
Under review as a conference paper at ICLR 2020

SEARCHING TO EXPLOIT MEMORIZATION EFFECT IN
LEARNING FROM NOISY LABELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sample-selection approaches, which attempt to pick up clean instances from the
noisy training data set, have become one promising direction to robust learning
from noisy labels. These methods all build on the memorization effect, which
means deep networks learn easy patterns first and then gradually over-fit the train-
ing data set. In this paper, we show how to properly select instances so that the
training process can benefit the most from the memorization effect is a hard prob-
lem. Specifically, memorization can heavily depend on many factors, e.g., data set
and network architecture. Nonetheless, there still exists general patterns of how
memorization can occur. These facts motivate us to exploit memorization by au-
tomated machine learning (AutoML) techniques. First, we design an expressive
but compact search space based on observed general patterns. Then, we propose
to use the natural gradient-based search algorithm to efficiently search through
space. Finally, extensive experiments on both synthetic data sets and benchmark
data sets demonstrate that the proposed method can not only be much efficient
than existing AutoML algorithms but can also achieve much better performance
than the state-of-the-art approaches for learning from noisy labels.

1 INTRODUCTION

Learning with deep neural networks has enjoyed huge empirical success in recent years across a
wide variety of tasks, from image processing to speech recognition, and from language modeling
to recommender system (Goodfellow et al., 2016). However, their success highly counts on the
availability of well-annotated and big data, which is barely available for real-world applications.
Instead, what we are facing with in practice are large data sets which are collected from crowd-
sourcing platforms or crawled from the Internet, thus containing many noisy labels (Li et al., 2017b;
Patrini et al., 2017). Besides, due to the vast learning capacity of deep networks, they will eventually
over-fit on these noisy labels, leading to poor predicting performance, which can be worse than that
obtained from simple models (Zhang et al., 2016; Arpit et al., 2017).

To reduce negative effects from noisy labels, many methods have been proposed (Sukhbaatar et al.,
2015; Reed et al., 2015; Patrini et al., 2017; Ghosh et al., 2017; Malach & Shalev-Shwartz, 2017) .
Recently, a promising direction is training networks only on selected instances that are more likely
to be clean (Jiang et al., 2018; Han et al., 2018b; Ma et al., 2018; Yu et al., 2019; Wang et al., 2019).
Intuitively, as the training data becomes less noisy, better performance can be obtained. Among
those works, the representative methods are MentorNet (Jiang et al., 2018) and Co-teaching (Han
et al., 2018b; Yu et al., 2019), they take small-loss samples in each mini-batch as clean instances.
Specifically, MentorNet pre-trains an extra network, and then uses the extra network for selecting
clean instances to guide the training. When the clean validation data is not available, MentorNet
has to use a predefined curriculum (Bengio et al., 2009). Co-teaching is an improvement over
MentorNet, it simultaneously maintains two networks which have identical architectures during the
training process. And in each mini-batch of data, each network is updated using the other network’s
small-loss instances.

To the success of these sample-selection methods, the memorization effect of deep networks (Zhang
et al., 2016; Arpit et al., 2017) is the crux. Memorization happens widely in various architectures of
deep network, e.g., multilayer perceptron (MLP) and convolutional neural network (CNN). Specif-
ically, it means that deep networks tend to learn easy and correct patterns first and then over-fit on

1

Under review as a conference paper at ICLR 2020

(possibly noisy) training data set (see Fig.1(a)-(b)). Thus, when learning with noisy labels, while the
validation loss will first increase and then significantly decrease, the training loss will continuously
get smaller with more training epochs.

Due to such effect, sample-selection methods can learn correct patterns at early stage and then use
the obtained discriminative ability to filter out corrupted instances in subsequent training epochs
(Jiang et al., 2018; Han et al., 2018b; Chen et al., 2019). While the memorization effect is critical
to the success of sample-selection methods, however, how to properly exploit it is not addressed
in the literature. And trivial attempts can easily lead to even worse performance than standard
deep networks (Han et al., 2018b). Some recent endeavors seek to evade from this problems by
integrating with other auxiliary information, e.g., a small clean subset is used in (Ren et al., 2018),
and knowledge graphs are utilized in (Li et al., 2017b).

In this paper, motivated by the success of automated machine learning (AutoML) on designing
data-dependent models (Hutter et al., 2018), and the fact that memorization heavily depends on
many factors (Zhang et al., 2016; Arpit et al., 2017), we propose to exploit memorization effects
automatically using AutoML techniques. Contributions are summarized as follows:

• First, to have an in-depth understanding of why it is difficult to tune sample-selection methods
with good performance. We examine behaviors of memorization effect from multiple perspec-
tives. We find that, while there exist general patterns in how memorization occurs with the train-
ing process (see Fig.1(a)-(b)), it is hard to quantize to which extend such effect can happen (see
Fig.1(b)-(f)). Especially, memorization can be affected by many factors, e.g., data sets, network
architectures, and the choice of the optimizers. It is exactly such complex dependency make the
design of proper sample-selection rules a hard problem, which motivates us to solve the problem
by AutoML techniques.

• To make good use of AutoML techniques, we then derive an expressive search space for exploiting
memorization, which is from the above observations, i.e., the curvature of how many instances
need to be sampled during iterating should be similar with the inverse of the learning curve on
the validation set. Such a space is not too huge since it has only a few variables, thus allows
subsequent algorithms converging fast to promising candidates.

• Then, to design an efficient algorithm, we show the failure of gradient-based methods and the
inefficiency of derivative-free methods. These motivate us to take a probabilistic view of the
search problem and adopt natural gradient descent (Amari, 1998; Pascanu & Bengio, 2013) for
optimization. The designed algorithm can effectively address above problems and is significantly
faster than other popular search algorithms.

• Finally, we conduct extensive experiments on both synthetic, benchmark, and real data sets, under
various settings using different network architectures. These experiments demonstrate that the
proposed method can not only be much more efficient than existing AutoML algorithms, but
also can achieve much better performance than the state-of-the-art sample-selection approaches
designed by humans. Besides, we further visualize and explain the searched functions, which can
also help design better rules to control memorization effects in the future.

2 RELATED WORK

2.1 LEARNING FROM NOISY LABELS

The mainstream research focuses on class-conditional noise (CCN) (Angluin & Laird, 1988), where
the label corruption is independent of features. Generally, recent methods for handling CCN model
can be classified into three categories. The first one is based on the estimation of transition matrix,
which tries to capture how correct labels flip into wrong ones (Sukhbaatar et al., 2015; Reed et al.,
2015; Patrini et al., 2017; Ghosh et al., 2017). These methods then use the estimated matrix to correct
gradients or loss during training. However, they are fragile to heavy noise and unable to handle many
classes (Han et al., 2018b). The second type is the regularization approach (Miyato et al., 2016;
Laine & Aila, 2017; Tarvainen & Valpola, 2017). Although regularization approach can achieve a
satisfying performance, it is still an incomplete approach since (Jiang et al., 2018) shows that it can
only delay the overfitting progress rather than avoid it, i.e. given enough training time, it can still fit
the noisy data completely. Thus, it requires much domain knowledge to determine the appropriate

2

Under review as a conference paper at ICLR 2020

number of training epochs in order to prevent overfitting. The last one is sample-selection approach,
which attempts to reduce negative effects from noisy labels by selecting clean instances during
training. The recent state-of-the-art method is also built on sample-selection approach (Jiang et al.,
2018; Han et al., 2018b; Malach & Shalev-Shwartz, 2017; Yu et al., 2019).

Active learning (Settles, 1994) is a closely related method, which iteratively selects unlabeled sam-
ples with high high-confident predictions into the training data set. Thus, to do active learning, we
need to obtain a classifier of which the performance is good enough. As a result, active learning is
not applicable for directly learning from noisy labels here.

A promising criteria to select “clean instances” is to pick up instances that has relatively small losses
in each mini-batch (Jiang et al., 2018; Han et al., 2018b). The fundamental property behind these
methods is the memorization effect of deep networks (Zhang et al., 2016; Arpit et al., 2017), which
means deep networks can learn simple patterns first and then start to over-fit. Such effect helps
classifiers set up discriminate ability in the early stage, then make clean instances more likely to
have smaller loss that those noisy ones. The general framework of sample-selection approach is
in Alg.1. Specifically, some small-loss instances D̄f are selected from the mini-batch D̄ in step 5.
These “clean” instances are then used to update network parameters in step 6. The R(t) in step 8,
which controls how many instances to be kept in each epoch, is the most important hyper-parameter
as it explicitly exploits the memorization effect (Han et al., 2018b; Jiang et al., 2018; Yu et al., 2019).

Algorithm 1 Framework of the sample-selection approach (Jiang et al., 2018; Han et al., 2018b).
1: for t = 1, · · · , T do
2: shuffle training set D;
3: for n = 1, · · · , N do
4: draw a mini-batch D̄ from D;
5: select D̄f , i.e., R(t) small-loss instances from D̄ based on network’s predictions;
6: update the network’s parameter using gradient from D̄f ;
7: end for
8: exploit memorization effects using R(t) (estimation on percentage of clean instances);
9: end for

However, it is hard to exactly determine how much proportion of small-loss samples should be
selected in each epoch (Jiang et al., 2018; Ren et al., 2018). As will be discussed in Sec.3.1, due to
various practical usages issues, to which extend memorization effect can happen is hard to quantize.
Thus, performance obtained from existing solutions are far from desired, and we are motivated to
solve this issue by AutoML.

2.2 AUTOMATED MACHINE LEARNING (AUTOML)

Automated machine learning (AutoML) (Hutter et al., 2018) has recently exhibited its power in eas-
ing the usage of and designing better machine learning models. Basically, AutoML can be regarded
as a black-box optimization problem where we need to efficiently and effectively search for hyper-
parameters or designs for the underlying learning models evaluated by the validation set. Regarding
the success of AutoML, there are two important perspectives (Feurer et al., 2015; Zoph & Le, 2017;
Xie & Yuille, 2017; Bender et al., 2018):

• Search space: First, it needs to be general enough, which means it should cover existing models
as special cases. This also helps experts better understand limitations of existing models and thus
facilitate future researches. However, the space cannot be too general, otherwise searching in
such a space will be too expensive.

• Search algorithm: Optimization problems in AutoML are usually black-box. Unlike convex op-
timization, there is no universal and efficient optimization tools. Once the search space is deter-
mined, domain knowledge should also be explored in the design of search algorithm so that good
candidates in the space can be identified efficiently.

Search space is domain-specific and needs to specially designed for every AutoML problem. There
are two types of search algorithms popularly used. The first one is derivative-free optimization
methods, it is usually used for searching in a general search space, e.g., reinforcement learning

3

Under review as a conference paper at ICLR 2020

(Zoph & Le, 2017; Baker et al., 2017), genetic programming (Escalante et al., 2009; Xie & Yuille,
2017), and Bayes optimization (Feurer et al., 2015; Snoek et al., 2012). More recently, gradient-
based methods, which alternatively update parameters and hyper-parameters, have been developed
as more efficient replacements for derivative-free optimization methods on some AutoML problems,
e.g., neural network architecture search (Liu et al., 2019; Akimoto et al., 2019; Xie et al., 2018).

However, existing AutoML techniques cannot be directly used in exploiting memorization here.
First, we need to carefully define a domain-specific space. Besides, we will also show existing
algorithms are neither not applicable nor too slow. This motivates us to propose a new algorithm
based on natural gradient.

3 THE PROPOSED METHOD

Here, we first give a closer look at why it is difficult to exploit the memorization effect (Sec.3.1).
This also helps us identify key observations on how memorization can happen. This observation
subsequently enables us to design an expressive but compact search space (Sec.3.2), and motivates
us to use natural gradient method (Amari, 1998; Ollivier et al., 2017) that can generate gradients in
the parameterized space for efficient optimization (Sec.3.3).

3.1 DIFFICULTIES IN EXPLOITING MEMORIZATION

As in Sec.2.2, an important challenge in designing search spaces is to balance the size (or dimension)
and the expressive ability of the search space. An overly constrained search space may not contain
candidates that have a satisfying performance, whereas too large search spaces will be difficult to
effectively search. All these require us to have an in-depth understanding of the difficult in designing
of R(T), which is at step 8 of Alg.1 and is used to exploit the memorization effect. Thus, we are
motivated to look at factors which can affect the memorization of deep networks, and to seek patterns
from the resultant influences. Specifically, we examine memorization when data sets, architectures,
or optimizers are changed. Results are in Fig.1. From these figures, we can observe:

• Foot-stone of space design: There exists a general pattern among all cases, i.e., all models’ test
accuracy will first increase, then decrease.

(a) training accuracy. (b) testing accuracy. (c) different architectures.

(d) different optimizers. (e) different batch size (Adam). (f) different learning rate (Adam).

Figure 1: Memorization effects are shown in Fig.(a) and (b), where training accuracy continuously
increases while testing accuracy first increases and then significantly decreases due to noisy labels.
Fig.(c-f) show memorization not only heavily depends on data sets, and also many factors (details
of experiment are in Appendix A.1).

This general pattern is consistent with that in the literature (Zhang et al., 2016; Arpit et al., 2017;
Tanaka et al., 2018; Han et al., 2018b). It is also the key domain knowledge for designing an

4

Under review as a conference paper at ICLR 2020

expressive and compact search space, which makes the subsequent search possible. However, the
more important observation is:

• Need of AutoML: Curvature can be significantly affected by these factors. When the peak will
appear (i.e., stop learning from simple patterns and start to over-fit), and to which extend the
performance will drop from peak (i.e., over-fit on noisy labels) are all hard to quantize.

This observation shows a great variety in appearances of the memorization effect, which further
poses a significant need for automated exploiting of such effect. Besides, it is hard to know in
advance what learning curve will exactly look like in advance and thus impossible to manually
design before learning is performed.

3.2 SEARCH SPACE

Recall that in step 8 of Alg.1, R(t) controls how many instances are kept in each mini-batch, and we
want to exploit the memorization effect through the variation of R(t). Based on the first empirical
observation in Sec.3.1, our design of R(t) first should satisfy:

• Curvature: R(t) should be similar with the inverse of the learning curve. In other words, R(t)
should first drop, then (possibly) rise.

The reason behind this constraint is as follows: Since the learning curve represents the model’s
accuracy, when it rises, we should drop more large-loss samples as the large loss is more likely the
result of noisy labels than model’s misclassification. And when the learning curve falls, we should
drop less to help the model learn more.

• Range: R(t) ∈ [0, 1] for t ∈ {1, . . . , T} with R(1) = 1.

Since R(t) denotes the proportion of selected instances, it is naturally in [0, 1]. Besides, at the
beginning, dropping small-loss samples will be same as dropping samples randomly, and we need
to pass sufficient number of instances such that the model can learn from patterns.

functions definition
decreasing power (pow-d) 1/(1+bt)a

exponential (exp-d) e−bt
a

logarithmic (log-d) log(b)/log(at+b)

increasing power (pow-i) b(t/T)a

logarithmic (log-i) b log(1+ta)
log(1+Ta)

Figure 2: Construction elements for fi (cf. left table) and some approximated curves as examples
(cf. right figure). Target is an example of the ground-truth R(t) to approximate.

As R(t) itself can be seen as a function which takes t as input and outputs a scalar, we can use some
simple fi as basis functions to approximate the complicateR(t). We list some simple monotonously
decreasing or increasing functions in Fig.2 and express R(t) as a linear combination of them:

R(t) =
∑k

i=1
fi(t;αi), s.t. α ∈ A, (1)

where the αi is the hyper-parameters controlling each term (for example a and b in Fig.2).

Let the clean validation set be Gval, F be Alg.1 with network parameterw and sampling ruleα (R(t)
is parameterized by Eqa.(1)). M(w,Gval) measures the validation performance with the model
parameter w. Thus, memorization effect can be automatically exploited by solving the following
problem

α∗ = arg max
α∈A
M (w∗(α),Gval) , s.t. w∗(α) = arg min

w
F (w;α). (2)

Then, the optimal curvature is derived from R(t) =
∑k
i=1 fi(t;α

∗
i).

5

Under review as a conference paper at ICLR 2020

Remark 3.1. In Co-teaching algorithm (Han et al., 2018b), R(t) is determined as follows

R(t) = 1− τ ·min ((t/tk)
c, 1) , (3)

which contains three hyper-parameters: τ , c and tk. Thus, we can formulate a search space as:
τ ∈ (0, 1), c ∈ (0,+∞) and tk ∈ {1, · · · , T}. The expressivity of such R(t) is not enough as
Eqa.(1) here (since Eqa.(3) is covered as a special case).

3.3 SEARCH ALGORITHM

Here, we first discuss problems of using gradient-based methods here (Sec.3.3.1). These problems
motivate us design an efficient search algorithm based on natural gradient algorithm (Sec.3.3.2).

3.3.1 ISSUES OF EXISTING ALGORITHMS

Gradient-based methods need the chain rule to obtain the gradient w.r.t hyper-parameters from the
gradient w.r.t network weights, i.e., ∇αM = ∂M/∂w · ∂w/∂α. This condition does not hold for our
problem since our hyper-parameters control how many samples will be used to update the weights.
Thus, it is hard to compute∇αM here. Besides, the learned parametersw cannot be shared among
different α. In previous methods, hyper-parameters are not coupled with the training process, e.g.,
network architectures (Liu et al., 2019; Akimoto et al., 2019) and regularization (Luketina et al.,
2016). However, R(t) here will heavily influence the training process, which is also shown in our
Fig.1. Thus, gradient-based methods cannot be applied here.

