕ if there is no support ε′ of ϕ w.r.t.
KB such that ε subsumes ε′.

We now define below two types of explanations –
model-theoretic and proof-theoretic explanations.

Model-Theoretic Explanations
Definition 2 (m-Explanation) Given two knowledge
bases KB1 and KB2 in logic L and a formula ϕ. As-
sume that KB1 |=L ϕ and KB2 6|=L ϕ.

A model-theoretic explanation (orm-explanation) for
ϕ from KB1 for KB2 is a support ε w.r.t. KB1 for ϕ
such that KB2 ∪ ε |=L ϕ.

Example 2 Consider proposition logic theories over
the set of propositions {a, b, c} with the usual definition
of models, satisfaction, etc. Assume KB1 = {a, b, a→
c, a ∧ b → c} and KB2 = {a}. We have that ε1 =
{a, a → c} and ε2 = {a, b, a ∧ b → c} are two
⊆-minimal supports of c w.r.t. KB1. Only ε1 is a �-
general support of c w.r.t. KB1 since ε2 � ε1.

Both ε1 and ε2 can serve as m-explanations for c
from KB1 for KB2. Of course, KB1 is itself an m-
explanation for c from KB1 for KB2.

Consider KB3 = {a,¬b}. In this case, we have that
only ε1 is an m-explanation for c from KB1 for KB3.

Now, consider KB4 = {¬a}. In this case, we have
no m-explanation for c from KB1 for KB4.

Proposition 1 For two knowledge bases KB1 and
KB2 in a monotonic logic L, if KB1 |=L ϕ and
KB2 |=L ¬ϕ, then there exists no m-explanation for
ϕ from KB1 for KB2.

The KB4 in Example 2 and Proposition 1 show
that m-explanations alone might be insufficient. Some-
times, we also need to persuade the other agent that its
knowledge base is not correct. We leave this for the fu-
ture. In this paper, we assume that KB2 6|=L ¬ϕ and
KB2 6|=L ϕ and, thus, an m-explanation always exists.

Proof-Theoretic Explanations
Definition 3 (p-explanation) Given a logic L with a
sound and complete rule system ΣL and two knowledge
bases KB1 and KB2 in logic L and a formula ϕ. As-
sume that KB1 `L ϕ and KB2 6`L ϕ.

A proof-theoretic explanation (or p-explanation) for
ϕ fromKB1 forKB2 is a proof 〈r1; . . . ; rn〉 fromKB1

for ϕ such that KB2 ∪ (
⋃n

i=1 body(ri)∩KB1) `ΣL
ϕ

and KB2 ∪ (
⋃n

i=1 body(ri) ∩KB1) is consistent.
Example 3 Consider the theories KB1 = {a, b, a →
c, a ∧ b → c} and KB2 = {a} from Example 2. Let us
assume that ΣL is the set of rules of the form l `L l and
l,¬l∨p ` p for any literals l, p in the language ofKB1

and KB2. Then, 〈a,¬a ∨ c `L c〉 is a proof from KB1

for c, which is also a p-explanation for ϕ from KB1 for
KB2.

Likewise, 〈a `L a; b `L b; a,¬a ∨ ¬b ∨ c `L ¬b ∨
c; b,¬b∨ c `L c〉 is a p-explanation for c from KB1 for
KB2.
Proposition 2 Assume that ΣL is a sound and complete
rule system of a logic L, KB1 is a knowledge base, and
ϕ is a formula in L. For each proof 〈r1; . . . ; rn〉 from
KB1 for ϕ w.r.t. ΣL,

⋃n
i=1 body(ri)∩KB1 is a support

of ϕ w.r.t. KB1.
Proposition 2 implies that each proof from KB1 for
ϕ could be identified as a p-explanation for ϕ from
KB1 if ΣL is sound and complete. This provides the
following relationship between m-explanations and p-
explanations.
Proposition 3 Assume that ΣL is a sound and complete
rule system of a logic L,KB1 andKB2 are two knowl-
edge bases in L, and ϕ is a formula in L. Then,
• for eachm-explanation ε for ϕ fromKB1 forKB2,

there exists a p-explanation 〈r1; . . . ; rn〉 for ϕ from
KB1 for KB2 such that

⋃n
i=1 body(ri)∩KB1 ⊆ ε;

and
• for each p-explanation 〈r1; . . . ; rn〉 forϕ fromKB1

forKB2,
⋃n

i=1 body(ri)∩KB1 is anm-explanation
for ϕ from KB1 for KB2.

