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Abstract

We consider the problem of estimating the latent state of a spatiotemporally evolv-
ing continuous function using very few sensor measurements. We show that a
dynamical systems layer over temporal evolution of the weights of a kernel model
is a valid approach to spatiotemporal modeling that does not necessarily require the
design of complex nonstationary kernels. Furthermore, we show that such a predic-
tive model can be utilized to determine sensing locations that guarantee that the
hidden state of the predictive model can be recovered with very few measurements.
The approach is validated on real-world datasets.

1 Introduction

Modeling of large-scale stochastic phenomena with both spatial and temporal (spatiotemporal)
evolution is a fundamental problem in the applied sciences [1. [7]. While spatiotemporal phenomena
have been traditionally modeled using first-principles approaches like PDEs, data-driven models
have gained more attention in the machine learning and statistics communities in recent years [4].
Kernel methods represent a class of well-studied and powerful nonparametric methods for inference
in spatial domains [18]], and have been successfully applied to spatiotemporal modeling [4} [16];
recent techniques focus on nonstationary covariance kernel design and associated hyperparameter
learning algorithms. The Process Convolution with Local Smoothing Kernels (PCLSK) approach
[8]] captures nonstationary structure by allowing the kernel to vary across the input space, and can
utilize a Gaussian process (GP) framework, as shown in [6} 12} [14]. Apart from directly modeling
the covariance function using additional latent GPs, another class of methods, henceforth known as
Latent Extension of Input Space (LEIS), map the nonstationary process into a latent space, in which
the problem becomes approximately stationary [[13|[17]. Both approaches are nonconvex and require
MCMC or other sophisticated optimization methods for solution. They also scale poorly because
typically data is retained across both space and time.

The geostatistics literature has many examples of the dynamical spatiotemporal modeling approach,
where the focus is on finding good dynamical transition models on the linear combination of weights
in a parameterized model, an example of which is the kriged (kernel) Kalman filter [4} [11]. The
advantage here is that when the spatial and temporal dynamics are hierarchically separated and
if linear transition models are used, the learning problem becomes more tractable, and long-term,
periodic behavior can be inferred. In this case, complex nonstationary kernels are often not necessary.
The approach presented in this paper aligns closely with this vein of work. The main difference is
that we view the problem from the more abstract viewpoint of constructing a Bayesian observer in a
reproducing kernel Hilbert space. This viewpoint enables the fundamental contributions of the paper,
which are 1) allowing for inference on more general domains with a larger class of basis functions
than those typically considered in the geostatistics community, and 2) quantifying the minimum
number of measurements required to estimate the state of functional evolution. In particular, if
feedback is allowed, monitoring (state recovery) and prediction (filtering) can be made more efficient
than other nonstationary kernel methods.



2 Kernel Observers

We focus on predictive inference of a time-varying stochastic process, whose mean f evolves as
fr41 ~ F(f-,n;), where F is a distribution varying with time 7 and exogenous inputs 7. Our
approach builds on the fact that in several cases, temporal evolution can be hierarchically separated
from spatial functional evolution, the prototypical example of which is the abstract evolution equation,
i.e. ODEs on Banach spaces [2]]. To make this approach computationally realizable, we restrict the
sequence f to lie in a reproducing kernel Hilbert space (RKHS) [[16]. Here k£ : 2 x 2 — Risa
positive-definite Mercer kernel on a domain €2 that implies the existence of a smooth map 1) : @ — H,
where  is an RKHS with the property k(x,y) = (¥ (x), ¥(y))%. The proposed model assumes
spatiotemporal evolution in the input domain corresponds to temporal evolution of the mixing weights
of a kernel model alone in the functional domain: this separation allows us to utilize powerful ideas
from systems theory for deriving necessary and sufficient conditions for spatiotemporal monitoring.
In this paper, we restrict our attention to the class of functional evolutions [ defined by linear
Markovian transitions in an RKHS. In this case, the method is functionally equivalent to a kernel
Kalman filter (KKF), with the main contributions being our approximate formulation (see below) and
the minimization of the number of measurements required to infer the latent state. Both nonstationary
kernel methods and KKFs can be derived using Bayesian inference: the main difference is that
nonstationary kernel methods are truly nonparametric methods in that the time indices 7 are part of
the observations, and thus the kernel model must retain them for training. On the other hand, KKFs
decouple the time and space variables, and thus can learn long-term patterns without including time
in the kernel function, at the cost of missing subtler local time-dependent correlations[3|].

Let y € RY be the measurements of the function available from N sensors, A : H — H be a linear
transition operator in the RKHS #, and I : H — RY be a linear measurement operator. The model
for the functional evolution and measurement studied in this paper is:

fT+1:AfT+77T7 yT:’CfT+<Tv (1)

where 7, is a zero-mean stochastic process in A, and ¢, is a Wiener process in RY. To avoid working
in dual space and have the parameters grow with the data, we work with an approximate feature map
w( ) :=[@1(z) - Par(x)] to an approximate feature space H. Typical examples of such maps include
random Fourier features [15]], FastFood [10], A la Carte [21]], and the Nystrom method [19]. Here we
use the dictionary of atoms approach as follows: let {2 be compact. Given points C = {¢1,...,car},
¢; € €2, define the dictionary of atoms FC = {(er), - ,(em)}s ¥(c;) € H, the span of Wthh
is a strict subspace # of the RKHS H generated by the kernel, where 1/} x) := k(z,¢;). In the
approximate space case, we replace the transition operator A : H — H in ( ID by A7 — H.The
finite-dimensional evolution equations approximating (1)) in approximate dual form are

Wry1 = A\w'r + N Yr = Kw; + C‘rv 2)

where we have matrices A € RMxM , K € RN*M t}le vectors w, € RM, and where we have
slightly abused notation to let ¥, 7, and ¢, denote their H counterparts. Here K is the matrix whose
rows are of the form Ky = [$1(z:) $2(x:) - dar(x:) ]. In systems-theoretic language, the matrix
acts as a measurement operator. To the best of our knowledge, this approximate formulation of
the kernel Kalman filter is new: the paper [? ] formulates the filter in dual space, and [[11] makes
no connection to RKHSs. We define the observability matrix as Oy = [(KA™)" ... (KAL) ]
where Y = {7y,..., 71} are the set of instances 7; when we apply the operators K .,. A linear
system is said to be observable if RankOy = M) for ¥ = {0,1,..., M — 1} [22]]. Observability
guarantees two critical facts: firstly, it guarantees that the state wg can be recovered exactly from
a finite series of measurements {y,,, ..., ¥, }; in particular, defining yr = [yTTl R ,yTLT} T, we
have that yy = O~wg. Secondly, it guarantees that a feedback based observer can be designed
such that the estimate of w,, denoted by w,, converges exponentially fast to w,. We are now in a
position to formally state the spatiotemporal modeling and inference problem considered: given a
spatiotemporally evolving system modeled using (2)), choose a set of N sensing locations such that



even with N < M, the functional evolution of the spatiotemporal model can be estimated (which
corresponds to monitoring) and can be predicted robustly (which corresponds to Bayesian filtering).
Our approach to solve this problem relies on the design of the measurement operator K so that the
pair (K, A) is observable: any Bayesian state estimator (e.g. a Kalman filter) utilizing this pair is
denoted as a kernel observer.

2.1 Main Theoretical Result

We take a geometric approach for the choice of sampling locations for inferring w, using the Jordan
decomposition of A. Let r be the number of unique elgenvalues of A and let v(\;) denote the geomet-
ric multiplicity of eigenvalue \;. Then the cyclic index of A is defined as ¢ = max; <i<r Y(Ai)[20].
To state the main theorem, we need the following technical condition:

Definition 1. (Shaded Observation Matrix) Given k : 2 x Q@ — R positive-definite on a domain €,
let {1/11( ) M( )} be the set of bases generating an approximate feature map ¥:Q— H, and
let X = {:cl, o xny 2 € Q. Let K € RVXM pe the observation matrix, where K;; := {/}}(xl)
For each row K ;y := [d1(zi) = du(x:) ], define Ly := {Ll ,L2 Y } to be the indices in the
observation matrix row i which are nonzero. Then lf Uie (1,...N} I = {1 2,..., M}, we denote
K as a shaded observation matrix.

Random sampling is a simple but effective way to generate shaded matrices with minimal effort.

Theorem 1. Given k : Q x Q — R positive-definite on a domain <, let {12)\1 (),... ,{ZJ\M (1:)} be
the set of bases generating an approximate feature map zz Q- 7:2 and let X = {x1,...,an},
€ Q. Consider the discrete linear system on H given by the evolution and measurement equatwns
(@ Suppose that a full-rank Jordan decomposition of A € RMxM of the form A= PAP_
exists, where A = [ A1 - Ao | may have repeated eigenvalues. Let { be the cyclic index of A Define
K=[goT .. goT ]T as the {-shaded matrix which consists of { shaded matrices with the property

that any subset of £ columns in the matrix are linearly independent from each other. Then system
is observable if Y has distinct values, and |Y| > M.

For a detailed explication of these theoretical results, see section 2.2 in [9]: for the proof of Theorem
1, see the proof of Proposition 2.3. This theorem lends many interesting insights for the modeling of
spatiotemporal phenomena: of these, two particularly fascinating ones are a) functions with complex
dynamics (with a small cyclic index) can be recovered with less sensor placements than functions
with simpler dynamics, and b) for monitoring, the number of sensor placements are essentially
independent of the dimensionality M, but depend rather on the cyclic index of A.