3.3.2 PROPOSED ALGORITHM

The analysis above demonstrates that only derivative-free methods are applicable to our problem,
which can be slow. Here, we discover that natural gradient (NG) (Amari, 1998; Pascanu & Bengio,
2013; Ollivier et al., 2017), can be used. The most interesting point here is that NG can still benefit
from gradient descent, but without the computation of ∂M/∂α or sharing of w.

The basic idea of NG is summarized as follows: instead of directly optimizing w.r.t α, we consider
a random distribution pθ(α) over α parametrized by θ, and maximize the expected value of our
validation performanceM w.r.t θ, i.e.,

max
θ
J (θ) ≡

∫
α∈A
M (w∗(α),Gval) pθ(α) dα, s.t. w∗(α) = arg min

w
F (w;α). (4)

To optimize J (θ) w.r.t θ, NG updates θ by

θm+1 = θm + ρH−1(θm)∇θJ (θm), (5)

where ρ is the step-size,H(θm) is the Fisher information matrix at θm, and

∇θJ (θ) =

∫
α∈A
M (w∗(α),Gval)∇θpθ(α)dα = Epθ(α) [M (w∗(α),Gval)∇θ log pθ(α)] . (6)

By sampling candidate R(t)s from the given distribution pθm in each iteration, Eqa.(6) just needs
validation’s performance (without computation of ∂M/∂α). Besides, such gradient has proved to give
the steepest ascend direction in the probabilistic space (Theorem 1 in (Angluin & Laird, 1988)).

The last question is how to choose pθ, which may significantly influence the algorithm’s con-
vergence behavior. Fortunately, NG exhibits strong robustness against different choices over pθ.
The reason is that Fisher matrix, which encodes the second order approximation to the Kullback-
Leibler divergence, can accurately capture curvatures introduced by various pθ. Thus, NG descent
is parameterization-invariant, has good generalization ability, and moreover can be regarded as a
second-order method in the space of θ (Ollivier et al., 2017). The proposed search algorithm is in
Alg.2 (details are in Appendix A.2). As will be shown in experiments, all these properties make NG
an ideal search algorithm here, and can be faster than other popular AutoML approaches.

4 EXPERIMENTS

We implement all our experiments using PyTorch 0.4.1 on a GTX 1080 Ti GPU.

6

Under review as a conference paper at ICLR 2020

Algorithm 2 Proposed search algorithm (based on natural gradient).
1: while not converged do
2: for n = 1, · · · , N do
3: draw an α from the current distribution pθ(α); // approximate gradients
4: run Alg.1 using R(t) described by Eqa.(1); // no weight-sharing
5: end for
6: use samples in step 2-5 to compute Fisher information matrix;
7: update θ by Eqa.(5) and (6);
8: end while

4.1 EXPERIMENTS ON SYNTHETIC DATA

In this section, we demonstrate the superiority of the proposed search space and search algorithm
on the synthetic data. The ground-truth R(t) is shown in Fig.3(a), which is an example curvature
satisfying two requirements in Sec.3.2.

4.1.1 SEARCH SPACE COMPARISON

The goal here is to approximate R(t) in Fig.3(a). Let the estimated function be R̄(t) where t =

1, · · · , 200. The target is to minimize RMSE, i.e., f(R̄) = [1/200
∑200
t=1(R(t) − R̄(t))2]1/2. Three

different search spaces are compared: 1). Full space: R̄1(t) = {e1, · · · , e200}, i.e., there is no
constraint in the space, and estimation for R(t) at each time stamp is performed independently;
2). Co-teaching’s space in Eqa.(3), i.e., R2(t) = 1 − τ min((t/tk)c, 1), and {τ, c, tk} needs to
be estimated; and 3). The proposed space in Eqa.(1), which encodes our observations in Sec.3.1.
Random search (Bergstra & Bengio, 2012) is performed in all three spaces.

(a) Grount-truth R(t).

(b) Search space. (c) Search algorithm.

Figure 3: Comparison of the search space (cf. the middle figure) and search algorithm (cf. the right
figure) on the synthetic data.

Results are in Fig.3(b). We can see that no constraints on the search space will lead to disastrous per-
formance and extremely slow convergence rate. And compare our space with previous Co-teaching’s
space, we can see that our space can approximate the target better due to its larger degree of freedom.

4.1.2 SEARCH ALGORITHM COMPARISON

We first test our proposed method’s efficiency over other hyper-parameter optimization (HPO) algo-
rithms on a synthetic problem as follows: Given a pre-defined R(t) as target, we try to search for a
R(t) that has the lowest squared loss to the target. We compare our proposed method with random
search (Bergstra & Bengio, 2012) and Bayesian optimization (Kandasamy et al., 2019), which are
two popular methods for hyper-parameter optimization. Results are in Fig.3(c). The results demon-
strate that our proposed natural gradient approach has the fastest convergence rate. And it can find
the best R(t) with the least RMSE to the target.

7

Under review as a conference paper at ICLR 2020

4.2 EXPERIMENTS ON BENCHMARK DATA SETS

We verify the efficiency of our approach on three benchmark data sets, i.e., MNIST, CIFAR-10 and
CIFAR-100 (details are in Appendix A.3). These data sets are popularly used for the evaluation of
learning with noisy labels in the literature (Zhang et al., 2016; Arpit et al., 2017; Jiang et al., 2018;
Han et al., 2018b). Following (Patrini et al., 2017; Han et al., 2018b; Chen et al., 2019), we corrupt
these data sets manually by two types of noise. (1) Symmetry flipping (with 20% and 50% noise
level) and (2) Pair flipping (with 45% noise level).

All these noise patterns correspond to real-world scenarios. For example, on the macro-level, class
cat flipping to the class dog makes sense, while class dog flipping to class cat also makes sense. Such
flipping yields a noise pattern called symmetric-flip (Patrini et al., 2017). On the micro-level, for
dogs, class Norfolk terrier flipping to class Norwich terrier makes sense, while class Norfolk terrier
flipping to class Australian terrier not. This flipping yields a noise pattern called pair-flip (Han et al.,
2018a), which depicts the fine-grained classification case.

We set the network architecture as the same in (Yu et al., 2019) (Appendix A.4). To measure the
performance, same as (Patrini et al., 2017; Han et al., 2018b; Chen et al., 2019), we use the test
accuracy, i.e., test accuracy = (#of correct predictions)/(#of test dataset). Specifically, the
full learning curve, i.e., testing accuracy v.s. epochs, is reported. Ideally, if a method is robust to
noisy labels, its performance will increase with more training epochs. Thus, if the learning curve of
one method quick falls down after reaching the maximum, then it means the method is not robust
intrinsically (Zhang et al., 2016; Arpit et al., 2017).

(a) Symmetric 20%. (b) Symmetric 50%. (c) Pair 45%.

Figure 4: Comparison on testing accuracy between the proposed and other human-designed meth-
ods. Top to bottom: MNIST, CIFAR-10 and CIFAR-100. Best testing accuracy of each method is
reported in Appendix B.1.

4.2.1 COMPARISON ON LEARNING PERFORMANCE

To show better accuracy can be achieved by automatically exploiting the memorization effect, we
compared the proposed method with 1). MentorNet (Jiang et al., 2018); 2). Co-teaching (Han
et al., 2018b); 3). Co-teaching+ (Yu et al., 2019) (enhancing Co-teaching by disagreements on

8

Under review as a conference paper at ICLR 2020

predictions); 4). Decoupling (Malach & Shalev-Shwartz, 2017); 5). F-correction (Patrini et al.,
2017); 6). As a simple baseline, we also compare with the standard deep network that directly trains
on noisy datasets (abbreviated as Standard). As an example usage, the proposed method is combined
with Co-teaching, i.e., Co-teaching is run with searchR(t). Fig.4 shows the comparison with various
human-designed methods. We can see that the proposed method significantly outperforms existing
methods by a large margin, especially on the more noisy cases (i.e., symmetric-50% and pair-45%).

Besides, the proposed method not only beats Co-teaching due to better exploiting of the memoriza-
tion effect, but also wins Co-teaching+, which further filter small-loss instances in Co-teaching by
checking disagreements on predictions of labels. These demonstrates the importance and benefits of
searching proper R(t).

4.2.2 CASE STUDY ON SAMPLING RATE

To understand why the proposed method can obtain much higher testing accuracy, we plot the
searched R(t) in Fig.5. We can see that all methods finally drop more large-loss instances than
actual noise level. The reason is very intuitive, a large-loss instance usually also has larger gradient,
and it can have much more influences than several clean small-loss instances if its label is wrong.
Thus, we may want to drop more samples eventually. However, this is not an easy task, as in Tab.8 of
(Han et al., 2018b), simply making τ larger sometimes leads to decrease in testing accuracy; and in
the third row of Fig.5, we may also need to keep more samples during the training. A more evolved
examination on precision of clean labels are in App.B.3.

(a) Symmetric 20%. (b) Symmetric 50%. (c) Pair 45%.

Figure 5: Comparison on R(t) between the proposed (automatically searched from the data) and
Co-teaching (note that Co-teaching+ uses the same R(t) as Co-teaching). Top to bottom: MNIST,
CIFAR-10 and CIFAR-100.

4.2.3 COMPARISON WITH HPO METHODS

Finally, in this section, we compare the proposed natural gradient (NG) algorithm with 1). random
search (Bergstra & Bengio, 2012) and 2). Hyperband (Li et al., 2017a). Note that Bayesian op-
timization is slower than Hyperband, thus not compared (Hyperband cannot be used in Sec.4.1.2

9

Under review as a conference paper at ICLR 2020

due to no inner loops). Besides, reinforcement learning (RL) (Zoph & Le, 2017) is not compared
as the searching problem is not a multi-step one. Genetic programming (Xie & Yuille, 2017) is not
considered neither, as the search space is a continuous one. Fig.6 compares the proposed method
with random search and Hyperband. From the figure, we can see that natural gradient converges
faster than other HPO methods in this problem. Our proposed method can also find better R(t)s
under different data sets and noise settings.

(a) Symmetric 20%. (b) Symmetric 50%. (c) Pair 45%.
Figure 6: Comparison between the proposed search and other HPO algorithm. CIFAR-10 is used.

4.3 EXPERIMENTS ON REAL FACE DATA SET

Finally, we test the validity of our approach on real data sets. We conduct experiments on the applica-
tion of deep face recognition (Parkhi et al., 2015). Following (Wang et al., 2019), we use VggFace2-
R (Cao et al., 2018) data set, which is a noisy data set collected from Google image search, for
training, then tune hyper-parameters and report testing accuracy on four small and clean image data
sets, i.e., CALFW (Zheng et al., 2017), CPLFW (Zheng & Deng, 2018), AgeDB (Moschoglou et al.,
2017), and CFP (Sengupta et al., 2016) (details are in Appendix A.3).

We compare the performance of our proposed method with those methods used in Sec.4.2.1 and
Co-mining (Wang et al., 2019). Testing accuracy is reported in Tab.1. We can see that, our pro-
posed method consistently achieves the best performance. Thus, our method is not only useful with
synthetic noise but also work well on real applications.

Table 1: Experiments on deep face recognition with real data sets. All models are trained with noisy
VggFace2-R data set, and evaluate on the four clean test data sets. Except the proposed method, all
performance are copied from (Wang et al., 2019); F-correction is not reported as its performance is
not available in (Wang et al., 2019).

CALFW CPLFW AgeDB CFP average
Standard 90.11 86.30 92.81 95.50 91.18

Decoupling 90.23 86.14 93.90 95.85 91.53
MentorNet 90.14 85.41 92.70 95.20 90.86

Co-teaching 89.90 85.05 92.05 95.05 90.62
Co-teaching+ 89.43 85.23 92.50 95.41 90.64

Co-Mining 91.06 87.31 94.05 95.87 92.07
Proposed 92.04 89.43 95.22 96.16 93.20

5 CONCLUSION

In this paper, motivated by the main difficulty that to what extent the memorization effect of deep
networks can happen, we propose to exploit memorization by automated machine learning (AutoM-
L) techniques. This is done by first designing an expressive but compact search space, which is based
on observed general patterns for memorization, and designing a natural gradient-based search algo-
rithm, which overcomes the problem of non-differential and failure of parameter-sharing. Extensive
experiments on both synthetic data sets and benchmark data sets demonstrate that the proposed
method can not only be much efficient than existing AutoML algorithms, but also achieve much
better performance than the state-of-the-art sample-selection approach.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Y. Akimoto, S. Shirakawa, N. Yoshinari, K. Uchida, S. Saito, and K. Nishida. Adaptive stochastic
natural gradient method for one-shot neural architecture search. In ICML, pp. 171–180, 2019.

S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, 1998.

D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2(4):343–370, 1988.

D. Arpit, S. Jastrzkbski, N. Ballas, D. Krueger, E. Bengio, M. Kanwal, T. Maharaj, A. Fischer,
A. Courville, and Y. Bengio. A closer look at memorization in deep networks. In ICML, pp.
233–242. JMLR. org, 2017.

B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures using rein-
forcement learning. In ICLR, 2017.

G. Bender, P.-J. Kinderm, B. Zoph, V. Vasudevan, and Q. Le. Understanding and simplifying one-
shot architecture search. In ICML, pp. 549–558, 2018.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In ICML, pp. 41–48.
ACM, 2009.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. JMLR, 13(Feb):281–
305, 2012.

Q. Cao, L. Shen, W. Xie, O. M Parkhi, and A. Zisserman. Vggface2: A dataset for recognising faces
across pose and age. In FG, pp. 67–74. IEEE, 2018.

P. Chen, B. Liao, G. Chen, and S. Zhang. Understanding and utilizing deep neural networks trained
with noisy labels. In ICML, pp. 1062–1070, 2019.

J. Escalante, M. Montes, and Luis E. Sucar. Particle swarm model selection. JMLR, 10(Feb):405–
440, 2009.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and robust
automated machine learning. In NeurIPS, pp. 2962–2970, 2015.

A. Ghosh, H. Kumar, and P. Sastry. Robust loss functions under label noise for deep neural networks.
In AAAI, pp. 1919–1925, 2017.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

B. Han, J. Yao, G. Niu, M. Zhou, I. Tsang, Y. Zhang, and M. Sugiyama. Masking: A new perspective
of noisy supervision. In NeurIPS, pp. 5836–5846, 2018a.

B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama. Co-teaching: Robust
training of deep neural networks with extremely noisy labels. In NeurIPS, pp. 8527–8537, 2018b.

F. Hutter, L. Kotthoff, and J. Vanschoren (eds.). Automated Machine Learning: Methods, Systems,
Challenges. Springer, 2018. In press, available at http://automl.org/book.

L. Jiang, Z. Zhou, T. Leung, J. Li, and F.-F. Li. Mentornet: Learning data-driven curriculum for very
deep neural networks on corrupted labels. In ICML, pp. 2309–2318, 2018.

K. Kandasamy, K. Vysyaraju, W. Neiswanger, B. Paria, C. Collins, J. Schneider, B. Poczos, and
E. Xing. Tuning hyperparameters without grad students: Scalable and robust bayesian optimisa-
tion with Dragonfly. Technical report, arXiv preprint arXiv:1903.06694, 2019.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

S. Laine and T. Aila. Temporal ensembling for semi-supervised learning. In ICLR, 2017.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: a novel bandit-
based approach to hyperparameter optimization. JMLR, 18(1):6765–6816, 2017a.

11

Under review as a conference paper at ICLR 2020

Y. Li, J. Yang, Y. Song, L. Cao, J. Luo, and L.-J. Li. Learning from noisy labels with distillation. In
ICCV, pp. 1910–1918, 2017b.

H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In ICLR, 2019.

J. Luketina, M. Berglund, K. Greff, and T. Raiko. Scalable gradient-based tuning of continuous
regularization hyperparameters. In ICML, pp. 2952–2960, 2016.

X. Ma, Y. Wang, M. Houle, S. Zhou, S. Erfani, S.-T. Xia, S. Wijewickrema, and J. Bailey.
Dimensionality-driven learning with noisy labels. In ICML, pp. 3361–3370, 2018.

E. Malach and S. Shalev-Shwartz. Decoupling” when to update” from” how to update”. In NIPS,
pp. 960–970, 2017.

T. Miyato, S. Maeda, M. Koyama, and S. Ishii. Virtual adversarial training: A regularization method
for supervised and semi-supervised learning. In ICLR, 2016.

S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kotsia, and S. Zafeiriou. Agedb: the first
manually collected, in-the-wild age database. In CVPRW, 2017.

Y. Ollivier, L. Arnold, A. Auger, and N. Hansen. Information-geometric optimization algorithms:
A unifying picture via invariance principles. JMLR, 18(1):564–628, 2017.

O. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. Technical report, University of
Oxford, 2015.

R. Pascanu and Y. Bengio. Revisiting natural gradient for deep networks. Technical report, arXiv
preprint arXiv:1301.3584, 2013.

G. Patrini, A. Rozza, A. Menon, R. Nock, and L. Qu. Making deep neural networks robust to label
noise: a loss correction approach. In CVPR, pp. 2233–2241, 2017.

S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabinovich. Training deep neural
networks on noisy labels with bootstrapping. In ICLR Workshop, 2015.

M. Ren, W. Zeng, B. Yang, and R. Urtasun. Learning to reweight examples for robust deep learning.
In ICML, pp. 4331–4340, 2018.

S. Sengupta, J. C. Chen, C. Castillo, V. M. Patel, R. Chellappa, and D. W. Jacobs. Frontal to profile
face verification in the wild. In WACV, 2016.

B. Settles. Active learning literature survey. Machine Learning, 15(2):201–221, 1994.

J. Snoek, H. Larochelle, and R. Adams. Practical Bayesian optimization of machine learning algo-
rithms. In NIPS, pp. 2951–2959, 2012.

S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, and R. Fergus. Training convolutional networks
with noisy labels. In ICLR Workshop, 2015.

D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa. Joint optimization framework for learning with
noisy labels. In CVPR, pp. 5552–5560, 2018.

A. Tarvainen and H. Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. In NIPS, 2017.

X. Wang, S. Wang, J. Wang, H. Shi, and T. Mei. Co-Mining: Deep face recognition with noisy
labels. In ICCV, pp. 9358–9367, 2019.

L. Xie and A. Yuille. Genetic CNN. In ICCV, pp. 1388–1397, 2017.

S. Xie, H. Zheng, C. Liu, and L. Lin. SNAS: stochastic neural architecture search. In ICLR, 2018.

X. Yu, B. Han, J. Yao, G. Niu, I. Tsang, and M. Sugiyama. How does disagreement help general-
ization against label corruption? In ICML, pp. 7164–7173, 2019.

12

Under review as a conference paper at ICLR 2020

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. ICLR, 2016.

T. Zheng and W. Deng. Cross-pose lfw: A database for studying crosspose face recognition in
unconstrained environments. Technical Report 18-01, Beijing University of Posts and Telecom-
munications, February 2018.

T. Zheng, W. Deng, and J. Hu. Cross-age lfw: A database for studying cross-age face recognition in
unconstrained environments. Technical report, arXiv preprint arXiv: 1708.08197, 2017.

B. Zoph and Q. Le. Neural architecture search with reinforcement learning. In ICLR, 2017.

13

Under review as a conference paper at ICLR 2020

A IMPLEMENTATION DETAILS

A.1 DETAILS FOR FIG.1

(a-b) We use the same MNIST/CIFAR-10/100 datasets and their details are in Appendix A.3.
The network model is model 1 and its details are given in Appendix A.4. The number of
training epochs is 200 and the batch size is set to 128. The initial learning rate for the Adam
optimizer is 0.001 and it is linearly decayed to zero from the 80th epoch to final.

(c) Details of each model is listed in Appendix A.4. Note that model 2 on CIFAR-10 has
the output dimension of 10 instead of 100. The number of training epochs, batch size,
optimizer and learning rate schedule follows (a) and (b).

(d) The learning rate schedule for Adam follows (a) and (b). The initial learning rate for
the SGD optimizer is 0.1, and decay to 0.01 and 0.001 from the 500th and 750th epoch,
respectively. And for the RMSProp optimizer, the learning rate is set constantly to 0.01. To
demonstrate the memorization effects for SGD optimizer, the number of training epochs is
1000 instead of 200. The model is model 1 and the batch size is 128.

(e) The model, number of training epochs, optimizer and learning rate schedule is the same as
(a) and (b). In a word, we only change the batch size.

(f) We only change the initial learning rate for the learning rate schedule. Also, to demonstrate
the memorization effects for small learning rate cases, the number of training epochs is
1000 instead of 200. And the model, batch size, optimizer all follow (a) and (b).

A.2 NATURAL GRADIENT

Since our search space for α is bounded, we use Beta distribution in natural gradients, i.e. pθ(λ) =∏k
i=1Beta(αi; θi). Each Beta distribution has two parameters x, y and the probability density

function (PDF) is given by

Beta(α;x, y) = Γ(x+y)/Γ(x)+Γ(y)αx−1(1− α)y−1,

where Γ(x) is the gamma function. The Fisher information matrix

H(θ) = Epθ(α)

[
∇θ log pθ(α)∇θ log pθ(α)T

]
,

is estimated by samples since no explicit formula is available. And the gradient in Fisher
∇θ log pθ(α) is different for different parameters x and y, as

∇x logBeta(α;x, y) = log(α) + ψ(x+ y)− ψ(x) and
∇y logBeta(α;x, y) = log(1− α) + ψ(x+ y)− ψ(y),

where ψ(x) denotes the digamma function.

For synthetic data, we run for 10 iterations and in each iteration, we sample 10 samples and evaluate
its performance. The learning rate for natural gradient is set to 80.

For benchmark and real noisy data sets, all search algorithms will run for 5 iterations in total. In
random search and natural gradient, we sample 10 samples for CIFAR-10 and 20 samples for other
four data sets to evaluate its performance in each iteration. The learning rate for natural gradient is
set to 20, 500, 80, 30 for MNIST, CIFAR-10, CIFAR-100 and VggFace2-R data set respectively.

To obtain a better estimation of the Fisher information matrix, in spite of those samples for evalua-
tion, we also sample another 10000 samples to compute the Fisher in each iteration.

A.3 DATA SETS

We obtain MNIST, CIFAR-10, CIFAR-100 from PyTorch’s torchvision package, and VggFace2-R,
CALFW, CPLFW, AgeDB, CFP from its original source. Some statistics about those datasets are
given below.

14

Under review as a conference paper at ICLR 2020

Table 2: Summary of data sets used in the experiments.
of train # of validation # of test # of class

MNIST 60,000 5,000 5,000 10
CIFAR-10 50,000 5,000 5,000 10

CIFAR-100 50,000 5,000 5,000 100
VggFace2-R 3.31M (Train only) (Train only) 9,131

CALFW (Validation & test only) 6,087 6,087 5,749
CPLFW (Validation & test only) 5,826 5,826 5,749
AgeDB (Validation & test only) 8,244 8,244 568

CFP (Validation & test only) 3,500 3,500 500

A.4 NETWORK STRUCTURE

For VggFace2-R, we use ResNet-50 as in (Wang et al., 2019). Adam optimizer (Kingma & Ba,
2014) (momentum=0.9) is used with an initial learning rate of 0.001, and the batch size is set to 128
and we run 200 epochs. The learning rate is linearly decayed to zero from 80 to 200 epochs.

Table 3: MLP and CNN models used in our experiments.
MLP on MNIST CNN on CIFAR-10 CNN on CIFAR-100 Model 3

(Model 1) (Model 2)
28×28 Gray Image 32×32 RGB Image 32×32 RGB Image 32×32 RGB Image

3×3 Conv, 64 3×3 Conv, 128 BN, LReLU

Dense

5×5 Conv, 6 BN, ReLU 3×3 Conv, 128 BN, LReLU
ReLU 3×3 Conv, 64 3×3 Conv, 128 BN, LReLU

2×2 Max-pool BN, ReLU 2×2 Max-pool, stride 2
2×2 Max-pool Dropout, p=0.25
3×3 Conv, 128 3×3 Conv, 256 BN, LReLU

5×5 Conv, 16 BN, ReLU 3×3 Conv, 256 BN, LReLU
ReLU 3×3 Conv, 128 3×3 Conv, 256 BN, LReLU

28×28→256 2×2 Max-pool BN, ReLU 2×2 Max-pool, stride 2
ReLU 2×2 Max-pool Dropout, p=0.25

Dense 3×3 Conv, 196 3×3 Conv, 512 BN, LReLU
16×5×5→120 BN, ReLU 3×3 Conv, 256 BN, LReLU

ReLU 3×3 Conv, 196 3×3 Conv, 128 BN, LReLU
Dense 120→84 BN, ReLU Avg-pool

ReLU 2×2 Max-pool
Dense 256→10 Dense 84→10 Dense 256→100 Dense 128→ 10

15

Under review as a conference paper at ICLR 2020

B MORE RESULTS

B.1 PERFORMANCE COMPARISON WITH EARLY STOPPING

To make a better comparison, we apply early-stop trick to all those methods in Sec.4.2 and report
their best accuracy instead of the final accuracy. The accuracy is averaged in 5 runs and we also
report the standard deviation. Results are shown below:

Table 4: Testing accuracy (in percentage) with early stop on MNIST.
noise symmetric 20% symmetric 50% pairflip 45%

Standard 97.16±0.20 95.40±0.09 68.86±5.20
Decoupling 97.09±0.12 94.88±0.39 88.03±1.76
F-correction 97.32±0.13 95.59±0.30 9.50±1.55
MentorNet 97.23±0.11 95.32±0.23 90.47±2.09
Co-teaching 97.26±0.14 95.42±0.27 90.49±1.52

Co-teaching+ 97.88±0.10 96.52±0.10 90.00±3.16
Proposed 97.89±0.21 96.91±0.25 95.94±0.70

Table 5: Testing accuracy (in percentage) with early stop on CIFAR-10.
noise symmetric 20% symmetric 50% pairflip 45%

Standard 59.04±0.96 52.23±1.32 44.01±1.49
Decoupling 56.16±1.02 43.57±3.03 45.31±1.00
F-correction 59.94±0.77 53.71±1.48 10.22±1.49
MentorNet 59.34±0.93 51.08±1.06 37.45±2.45
Co-teaching 60.62±1.03 53.48±0.86 41.26±0.74

Co-teaching+ 59.70±1.07 52.49±1.52 43.66±1.28
Proposed 61.27±0.59 54.26±1.55 50.80±0.55

Table 6: Testing accuracy (in percentage) with early stop on CIFAR-100.
noise symmetric 20% symmetric 50% pairflip 45%

Standard 43.98±0.87 34.19±0.52 26.30±0.87
Decoupling 27.53±3.24 23.18±5.85 17.95±2.86
F-correction 46.80±0.13 39.20±0.30 1.58±0.31
MentorNet 46.82±1.19 38.68±0.39 25.98±0.26
Co-teaching 47.69±0.68 40.10±0.54 27.01±0.69

Co-teaching+ 49.03±0.42 39.24±0.64 31.39±0.89
Proposed 49.63±0.74 42.90±0.40 36.00±0.68

B.2 PERFORMANCE COMPARISON WITH SIMPLE DECAY FUNCTION

Here, we compare the performance obtained (under early stop setup in Sec.B.1) from

• the space used in Co-teaching (Han et al., 2018b) (see Remark 3.1);

• a space spanned by a simple decay function (i.e., pow-d in Fig.2); and

• the proposed space in Eqa.(1).

Natural gradient proposed in Sec.3.3.2 is used for optimization. Results are shown in Fig.7. We
can see that performance obtained from the proposed method is much better than that from a simple
decay function. This again demonstrates the needs of approximating R(T) by a linear combination
of some basis functions.

16

Under review as a conference paper at ICLR 2020

Table 7: Testing accuracy (in percentage) comparison between the proposed method and that from
a simple decay function.

noisy space from
Co-teaching

pow-d
(Figure 2) proposed

symmetric 20% 97.83±0.70 97.67±0.03 97.89±0.21
MNIST symmetric 50% 96.54±0.40 96.56±0.01 96.91±0.25

pairflip 45% 93.27±0.80 94.99±0.03 95.94±0.70
symmetric 20% 60.72±0.31 60.83±0.10 61.27±0.59

CIFAR-10 symmetric 50% 54.11±0.56 53.19±0.50 54.26±1.55
pairflip 45% 47.48±1.86 49.17±0.38 50.80±0.55

symmetric 20% 48.18±1.27 47.93±0.02 49.63±0.74
CIFAR-100 symmetric 50% 40.57±0.38 41.67±1.57 42.90±0.40

pairflip 45% 27.30±0.99 32.47±0.05 36.00±0.68

B.3 PRECISION OF CLEAN SAMPLES

Here, to understand why the proposed method can lead better performance than Co-teaching, fol-
lowing Han et al. (2018b), we also show label precision, i.e., the average ratio (in percentage) of
clean samples in selected samples, in each epoch. Results are in Tab.7. As we can see, precision
is consistently much higher than that from Co-teaching. This means the training samples used by
the proposed method is cleaner than those used by Co-teaching, and thus better performance can be
obtained by the proposed method.

(a) Symmetric 20%. (b) Symmetric 50%. (c) Pair 45%.

Figure 7: Comparison on precision of clean samples between the proposed method and Co-teaching.
Top to bottom: MNIST, CIFAR-10 and CIFAR-100.

17

