
Published as a conference paper at ICLR 2020

DOMAIN ADAPTIVE MULTIBRANCH NETWORKS

Róger Bermúdez-Chacón, Mathieu Salzmann, & Pascal Fua
Computer Vision Laboratory
École Polytechnique Fédérale de Lausanne
Station 14, CH-1015 Lausanne, Switzerland
{roger.bermudez,mathieu.salzmann,pascal.fua}@epfl.ch

ABSTRACT

We tackle unsupervised domain adaptation by accounting for the fact that differ-
ent domains may need to be processed differently to arrive to a common feature
representation effective for recognition. To this end, we introduce a deep learning
framework where each domain undergoes a different sequence of operations, al-
lowing some, possibly more complex, domains to go through more computations
than others. This contrasts with state-of-the-art domain adaptation techniques that
force all domains to be processed with the same series of operations, even when
using multi-stream architectures whose parameters are not shared. As evidenced
by our experiments, the greater flexibility of our method translates to higher accu-
racy. Furthermore, it allows us to handle any number of domains simultaneously.

1 INTRODUCTION

While deep learning has ushered in great advances in automated image understanding, it still suffers
from the same weaknesses as all other machine learning techniques: when trained with images
obtained under specific conditions, deep networks typically perform poorly on images acquired
under different ones. This is known as the domain shift problem: the changing conditions cause the
statistical properties of the test, or target, data, to be different from those of the training, or source,
data, and the network’s performance degrades accordingly.

Domain adaptation aims to address this problem, especially when annotating images from the target
domain is difficult, expensive, or downright infeasible. The dominant trend is to map images to
features that are immune to the domain shift, so that the classifier works equally well on the source
and target domains (Fernando et al., 2013; Ganin & Lempitsky, 2015; Sun & Saenko, 2016). In the
context of deep learning, the standard approach is to find those features using a single architecture
for both domains (Tzeng et al., 2014; Ganin & Lempitsky, 2015; Sun & Saenko, 2016; Yan et al.,
2017; Zhang et al., 2018). Intuitively, however, as the domains have different properties, it is not
easy to find one network that does this effectively for both. A better approach is to allow domains to
undergo different transformations to arrive at domain-invariant features. This has been the focus of
recent work (Tzeng et al., 2017; Bermúdez-Chacón et al., 2018; Rozantsev et al., 2018; 2019), where
source and target data pass through two different networks with the same architecture but different
weights, nonetheless related to each other.

In this paper, we introduce a novel, even more flexible paradigm for domain adaptation, that allows
the different domains to undergo different computations, not only in terms of layer weights but also
in terms of number of operations, while selectively sharing subsets of these computations. This
enables the network to automatically adapt to situations where, for example, one domain depicts
simpler images, such as synthetic ones, which may not need as much processing power as those
coming from more complex domains, such as images taken in-the-wild. Our formulation reflects
the intuition that source and target domain networks should be similar because they solve closely
related problems, but should also perform domain-specific computations to offset the domain shift.

To turn this intuition into a working algorithm, we develop a multibranch architecture that sends
the data through multiple network branches in parallel. What gives it the necessary flexibility are
trainable gates that are tuned to modulate and combine the outputs of these branches, as shown in
Fig. 1. Assigning to each domain its own set of gates allows the global network to learn what set of

1

Published as a conference paper at ICLR 2020

Source Domain
(labeled)

Target Domain
(unlabeled)

Bike!

Bike!f
(

1

)

 f
(

)

N f

Figure 1: A Domain Adaptive Multibranch Network is a sequence of computational units f (i), each of which
processes the data in parallel branches, whose outputs are then aggregated in a weighted manner by a gate to
obtain a single response. To allow for domain-adaptive computations, each domain has its own set of gates, one
for each computational unit, which combine the branches in different ways. As a result, some computations are
shared across domains while others are domain-specific.

computations should be carried out for each one. As an additional benefit, in contrast to previous
strategies for untying the source and target streams (Rozantsev et al., 2018; 2019), our formulation
naturally extends to more than two domains.

In other words, our contribution is a learning strategy that adaptively adjusts the specific compu-
tation to be performed for each domain. To demonstrate that it constitutes an effective approach
to extracting domain-invariant features, we implement it in conjunction with the popular domain
classifier-based method of Ganin & Lempitsky (2015). Our experiments demonstrate that our Do-
main Adaptive Multibranch Networks, which we will refer to as DAMNets, not only outperform the
original technique of Ganin & Lempitsky (2015), but also the state-of-the-art strategy for untying
the source and target weights of Rozantsev et al. (2019), which relies on the same domain classifier.
We will make our code publicly available upon acceptance of the paper.

2 RELATED WORK

Domain Adaptation. Domain adaptation has achieved important milestones in recent years (Dai
et al., 2007; Gretton et al., 2009; Pan et al., 2010; Fernando et al., 2013; Sun et al., 2016; Shu et al.,
2018), with deep learning-based methods largely taking the lead in performance. The dominant
approach to deep domain adaptation is to learn a domain-invariant data representation. This is
commonly achieved by finding a mapping to a feature space where the source and target features
have the same distribution. In Tzeng et al. (2014); Long et al. (2015; 2017); Yan et al. (2017),
the distribution similarity was measured in terms of Maximum Mean Discrepancy (Gretton et al.,
2007), while other metrics based on second- and higher-order statistics were introduced in Sun &
Saenko (2016); Koniusz et al. (2017); Sun et al. (2017). In Saito et al. (2018), the distribution
alignment process was disambiguated by exploiting the class labels, and in Häusser et al. (2017);
Shkodrani et al. (2018) by leveraging anchor points associating embeddings between the domains.
Another popular approach to learning domain-invariant features is to train a classifier to recognize
the domain from which a sample was drawn, and use adversarial training to arrive to features that
the classifier can no longer discriminate (Tzeng et al., 2015; Ganin et al., 2016; 2017). This idea has
spawned several recent adversarial domain adaptation classification (Hu et al., 2018; Zhang et al.,
2018), semantic segmentation (Hoffman et al., 2018; Chen et al., 2018; Hong et al., 2018), and active
learning (Su et al., 2019) techniques, and we will use such a classifier.

Closest in spirit to our approach are those that do not share the weights of the networks that process
the source and target data (Tzeng et al., 2017; Bermúdez-Chacón et al., 2018; Rozantsev et al., 2018;
2019). In Tzeng et al. (2017), the weights were simply allowed to vary freely. In Rozantsev et al.
(2018); Bermúdez-Chacón et al. (2018), it was shown that regularizing them to remain close to each
other was beneficial. More recently, Rozantsev et al. (2019) proposed to train small networks to
map the source weights to the target ones. While these methods indeed untie the source and target
weights, the source and target data still undergo the same computations, i.e., number of operations.

In this paper, we argue that the amount of computation, that is, the network capacity, should adapt
to each domain and reflect their respective complexities. We rely on a domain classifier as in Tzeng

2

Published as a conference paper at ICLR 2020

et al. (2015); Ganin et al. (2016; 2017). However, we do not force the source and target samples to go
through the same transformations, which is counterintuitive since they display different appearance
statistics. Instead, we start from the premise that they should undergo different computations and
use domain-specific gates to turn this premise into our DAMNet architecture.

Dynamic Network Architectures. As the performance of a neural network is tightly linked to
its structure, there has been a recent push towards automatically determining the best architecture
for the problem at hand. While neural architecture search techniques (Zoph & Le, 2017; Liu et al.,
2018; 2019; Pham et al., 2018; Zoph et al., 2018; Real et al., 2019; Noy et al., 2019) aim to find
one fixed architecture for a given dataset, other works have focused on dynamically adapting the
network structure at inference time (Graves, 2016; Ahmed & Torresani, 2017; Shazeer et al., 2017;
Veit & Belongie, 2018; Wu et al., 2018). In particular, in Ahmed & Torresani (2017); Shazeer
et al. (2017); Veit & Belongie (2018); Bhatia et al. (2019), gates were introduced for this purpose.
While our DAMNets also rely on gates, their role is very different: first, we work with data coming
from different domains, whereas these gated methods, with the exception of Bhatia et al. (2019),
were all designed to work in the single-domain scenario. Second, and more importantly, these
techniques aim to define a different computational path for every test sample. By contrast, we seek
to determine the right computation for each domain. Another consideration is that we freeze our
gates for inference while these methods must constantly update theirs. We believe this to be ill-
suited to domain adaptation, particularly because learning to adapt the gates for the target domain,
for which only unlabeled data is available, is severely under-constrained. This lack of supervision
may be manageable when one seeks to define operations for a whole domain, but not when these
operations are sample-specific.

3 METHOD

We now describe our deep domain adaptation approach, which automatically adjusts the computa-
tions that the different domains undergo. We first introduce the multibranch networks that form the
backbone of our DAMNet architecture and then discuss training in the domain adaptation scenario.

3.1 MULTIBRANCH NETWORKS

f (

i

)

x(

i

-1) x(

i

)

...

Σ̂
f

(

i

)

 2

f
(

i

)

 1

f
(

i

)

 K

Figure 2: A computational unit f (i) is an aggregation
of the outputs of parallel computations, or branches,
f
(i)
j .

Let us first consider a single domain. In this
context, a traditional deep neural network can
be thought of as a sequence of Nf operations
f (i)(·)1≤i≤Nf , each transforming the output of
the previous one. Given an input image x, this
can be expressed as

x(0) = x

x(i) = f (i)(x(i−1)) .
(1)

As a general convention, each operation f (i)(·)
can represent either a single layer or multi-
ple ones. Our formulation extends this defi-
nition by replacing each f (i) by multiple par-
allel computations, as shown in Fig. 2. More specifically, we replace each f (i) by a computa-
tional unit {f (i)1 , . . . , f

(i)
K } consisting of K parallel branches. Note that this K can be different at

each stage of the network and should therefore be denoted as K(i). However, to simplify notation,
we drop this index below. Given this definition, we write the output of each computational unit as

x(i) = Σ̂
(
f
(i)
1 (x(i−1)), . . . , f

(i)
K (x(i−1))

)
, (2)

where Σ̂(·) is an aggregation operator that could be defined in many ways. It could be a simple sum-
mation that gives all outputs equal importance, or, at the opposite end of the spectrum, a multiplexer
that selects a single branch and ignores the rest. To cover the range between these two alternatives,

3

Published as a conference paper at ICLR 2020

we introduce learnable gates that enable the network to determine what relative importance the dif-
ferent branches should be given. Our gates perform a weighted combination of the branch outputs.
Each gate is controlled by a set of K activation weights {φ(i)j }1≤j≤K , and a unit returns

x(i) =

K∑
j=1

φ
(i)
j · f

(i)
j (x(i−1)) . (3)

If ∀j, φ(i)j = 1, the gate performs a simple summation. If φ(i)j = 1 for a single j and 0 for the others,

it behaves as a multiplexer. The activation weights φ(i)j enable us to modulate the computational
graph of network block f (i). To bound them and encourage the network to either select or discard
each branch in a computational unit, we write them in terms of sigmoid functions with adaptive
steepness. That is,

φ
(i)
j =

(
1 + exp

(
−π(i) · g(i)j

))−1
, (4)

where the g(i)j s are learnable unbounded model parameters, and π(i) controls the plasticity of the

activation—the rate at which φ(i)j varies between the extreme values 0 and 1 for block i. During
training, we initially set π(i) to a small value, which enables the network to explore different gate
configurations. We then apply a cooling schedule on our activations, by progressively increasing π(i)

over time, so as to encourage the gates to reach a firm decision. Note that our formulation does
not require

∑K
j=1 φ

(i)
j = 1, that is, we do not require the aggregated output x(i) to be a convex

combination of the branch outputs f (i)j (x(i−1)). This is deliberate because allowing the activation
weights to be independent from one another provides additional flexibility for the network to learn
general additive relationships.

Finally, a Multibranch Network is the concatenation of multiple computational units, as shown in
Fig. 1. For the aggregation within each unit f (i) to be possible, the f (i)j s’ outputs must be of
matching shapes. Furthermore, as in standard networks, two computational units can be attached
only if the output shape of the first one matches the input shape of the second. Although it would
be possible to define computational units at any point in the network architecture, in practice, we
usually take them to correspond to groups of layers that are semantically related. For example,
one would group a succession of convolutions, pooling and non-linear operations into the same
computational unit.

3.2 DOMAIN ADAPTIVE MULTIBRANCH NETWORKS

3.2.1 TWO DOMAINS

Our goal is to perform domain adaptation, that is, leverage a large amount of labeled images, Xs =
{xs1, . . . ,xsN} with corresponding annotations Ys = {ys1, . . . ,ysN}, drawn from a source domain,
to train a model for a target domain, whose data distribution is different and for which we only have
access to unlabeled images Xt = {xt1, . . . ,xtM}.
To this end, we extend the gated networks of Section 3.1 by defining two sets of gates, one for the
source domain and one for the target one. Let {(φs)(i)j }Kj=1 and {(φt)(i)j }Kj=1 be the corresponding
source and target activation weights for computational unit f (i), respectively. Given a sample xd

coming from a domain d ∈ {s, t}, we take the corresponding output of the i-th computational unit
to be

(xd)(i) =

K∑
j=1

(φd)
(i)
j · f

(i)
j

(
(xd)(i−1)

)
. (5)

Note that under this formulation, the domain identity d of the sample is required in order to select
the appropriate (φd)(i).

The concatenated computational units forming the DAMNet encode sample x from domain d into
a feature vector z = f(x, d). Since the gates for different domains are set independently from

4

Published as a conference paper at ICLR 2020

one another, the outputs of the branches for each computational unit are combined in a domain-
specific manner, dictated by the activation weights (φd)

(i)
j . Therefore, the samples are encoded

to a common space, but arrive to it through potentially different computations. Fig. 3 depicts this
process. Ultimately, the network can learn to share weights for computational unit f (i) by setting
(φs)

(i)
j = (φt)

(i)
j , ∀j. It can also learn to fully untie the weights by having ASi ∩ATi = ∅, where

ASi and ATi denote the set of non-zero activations in the two domains. Finally, in contrast to Tzeng
et al. (2017); