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ABSTRACT

We present a cognitive architecture capable of end-to-end learning across different
but conceptually similar Atari games using the same learning algorithms, network
architecture, and hyperparameters. The cognitive architecture uses object-based
representations to generalize across different games and consists of a pipeline
of functional modules. Each module is allocated for a specific functionality, but
exact policies and input-output relationships are formed by reinforcement learn-
ing and supervised learning algorithms. The convergence rate of the cognitive
architecture is considerably faster than deep reinforcement learning architectures
that rely on pixel-based information and follow a purely end-to-end approach.
Moreover, the modules of the cognitive architecture can be directly reused in
different game environments without retraining. Our approach is inspired by the
modular structure of biological brains, where functional modules evolved, but
still can be shaped through learning from new experiences.

1 INTRODUCTION

Essential ingredients of learning are the priors that we put into the machine and the techniques
we use for optimization and search (Bengio, 2013). Evolutionary development shapes priors in
biological living systems. These priors allow biological brains to exploit rewarding nuances of an
environment upon first discovery (Blundell et al., 2016). Nevertheless, these priors leave a space for
behavioral choice and adaptation. Biological agents do not learn by optimization of a uniform and
undifferentiated neural network (Hassabis et al., 2017). Instead, they are modular with interacting
subsystems working in parallel.

Reinforcement learning (RL) techniques combined with deep neural nets (DNN) have shown to be
effective in action optimization in complex tasks (Kidzinski et al., 2018). As one example, deep
Q-network (DQN) with pixel based input is capable of end-to-end learning of optimal behavior
in complex novel environments. However, modern deep reinforcement learning (DRL) algorithms
require millions of interactive steps and repetitions to attain human-level performance in straightfor-
ward game environments (Blundell et al., 2016).

Recent AI research attempts to overcome these learning limitations of DRL networks by develop-
ing cognitive architectures that mirror the complementary learning systems in mammalian brains
(Chang et al., 2016; Hamrick et al., 2017), e.g., by using a factorization of a physical scene into
object-based representations and a neural network architecture capable of learning pairwise inter-
actions. This allows for quick adaptation to specific object properties, to novel changes in an en-
vironment, to dynamics of different environments, and it allows for knowledge transfer from one
environment to another (Chang et al., 2016; Kansky et al., 2017).
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Figure 1: We tested the cognitive architecture in the OpenAI-Gym Breakout and Pong environments

Figure 2: The block scheme of the proposed cognitive architecture with four functional modules.

2 FUNCTIONAL MODULES

Our approach reflects the modular structure of biological brains, which is assumed as pre-given and
shaped by evolution. But the individual modules are capable of learning through new experiences.
We tested the cognitive architecture in the OpenAI-Gym-Atari Breakout1 and Pong2 environments
(Fig. 1) (Brockman et al., 2016). The cognitive architecture uses object-based representations and
consists of a pipeline of functional modules (Fig. 2). Each module is allocated for a specific func-
tionality, but exact policies and input-output relationships are formed by reinforcement learning
and supervised learning algorithms. The ball and the paddle have similar dynamics in the Pong
and Breakout environments. Therefore, the cognitive architecture is capable of reusing learned de-
pendencies over these game environments. In the current architecture, the following modules are
applied:

Object Detection. For object detection, we use color and movement information (difference be-
tween sequential frames). A state vector comprises properties of an object at a given time instance
(position, velocity, object type, object size, and applied action). Further processing of the state
vectors occur in successive functional modules.

Trajectory Prediction. The input consists of a sequence of recently observed spatial two-
dimensional Euclidean coordinates of the ball. We use one-hot encoded vectors for the representa-
tion of these coordinates. The module learned to predict the intersection point of the ball with the
paddle line via supervised learning. In both games, the paddle line is the region where the paddle
and the ball are able to collide.

Actor Control. A state vector of the paddle comprises previous actions applied to the paddle, in
addition to the distance between the current position of the paddle and the target-position specified
by the Trajectory-Prediction module. We use tabular Q-learning for training. Instead of using the
game-score as a reward indicator, a context based, state-dependent reward value is provided by the
Reward-Context-Statistics module.

Reward Context Statistics. The module collects statistics on collision events between the ball and
the paddle objects and related reward events. Based on these data it provides a regression between
the distance value in the state vector and expected reward value.

1https://en.wikipedia.org/wiki/Breakout (video game)
2https://en.wikipedia.org/wiki/Pong
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Figure 3: We compared performance of the cognitive architecture (CA) against other baselines. The
Breakout baseline is taken from Fig. 4: LSTM, 0.95 in (Vezhnevets et al., 2017), and it requires
about 3.5*e7 steps to achieve the score of 100 points. The CA requires 7.5*e5 steps to achieve the
score of 100. The Pong baseline is yielded by running the script provided here (Karpathy, 2016),
and it requires about 2*e8 steps to achieve the score of 13. The CA requires 7*e5 steps to achieve
the score of 13.

3 EXPERIMENTS

Baselines. The results demonstrated an advantage in the convergence rate of our cognitive architec-
ture with respect to other baselines as explained in Fig. 3.

Transfer Learning. We examined how well the cognitive architecture can transfer existing knowl-
edge to a new game environment. We trained the cognitive architecture on one of the game en-
vironments and checked the performance in other game environments. Afterwards, the cognitive
architecture was immediately able to perform well in the novel environment without requiring ini-
tial training. Thus, another advantage of functional modules is reusability in different environments
without initial training. However, this presupposes similar objects’ dynamic between the different
game environments.

4 DISCUSSION

The convergence rate of the presented cognitive architecture with functional modules is considerably
faster than with a DQN pixel based approach. We assume that one factor contributing to the boosted
learning rate is the disentangled representation of objects’ features in the Object-Detection module
(Fig. 2). Another contributing factor is the hierarchical nature of the cognitive architecture.

Disentangling what a cognitive architecture can control in an interactive environment and finding
latent factors of variation in rewards are difficult tasks (Bengio et al., 2017). In the current imple-
mentation of the cognitive architecture, we specified priors for parsing a scene into an object-based
representation, as well as the set of provided functional modules. This leads to a much faster con-
vergence rate in comparison to other approaches, but shows limited generalization scopes compared
to pixel based end-to-end training. However, it appears likely that only a small set of useful func-
tional modules is required for successful inference in a variety of Atari environments. Therefore,
the presented approach with functional modules as priors inbuilt in the cognitive architecture has a
potential for further development into a more general cognitive architecture that can be transferred
to even more game scenarios.

A possible direction of further development of the cognitive architecture is the deictic approach
(Ballard et al., 1997). The approach proposes mechanisms of implicit referencing by pointing
movements to bind objects in the world to cognitive programs. Deictic computation provides a
mechanism for representing the essential features that link external sensory data with internal cog-
nitive programs and motor actions. This could be integrated as a further module that carries out
mechanisms of attention.
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