Preferred Explanations
Given KB1 and KB2 and a formula ϕ, there might
be several (m- or p-) explanations for ϕ from KB1

for KB2. For brevity, we will now use the term x-
explanation for x ∈ {m, p} to refer to an x-explanation
for ϕ from KB1 for KB2. Obviously, not all explana-
tions are equal. One might preferred a subset minimal
m-explanation or a shortest length p-explanation over
others. We will next define a general preferred relation
among explanations.

We assume a cost function CxL that maps pairs of
knowledge bases and sets of explanations to non-
negative real values, i.e.,

CxL : KBL × Ω→ R≥0 (2)

3

where Ω is the set of x-explanations and R≥0 denotes
the set of non-negative real numbers. Intuitively, this
function can be used to characterize different complex-
ity measurements of an explanation.

A cost function CmL is monotonic if for any two m-
explanations ε1 ⊆ ε2, CmL (KB, ε1) ≤ CmL (KB, ε2).
A cost function CpL is monotonic if for any two p-
explanations ε1 and ε2 such that ε1 is a subsequence of
ε2, CpL(KB, ε1) ≤ CmL (KB, ε2).
CxL induces a preference relation ≺KB over explana-

tions as follows.
Definition 4 (Preferred Explanation) Given a cost
function CxL, a knowledge base KB2, and two x-
explanations ε1 and ε2 for KB2, we say ε1 is preferred
over ε2 w.r.t. KB2 (denoted by ε1 �x

KB2
ε2) iff

CxL(KB2, ε1) ≤ CxL(KB2, ε2) (3)
and ε1 is strictly preferred over ε2 w.r.t. KB2 (denoted
by ε1 ≺x

KB2
ε2) if
CxL(KB2, ε1) < CxL(KB2, ε2) (4)

This allows us to compare explanations as follows.
Definition 5 (Most Preferred Explanation) Given a
cost function CxL and a knowledge base KB2, an expla-
nation ε is a most preferred x-explanation w.r.t. KB2 if
there exists no other explanation ε′ such that ε′ ≺x

KB2
ε.

Proposition 4 If CxL is monotonic then the rela-
tion �x

KB2
over x-explanations is transitive, anti-

symmetric, and reflexive; and the relation ≺x
KB2

over
x-explanations is transitive and anti-symmetric.

There are several natural monotonic cost functions.
Examples for cost functions for m-explanations in-
clude:
• c1L(KB2, ε) = |ε|, the cardinality of ε, indicates the

number of formulas that need to be explained;
• c2L(KB2, ε) = |ε \KB2|, the cardinality of ε \KB2,

indicates the number of new formulas that need to be
explained;

• c3L(KB2, ε) = |new vars(KB2, ε)| indicates the
number of new symbols occurring in ε that are not
in KB2 and need to be explained;

• c4L(KB2, ε) = length(ε) indicates the number of lit-
erals in ε that need to be explained.

Naturally, some of these cost functions can also be com-
bined (e.g., c2L + c3L will measure the number of new
formulas and new symbols that must be explained).

Observe that the three functions c1L and c4L are inde-
pendent from KB2 while c2L and c3L depend on KB2.
A potential advantage of a cost function that is indepen-
dent fromKB2 is that it helps simplify the computation
of most preferred explanations.
Example 4 Continuing with Example 2, if we use c1L
as the cost function, then we have that ε1 ≺m

KB2

ε2 ≺m
KB2

KB1. Furthermore, ε1 is the most preferred
m-explanation from KB1 to KB2.

