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ABSTRACT

Human vision is capable of focusing on subtle visual cues at high resolution by re-
lying on a foveal view coupled with an attention mechanism. Recently, there have
been several studies that proposed deep reinforcement learning based attention
models. However, these studies do not explicitly consider the design of a foveal
representation and its effect on an attention system is unclear. In this paper, we
investigate the effect of using a hierarchy of visual streams in training an efficient
attention model towards achieving a human-level sharp vision. We perform our
evaluation on a simulated human-robot interaction task where the agent attends to
faces that are looking at it. The experimental results show that the performance
of the system relies on factors such as the number of visual streams, their relative
field-of-view and we demonstrate that maintaining a hierarchy within the visual
streams is crucial to learn attention strategies.

1 INTRODUCTION

Humans perform tasks such as driving or engage in social interactions by paying attention to subtle
visual cues such as the intention of a pedestrian or facial expressions with very high acuity (1/120 de-
grees Fahle & Poggio (1981)). This is achieved by a foveal view, consisting of a hierarchy of visual
representations, coupled with an attention mechanism Pickrell (2003) as shown in Figure 1a. This
hierarchy plays a crucial role for effective attention mechanisms as the wider representations contain
low-resolution information of the environment which is used to guide the narrower representations
in a hierarchical manner towards the regions-of-interests (ROIs).

To reach all-around human-level sharpness a traditional camera has to capture images in the order
of 5× 108 pixels Fahle & Poggio (1981), which can’t be realized at the present time (and in the
foreseeable future). Due to such hardware limitations, existing systems perform poorly in real-
world environments Rajaram et al. (2016); Dodge & Karam (2016); Siam et al. (2017). To tackle this
problem, there have been early attempts to replicate human vision with hierarchical visual streams

(a) Human visual field (b) Robot visual field

Figure 1: Comparison between (a) Human visual field and (b) proposed Robotic visual field.
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for object recognition Bandera et al. (1996). These studies evaluated the performance in controlled
settings and relied on hand-crafted features. On the other hand, recent studies have proposed scalable
attention models and performed end-to-end training using deep reinforcement learning Mnih et al.
(2014). However, these studies do not explicitly discuss the design of a foveal view and the effect of
such hierarchy on the efficiency of a deep reinforcement learning based attention model is unclear.

In this study, we investigate the effect of using a hierarchy of visual streams in training a deep rein-
forcement learning based attention model. We perform the evaluation in two settings 1) a simulated
human-robot interaction task that relies on the detection of local features (eyes) so that the agent
can learn to attend to faces that are looking at it as shown in Figure 1b, 2) classification of hand-
written digits similar to the task setting in Mnih et al. (2014). We explore several factors such as the
number of streams, relative angle of views and resolutions. The experimental results demonstrate
that hierarchical visual streams are crucial to learning control strategies with subtle visual cues. Our
long-term goal is to use such a hierarchy in realizing a human-level sharp vision that can be used in
real-world applications such as human-robot interaction (HRI) where the agent can attend to subtle
visual cues (Figure 3).

2 METHODS

To reach our goal of human-level sharp vision, we need to evaluate the importance of a foveal view
in an attention model. In this study, we investigate three factors that could affect the performance
for hierarchical attention: 1) field of view (FOV) for an image stream, 2) hierarchy between image
streams and 3) number of image streams. We designed 8 representations to evaluate these factors
as shown in Figure 2. For experiment 1, we consider a single camera with different FOV. For
experiment 2, we consider two cameras with different combinations of FOV and experiment 3 has
an increasing number of cameras. As a baseline, we also consider a fully-observable setting where
the environment state is provided to the network.

Human-robot interaction is a challenging task that requires the agent to detect subtle visual cues such
as eye gaze. We designed a simulated HRI task as shown in Figure 1b to perform our evaluation. The
environment has nine toy 3D-faces on a 3x3 unit grid. The agent consists of a set of cameras where
each camera captures an image stream at a different FOV. In each episode, a randomly selected face
will look toward the agent while the other faces will look in random directions. The task for the
agent is to locate the face that is looking at it. At each time step, the agent can rotate the cameras
by one degree in any direction. The reward function includes two components: at each time step the
agent receive a punishment of -0.1 and a terminal reward of +1 if it can locate the correct face. Each
episode has maximum steps of 50.

To train the attention model, we use Proximal Policy Optimization (PPO) Schulman et al. (2017)
which is an efficient policy search algorithm capable of handling high-dimensional observations.
The policy function is represented by a DNN as shown in Figure 4. The input to the network includes
both the environment state and observations. The state representation is given by st ∈ R2nc with nc
as the number of cameras and the state for each camera as its current orientation along two axes of
rotation. Each camera also provides an observation in the form of an RGB image o(ci)t ∈ R64×64×3.
There are two outputs generated by the network which includes the policy and a scalar state value
estimate. The policy output is a softmax probability distribution πθ(at|st) ∈ R9 where the actions
include the motion of the cameras along one of the eight cardinal directions and no action.

To further validate the effect of a hierarchical representation, we consider a hand-written digit classi-
fication task using the recurrent attention model proposed by Mnih et al. Mnih et al. (2014). For this
classification task, the agent would need to summarize the whole image efficiently rather than focus
on sharp features required in the HRI task. The size of an ROI used with the attention model was
varied based on the representations shown in Figure 2. The mapping from FOV to image windows
sizes was computed by relying on coordinate transformations w.r.t a fixed viewpoint.

3 RESULTS AND DISCUSSION

In this section, we present our evaluation on two task settings. For each task setting, we trained
an agent with each of the foveal representations shown in Figure 2 until convergence. To ensure
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generalizability, we repeated the experiments with three different seeds and the learning curves
shown in Figure 2 are the average over these runs. The performance of all the experiments are
summarized in Table 1. The values were computed by the average score over the last 100 episodes.
It can be seen that there are large variations in performance depending on the foveal representation
used and it is a crucial hyperparameter for an attention model.

From Figure 2a, we show that the camera with FOV of 30◦ is the best representation for this game
as a single observation, while cameras with other FOV (10◦, 60◦) fails. This indicates that with
a single observation, the FOV can greatly affect performance. From Figure 2b experiments 5,6
have low performance as the combination of two observations have large variations in FOV and
the wider camera is unable to guide the narrower camera. On the other hand, experiment 7 has
the best performance as both cameras are able to work together efficiently which indicates forming
a hierarchy is another crucial aspect. Finally from Figure 2c, we can notice that increasing the
number of cameras has increasing performance as they capture information from the environment at
an increasing number of resolutions hierarchy.

We observe similar performance with the image classification task as shown in Table 1 with ex-
periment 8 having the best performance in both cases. However, there were slight variations in
comparison to the HRI task such as experiment 4 being better than experiment 3. The reason for
such variations could be that the agent needs to focus on global images features and works better
with wider FOV in general, similar observation can be made from experiment 6 and 7.

Figure 2: Top: Foveal representations used for evaluation. Bottom: Comparison of episode length
for different experiments.

Table 1: Cumulative Reward for HRI Game and Digit Classification

Experiments 1 2 3 4 5 6 7 8

HRI Game (PPO-Attention) 0.204 -0.73 -0.47 -0.60 -0.59 -0.25 -0.16 0.04
MNIST (RAM) - 0.680 0.900 0.935 0.905 0.950 0.865 0.970

4 CONCLUSION

Sharp vision is crucial to achieve proficiency in many real-world applications. Recently, deep learn-
ing based attention models have shown promising results towards this direction. However, they do
not scale to achieve human-level sharpness. In this study, we investigate the effect of a hierarchical
representation in training an attention model. The experimental results demonstrate several factors
that need to be considered for designing an efficient attention model. Our future work is to rely on
such insights to achieve a human-level sharp vision for real-world applications. We are also work-
ing on a hardware implementation of such hierarchical representation on a mobile robot (Figure 3)
suitable for applications such as human-robot interaction.
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APPENDIX A ROBOT, SIMULATOR AND THE NETWORK

Figure 3: Robot and simulator setups, we used two cameras (with wide and focused lenses), and
generated four hierarchical streams as input for the network, the FOV of each stream is been selected
to help in HRI task. where the widest stream with 120◦ can locate the person to attend to, the stream
with 30◦ can locate parts of the human body such as a face, the stream with 10◦ can direct the
sharpest stream to the region of interests for inference ROI.

Figure 4: Neural Network graph, all network streams are concatenated on the last fully connected
layer before the values and actions layers, this type if concatenation is been studied in Karpathy
et al. (2014).
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