3 Experimental Results

3.1 Comparison With Nonstationary Kernel Methods

We compare two variants of the kernel observer on two real-world datasets (Intel Berkeley and
Irish Wind) with three competing techniques (see : a) PCLSK (with the method in [6]), b) LEIS
(with the method in [[13]), and c) a baseline GP, which is a sparse GP model trained using all of the
data available per time step. Recall from §2] 2| that the kernel observer is a Bayesian state estimator
utilizing the dynamics-measurement pair (K A) The first variant of the kernel observer, called
autonomous and denoted by AKO, is feedforward only (i.e. K is not utilized), and is a measure of
the modeling fidelity of (2). The second variant, called feedback, and denoted by FKO, utilizes K.
Model inference for the kernel observer involved three steps: 1) picking the Gaussian RBF kernel
k(z,y) = e‘”““y”Z/%z, a search for the ideal o is performed for a sparse Gaussian Process model
(with a fixed basis vector set C selected using the method in [3]]); 2) having obtained o, Gaussian
process inference is used to generate weight vectors for each time-step in the training set, resulting in
the sequence w,, 7 € {1,...,T}; 3) matrix least-squares is applied to this sequence to infer A. In
the prediction step, in AKO, Als used to propagate w, forward to make predictions with no feedback,
and in FKO, a Kalman filter with N > / is used to propagate w, forward to make predictions.

The Intel Berkeley dataset consists of temperature data from wireless sensors. The training data
is taken from 00:20 hrs on March 6th 2004 at intervals of 20 minutes, and testing was performed
over unseen data beginning 12:40 hrs of the same day. Out of 50 sensor locations, we uniformly



selected 25 locations each for training and testing purposes. Results of the prediction error are shown
in box-plot form in Figure|laland as a time-series in Figure [Ibl Here, the cyclic index of A was
determined to be 2, so NV was set to 2 for the kernel observer with feedback. Note that here, even
AKO outperforms PCLSK and LEIS overall, and FKO with N = 2 significantly outperforms all
other methods. The second dataset is the Irish wind dataset, which consists of daily average wind
speed (in knots = 0.542 m/s) data collected from year 1961 to 1978 at 12 meteorological stations
in the Republic of Ireland. The prediction error results are presented in box-plot form in Figure
and as a time-series in Figure Again, the cyclic index of A was determined to be 2. In this case,
AKO’s performance is comparable to PCLSK and LEIS, while the kernel observer with feedback
with N = 2 again outperforms all other methods. The kernel observer is an order of magnitude faster
than the competitors: e.g. on Intel, the total training and prediction times for PCLSK, LEIS, and FKO
are 121.4 sec, 43.8 sec, and 2.1 sec respectively.

3.2 Prediction of Global Ocean Surface Temperature

We analyzed the feasibility of our approach on a large dataset from the National Oceanographic Data
Center: the 4 km AVHRR Pathfinder project, which is a satellite monitoring global ocean surface
temperature. This dataset has measurements at over 37 million possible coordinates, but with only
around 3-4 million measurements available per day, leading to a lot of missing data. The goal was to
learn the day and night temperature models on data from the year 2011, and then to monitor thereafter
for 2012. Success in monitoring would demonstrate two things: 1) the modeling process can capture
spatiotemporal trends that generalize across years, and 2) the observer framework allows us to infer
the state using a number of measurements that are an order of magnitude fewer than available. Note
that due to the size of the dataset and the high computational requirements of the nonstationary kernel
methods, a comparison with them was not pursued. To build the AKO and FKO models, we followed
the same procedure outlined in Section 3.1} but with C = {c1,...,ca}, ¢; € R?, |C| = 300. The
Kalman filter for FKO used N € {250, 500, 1000} at random locations to track the system state
given a random initial condition wg. The observers are compared to a baseline GP model trained on
approximately 400, 000 measurements per day, to get a fair comparison. Figures [2a] and [2c| compare
the autonomous and feedback approach with 1, 000 samples to the baseline GP; here, it can be seen
that AKO does well in the beginning (beating FKOs5), but then incurs an unacceptable amount
of error when the time series goes into 2012, i.e. where the model has not seen any training data,
whereas FKO does well throughout. Figures 2a] and [2c|show a comparison of the speedup with the
baseline. These results demonstrate that our approach is a good fit for practical problems with large
amounts of data. Future work will explore image analysis and kernels on more general domains.
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Figure 1: Comparison of kernel observer to PCLSK and LEIS methods.
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Figure 2: Performance of the kernel observer over AVVHR satellite 2012 data.
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