Algorithm 1: genExp(KB1,KB2, ϕ)

Input: Logic L, formula ϕ, KBs KB1 and KB2, cost
function CxL

Output: A most preferred x-explanation w.r.t. CxL
from KB1 to KB2 for ϕ; or nil

1 if KB1 6|=L ϕ or KB2 |=L ϕ then
2 return nil
3 if KB1 |=L ϕ and KB2 6|=L ¬ϕ then
4 ε = most preferred(KB1,KB2, ϕ)
5 return ε

Algorithm 2: most preferred(KB1,KB2, ϕ)

Input: Logic L, formula ϕ, KBs KB1 and KB2, cost
function CxL

Output: A most-preferred explanation w.r.t. CxL from
KB1 to KB2 for ϕ; or nil

1 repeat
2 non-deterministically select a potential

x-explanation ε, a minimal element w.r.t. CxL and
KB2

3 if ε |= ϕ and KB2 ∪ ε |= ϕ then
4 return ε

5 until all possible explanations are considered
6 return nil

Computing Preferred Explanations
At a high level, Algorithms 1 and 2 can be used for com-
puting most-preferred explanations given a formula ϕ
and two knowledge bases KB1 and KB2 of a logic L
with the cost function CxL. We assume that when com-
puting for p-explanations, a sound and complete rule
system is available. Our algorithms rely on the exis-
tence of an algorithm for checking entailment between
knowledge bases and formulas (Lines 1 and 3 in Algo-
rithm 1 and Line 4 in Algorithm 2) and an algorithm for
computing a potential explanation that is minimal with
respect to a cost function and a knowledge base (Lines
2-3 in Algorithm 2). These two algorithms depend on
the logic L and the cost function CxL and need to be im-
plemented for specific logic L and function CxL.

In the rest of this section, we discuss the implementa-
tion of our algorithms for propositional logic and differ-
ent cost functions. With propositional logic, it is easy to
see that checking for entailment can be done by a SAT
solver (e.g., MiniSat (Eén and Sörensson 2003)). We
next discuss two algorithm implementations, one form-
explanations and one for p-explanations, that find an ex-
planation that is minimal with respect to a cost function
and a knowledge base.

Most-Preferred m-Explanations
Given a cost function CmL such as c1L, c2L, c3L, or c4L as
defined in Section , Algorithm 3 computes a most pre-

4

Algorithm 3: most preferred m(KB1,KB2, ϕ)

Input: Formula ϕ, KBs KB1 and KB2, cost function
CmL

Output: A most-preferred m-explanation w.r.t. CmL
from KB1 to KB2 for ϕ; or nil

1 q = [∅] % a priority queue of potential
explanations

2 checked = ∅ % a set of sets of elements in KB1

that have been considered
3 repeat
4 ε = dequeue(q)
5 insert ε into checked
6 if ε |= ϕ and KB2 ∪ ε |= ϕ then
7 return ε
8 else
9 for a ∈ KB1 do

10 if ε ∪ {a} 6∈ checked then
11 v = CmL (KB2, ε ∪ {a})
12 q = enqueue(ε ∪ {a}) % use v as

key

13 until q is empty
14 return nil

ferred m-explanations w.r.t. CmL from KB1 to KB2 for
ϕ or returns nil if none exists.

The key data structures in the algorithm is a prior-
ity queue q, initialized to only include the empty set,
of potential explanations ordered by their costs (Line 1)
and a set checked of invalid explanations that have been
considered thus far (line 2). The algorithm repeatedly
loops the following steps: (i) move the explanation with
the smallest cost from the priority queue q to checked
(Lines 4-5); (ii) check if it is a valid m-explanation and
return if it is (Lines 6-7); (iii) if not, extend the ex-
planation by 1 (with each clause from KB1) and in-
sert the extended explanations into the priority queue q
(Lines 8-12). If all potential explanations are exhausted,
which means that there are no valid m-explanations,
then the algorithm returns nil (Line 14). It is straight-
forward to see that the following proposition holds.

Proposition 5 For two propositional theories KB1

and KB2 and a formula ϕ, Algorithm 3 returns a most
preferred m-explanation w.r.t. CmL for ϕ from KB1 to
KB2 if one exists.

Most-Preferred p-Explanations
Given a cost function CpL on p-explanations, Algo-
rithm 4 computes a most-preferred p-explanation w.r.t.
CpL from KB1 to KB2 for ϕ or returns nil if none ex-
ists.

We use the following notations in the pseudocode:
For a proof 〈ε〉, where ε is the sequence 〈r1; . . . ; rn〉,
we write c(ε) = head(rn) and b(ε) =

⋃n
i=1 body(ri).

We also write ϕ1,ϕ2

ϕ to indicate that ϕ is the result of

Algorithm 4: most preferred p(KB1,KB2, ϕ)

Input: Formula ϕ, KBs KB1 and KB2, cost function
CpL

Output: A most-preferred p-explanation w.r.t. CpL
from KB1 to KB2 for ϕ; or nil

1 q = [∅] % priority queue of potential explanations
2 for ε in KB1 do
3 v = CpL(KB2, ε)
4 q = enqueue(〈ε〉) % use v as key

5 Ω = {〈ε〉 | ε ∈ KB1}
6 checked = ∅
7 repeat
8 〈ε〉 = dequeue(q)
9 insert (b(ε), c(ε)) into checked

10 if c(ε) = ϕ and KB2 ∪ (b(ε) ∩KB1) |= ϕ then
11 return ε
12 for ε′ in Ω do
13 if c(ε) and c(ε′) contain complementary

literals and c(ε),c(ε′)
φ

holds then
14 ε̂ = 〈ε ◦ ε′; c(ε),c(ε

′)
φ
〉

15 if (b(ε̂), φ) 6∈ checked then
16 v = CpL(KB2, ε̂)
17 q = enqueue(〈ε̂〉) % use v as

key

18 until q is empty
19 return nil

applying the resolution rule on ϕ1 and ϕ2. And we use
◦ to denote the concatenation of two sequences.

The algorithm uses the same two data structures –
priority queue q and set checked – as in Algorithm 3.
The algorithm first populates the queue q with single-
rule proofs consist of single clauses inKB1 (Lines 2-4).
Then, it repeatedly loops the following steps: (i) move
the proof with the smallest cost from the priority queue
q to checked (Lines 8-9); (ii) check if it is a valid p-
explanation and return if it is (Lines 10-11); (iii) if not,
extend the proof by 1 and insert the extended proofs into
the priority queue q (Lines 12-17). If all potential proofs
are exhausted, which means that there are no valid p-
explanations, then the algorithm returns nil (Line 19). It
is straightforward to see that the following proposition
holds.

Proposition 6 For two propositional theories KB1

and KB2 and a formula ϕ, Algorithm 4 returns a most
preferred p-explanation w.r.t. CpL for ϕ from KB1 to
KB2 if one exists.

Plan Explanation Generation
As presented in the preliminaries, we can model a plan-
ning problem using the propositional logic language
and thus utilize the proposed framework to generate ex-
planations. Particularly, we form the knowledge base of

5

(a) Experimental Results on Random Knowledge Bases

|KB1|
c1L c2L c3L c4L

cost time cost time cost time cost time
20 7 23ms 5 25ms 2.4 26ms 14 24ms
100 15 2.5s 10 3.0s 3.8 3.1s 30 2.9s

1000 117 27m 97 30m 38 32m 347 27m

(b) Experimental Results on BLOCKSWORLD Domain

|KB1|
c1L c2L c3L c4L

cost time cost time cost time cost time
225 4 15.0s 1 16.0s 0.5 15.5s 7 15.0s
387 16 2.0m 12 2.2m 0.5 2.2m 35 2.0m

Table 1: Experimental Results

the agent, namely KB, by adding the encoded formula
Φ (represented in CNF clauses) as well as the optimal
plan of the specific planning problem. Then, we define
the explanation in terms of KB and plan optimality as
follows:

Definition 6 (Optimal Plan Explanation)
Given a knowledge base KB and a plan
πn = 〈a0, a1, . . . , an−1〉, we say that πn is op-
timal in KB if and only if KB |= φ, where
∀t = 1, . . . n− 1 : φ = ¬goalt.

In other words, the formula φ that we seek to explain
is that no plan of lengths 1 to n−1 exists, and that a plan
of length n exists. Therefore, combined, that plan must
be an optimal plan. Now, given a second knowledge
base KB2 (i.e that of a human user), where KB2 6|= φ,
we can compute a model- or proof-theoretic explanation
as defined in Definitions 2 and 3.

Experimental Results
We empirically evaluate our implementation of Algo-
rithm 3 to find m-explanations on two synthetically
generated benchmarks – random knowledge bases and
a planning domain called BLOCKSWORLD – both en-
coded in propositional logic.3 We evaluated our algo-
rithm using the four cost functions described in Section .
Our algorithm was implemented in Python and experi-
ments were performed on a machine with an Intel i7
2.6GHz processor and 16GB of RAM. We report both
the cost of the optimal m-explanation found as well as
the runtime of the algorithm.

Random Knowledge Bases
We first evaluated our algorithm on random knowledge
bases with clauses in Horn form, where we varied the

3For random knowledge bases, we used an optimized ver-
sion that uses a version of backward chaining that finds the
set of all possible explanations. This approach works only
when the clauses in the knowledge base are in Horn form and
is sound and complete for such a case (Russell and Norvig
2009).

cardinality of KB1 (the KB of the agent providing the
explanation) from 20 to 1000. To construct KB2 (the
KB of the agent receiving the explanation), we ran-
domly chose 25% of the clauses from KB1.

To construct eachKB1, we first generated |KB1|
2 ran-

dom symbols, which will be used in the KB. Then, we
iteratively generated clauses of increasing length l from
2 to 7. For each length l, we generated b |KB1|

2·l c clauses
using the symbols we previously generated such that
each symbol is used at most once in these clauses of
length l. Each clause is a conjunction of l − 1 elements
as the premise and the final lth element as the conclu-
sion. For example, a KB with a cardinality of 20, 10
symbols are first generated. Then, 5 clauses of length
2, 3 clauses of length 3, 2 clauses of lengths 4 and 5,
and 1 clause of lengths 6 and 7 are generated. Finally,
to complete the KB, we add all the symbols that are ex-
clusively in the premise of the clauses generated as facts
in the KB. The formula ϕ that we seek to explain is one
of the randomly chosen conclusions in the clauses gen-
erated, which we ensure is entailed by KB1.

Table 1(a) tabulates our results. We make the follow-
ing observations:
• As expected, the runtimes increase as |KB1| in-

creases since the algorithm will need to search over a
larger search space.

• As expected, the costs of explanations also increase
as |KB1| increases since the explanations are pre-
sumably longer and more complex.

• Finally, the runtimes for cost functions c1L and c4L are
smaller than that of c2L and c3L. The reason is the com-
putation of the costs of possible explanations is faster
with the former two cost functions since they are not
dependent onKB2 while the computation for the lat-
ter two cost functions are dependent on KB2.

Planning Domain
As we were motivated by the explanation generation
problem studied in the automated planning community,
we also conducted experiments on BLOCKSWORLD, a
planning domain where multiple blocks must be stacked
in a particular order on a table.4

For these planning problems, we first used FAST-
DOWNWARD (Helmert 2006) to find optimal solutions
to the planning problem. Then, we translate the plan-
ning problem into a SAT problem with horizon h (Kautz
et al. 1992), where h is the length of the optimal plan.
These CNF clauses then form our KB1 (the KB of
the agent providing the explanation). Similar to ran-
dom knowledge bases, we construct KB2 (the KB of
the agent receiving the explanation) by randomly choos-
ing 25% of the clauses from KB1. The formula ϕ that

4It is one of the domains in the International Plan-
ning Competition. See http://www.plg.inf.uc3m.es/ipc2011-
learning/Domains.html.

6

we seek to explain is then that no plan of lengths 1 to
h − 1 exists, and that a plan of length h (i.e., the plan
found by FASTDOWNWARD) exists. Therefore, com-
bined, that plan must be an optimal plan.

Table 1(b) tabulates our results, where we observe
similar trends as in the experiment on random knowl-
edge bases. The key difference is that the runtimes for
all four cost functions here are a lot closer to each other,
and the reason is because there was only one valid ex-
planation in each problem instance. Thus, regardless of
the choice of cost function, that explanation had to be
found. Our experiments for larger problems are omitted
as they timed out after 6 hours.

Related Work and Discussions
There is a very large body of work related to the very
broad area of explainable AI. We have briefly discussed
some of them from the ML literature in Section . We re-
fer readers to surveys by (Adadi and Berrada 2018) and
(Dosilovic et al. 2018) for more in-depth discussions of
this area. We focus below on related work from the KR
and planning literature only since we employ KR tech-
niques to solve explainable planning problems in this
paper.

Related Work from the KR Literature: We note
that the notion of an explanation proposed in this paper
might appear similar to the notion of a diagnosis that
has been studied extensively in the last several decades
(e.g., (Reiter 1987)) as both aim at explaining some-
thing to an agent. Diagnosis focuses on identifying the
reason for the inconsistency of a theory whereas an m-
or p-explanation aims at identifying the support for a
formula. The difference lies in that a diagnosis is made
with respect to the same theory andm- or p-explanation
is sought for the second theory.

Another earlier research direction that is closely re-
lated to the proposed notion of explanation is that of de-
veloping explanation capabilities of knowledge-based
systems and decision support systems, which resulted in
different notions of explanation such as trace, strategic,
deep, or reasoning explanations (see review by (Moulin
et al. 2002) for a discussion of these notions). All of
these types of explanations focus on answering why cer-
tain rules in a knowledge base are used and how a con-
clusion is derived. This is not our focus in this paper.
The present development differs from earlier proposals
in that m- or p-explanations are identified with the aim
of explaining a given formula to a second theory. Fur-
thermore, the notion of an optimal explanation with re-
spect to the second theory is proposed.

There have been attempts to using argumentation for
explanation (Cyras et al. 2017; Cyras et al. 2019) be-
cause of the close relation between argumentation and
explanation. For example, argumentation was used by

(Cyras et al. 2019) to answer questions such as why a
schedule does (does not) satisfy a criteria (e.g., feasi-
bility, efficiency, etc.); the approach was to develop for
each type of inquiry, an abstract argumentation frame-
work (AF) that helps explain the situation by extracting
the attacks (non-attacks) from the corresponding AF.
Our work differs from these works in that it is more
general and does not focus on a specific question.

It is worth to pointing out that the problem of com-
puting a most preferred explanation for ϕ from KB1 to
KB2 might look similar to the problem of computing a
weakest sufficient condition of ϕ on KB1 under KB2

as described by (Lin 2001). As it turns out, the two no-
tions are quite different. Given that KB1 = {p, q} and
KB2 = {p}. It is easy to see that q is the unique expla-
nation for q from KB1 to KB2. On the other hand, the
weakest sufficient condition of q on KB1 under KB2

is ⊥ (Proposition 8, (Lin 2001)).

Related Work from the Planning Literature: In
human-aware planning, the (planning) agent must have
knowledge of the human model in order to be able to
contemplate the goals of the humans as well as fore-
see how its plan will be perceived by them. This is
of the highest importance in the context of explainable
planning since an explanation of a plan cannot be one-
sided (i.e., it must incorporate the human’s beliefs of
the planner). In a plan generation process, a planner
performs argumentation over a set of different models
(Chakraborti et al. 2017a); these models usually are the
model of the agent incorporating the planner, the model
of the human in the loop, the model the agent thinks the
human has, the model the human thinks the agent has,
and the agent’s approximation of the latter.

Therefore, the necessity for plan explanations arises
when the model of the agent and the model the human
thinks the agent has diverge so that the optimal plans in
the agent’s model are inexplicable to the human. During
a collaborative activity, an explainable planning agent
(Fox et al. 2017) must be able to account for such model
differences and maintain an explanatory dialogue with
the human so that both of them agree on the same plan.
This forms the nucleus of explanation generation of an
explainable planning agent, and is referred to as model
reconciliation (Chakraborti et al. 2017b). In this ap-
proach, the agent computes the optimal plan in terms
of his model and provides an explanation of that plan in
terms of model differences. Essentially, these explana-
tions can be viewed as the agent’s attempt to move the
human’s model to be in agreement with its own. Further,
for computing explanations using this approach the fol-
lowing four requirements are considered:

• Completeness – No better solution exists. This is
achieved by enforcing that the plan being explained
is optimal in the updated human model.

7

• Conciseness – Explanations should be easily under-
standable to the human.

• Monotonicity – The remaining model differences
cannot change the completeness of an explanation.

• Computability – Explanations should be easy to
compute (from the agent’s perspective).
As our work is motivated by these ideas, we now

identify some similarities and connections with our pro-
posed approach. First, it is easy to see that we implicitly
enforce the first three requirements when computing an
explanation – the notions of completeness and concise-
ness are captured through the use of our cost functions.
We do not claim to satisfy the computability require-
ment as it is more subjective and is more domain de-
pendent.

In a nutshell, the model reconciliation approach
works by providing a model update ε such that the op-
timal plan is feasible and optimal in the updated model
of the human. This is similar to our definition of the
explanation generation problem where we want to iden-
tify an explanation ε ⊆ KB1 (i.e., a set of formulae)
such that KB2 ∪ ε |= φ. In addition, the ⊆-minimal
support in Definition 1 is equivalent to minimally com-
plete explanations (MCEs) (the shortest explanation).
The C-general support can be viewed as similar to the
minimally monotonic explanations (MMEs) (the short-
est explanation such that no further model updates in-
validate it), with the only difference being that in the
general support scenario, the explanations are such that
all subsuming ε are also valid supports.

In contrast, model patch explanations (MPEs) (in-
cludes all the model updates) are trivial explanations
and are equivalent to our definition that KB1 itself
serves as an m-explanation for KB2. Note that, in our
approach, we do not allow for explanations on “mis-
taken” expectations in the human model, as it can be
inferred from Proposition 1 (monotonic language L).
From the model reconciliation perspective, such restric-
tion is relaxed and allowed. However, a similar property
can be seen if the mental model is not known and, there-
fore, by taking an “empty” model as starting point ex-
planations can only add to the human’s understanding
but not mend mistaken ones.

Conclusions and Future Work
Explanation generation is an important problem within
the larger explainable AI thrust. Existing work on
this problem has been done in the context of auto-
mated planning domains, where researchers have pri-
marily employed, unsurprisingly, automated planning
approaches. In this paper, we approach the problem
from the perspective of KR, where we propose a gen-
eral logic-based framework for explanation generation.
We further define two types of explanations, model- and
proof-theoretic explanations, and use cost functions to

reflect preferences between explanations. Our empiri-
cal results with algorithms implemented for proposi-
tional logic on both random knowledge bases as well
as a planning domain demonstrate the generality of our
approach beyond planning problems. Future work in-
cludes investigating more complex scenarios, such as
one where an agent needs to persuade another that its
knowledge base is incorrect.

Acknowledgment
This research is partially supported by NSF grants
1345232, 1757207, and 1812628. The views and con-
clusions contained in this document are those of the
authors and should not be interpreted as representing
the official policies, either expressed or implied, of the
sponsoring organizations, agencies, or the U.S. govern-
ment.

References
[Adadi and Berrada 2018] Amina Adadi and Mo-
hammed Berrada. Peeking inside the black-box: A
survey on explainable artificial intelligence (XAI).
IEEE Access, 6:52138–52160, 2018.

[Alvarez Melis and Jaakkola 2018] David Al-
varez Melis and Tommi Jaakkola. Towards robust
interpretability with self-explaining neural networks.
pages 7775–7784, 2018.

[Chakraborti et al. 2017a] Tathagata Chakraborti, Sub-
barao Kambhampati, Matthias Scheutz, and Yu Zhang.
Ai challenges in human-robot cognitive teaming. arXiv
preprint arXiv:1707.04775, 2017.

[Chakraborti et al. 2017b] Tathagata Chakraborti,
Sarath Sreedharan, Yu Zhang, and Subbarao Kamb-
hampati. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In Proceed-
ings of IJCAI, pages 156–163, 2017.

[Cyras et al. 2017] Kristijonas Cyras, Xiuyi Fan, Clau-
dia Schulz, and Francesca Toni. Assumption-based ar-
gumentation: Disputes, explanations, preferences. Jour-
nal of Logics and their Applications, 4(8), 2017.

[Cyras et al. 2019] Kristijonas Cyras, Dimitrios Letsios,
Ruth Misener, and Francesca Toni. Argumentation for
explainable scheduling. In Proceedings of AAAI, 2019.

[Davis et al. 1962] Martin Davis, George Logemann,
Donald, and Loveland. A Machine Program for The-
orem Proving. Communications of the ACM, 5(7):394–
397, 1962.

[Dong et al. 2017] Yinpeng Dong, Hang Su, Jun Zhu,
and Bo Zhang. Improving interpretability of deep neu-
ral networks with semantic information. In Proceedings
of CVPR, pages 4306–4314, 2017.

[Dosilovic et al. 2018] Filip Karlo Dosilovic, Mario Br-
cic, and Nikica Hlupic. Explainable artificial intelli-

8

gence: A survey. In Proceedings of MIPRO, pages 210–
215, 2018.

[Eén and Sörensson 2003] Niklas Eén and Niklas
Sörensson. An extensible sat-solver. In International
conference on theory and applications of satisfiability
testing, pages 502–518. Springer, 2003.

[Fox et al. 2017] Maria Fox, Derek Long, and
Daniele Magazzeni. Explainable planning. CoRR,
abs/1709.10256, 2017.

[Gilpin et al. 2018] Leilani H Gilpin, David Bau, Ben Z
Yuan, Ayesha Bajwa, Michael Specter, and Lalana Ka-
gal. Explaining explanations: An overview of inter-
pretability of machine learning. In Proceedings of
DSAA, pages 80–89, 2018.

[Guidotti et al. 2018] Riccardo Guidotti, Anna Mon-
reale, Salvatore Ruggieri, Franco Turini, Fosca Gian-
notti, and Dino Pedreschi. A survey of methods for ex-
plaining black box models. ACM Computing Survey,
51(5):93:1–93:42, 2018.

[Helmert 2006] Malte Helmert. The fast downward
planning system. Journal of Artificial Intelligence Re-
search, 26:191–246, 2006.

[Kambhampati 1990] Subbarao Kambhampati. A clas-
sification of plan modification strategies based on cov-
erage and information requirements. In AAAI Spring
Symposium Series, 1990.

[Kautz et al. 1992] Henry A Kautz, Bart Selman, et al.
Planning as satisfiability. In Proceedings of ECAI, vol-
ume 92, pages 359–363, 1992.

[Langley 2016] Pat Langley. Explainable agency in
human-robot interaction. In AAAI Fall Symposium Se-
ries, 2016.

[Lin 2001] Fangzhen Lin. On strongest necessary and
weakest sufficient conditions. Artificial Intelligence,
128(1-2):143–159, 2001.

[Moulin et al. 2002] Bernard Moulin, Hengameh Iran-
doust, Micheline Bélanger, and G. Desbordes. Expla-
nation and argumentation capabilities: Towards the cre-
ation of more persuasive agents. Artificial Intelligence
Review, 17(3):169–222, 2002.

[Petkovic et al. 2018] Dragutin Petkovic, Russ Altman,
Mike Wong, and Arthur Vigil. Improving the explain-
ability of random forest classifier–user centered ap-
proach. In Pacific Symposium on Biocomputing, vol-
ume 23, pages 204–215, 2018.

[Reiter 1987] R. Reiter. A theory of diagnosis from first
principles. Artificial Intelligence, 32(1):57–95, 1987.

[Robinson 1965] John Alan Robinson. A Machine-
Oriented Logic Based on the Resolution Principle.
Communications of the ACM, 5:23–41, 1965.

[Russell and Norvig 2009] Stuart J Russell and Peter
Norvig. Artificial Intelligence: A Modern Approach.
Pearson, 2009.

[Sreedharan et al. 2018] Sarath Sreedharan, Siddharth
Srivastava, and Subbarao Kambhampati. Hierarchical
expertise level modeling for user specific contrastive ex-
planations. In Proceedings of IJCAI, pages 4829–4836,
2018.

[Tian et al. 2016] Xin Tian, Hankz Hankui Zhuo, and
Subbarao Kambhampati. Discovering underlying plans
based on distributed representations of actions. In Pro-
ceedings of AAMAS, pages 1135–1143, 2016.

[Vaughan et al. 2018] Joel Vaughan, Agus Sudjianto,
Erind Brahimi, Jie Chen, and Vijayan N. Nair. Explain-
able neural networks based on additive index models.
CoRR, abs/1806.01933, 2018.

[Zhang et al. 2017] Yu Zhang, Sarath Sreedharan,
Anagha Kulkarni, Tathagata Chakraborti, Hankz Han-
kui Zhuo, and Subbarao Kambhampati. Plan expli-
cability and predictability for robot task planning. In
Proceedings of ICRA, pages 1313–1320, 2017.

9

	Introduction
	Preliminaries
	Logic
	Classical Planning as Boolean Satisfiability

	Two Accounts of Explanations
	Model-Theoretic Explanations
	Proof-Theoretic Explanations

	Preferred Explanations
	Computing Preferred Explanations
	Most-Preferred m-Explanations
	Most-Preferred p-Explanations
	Plan Explanation Generation

	Experimental Results
	Random Knowledge Bases
	Planning Domain

	Related Work and Discussions
	Conclusions and Future Work

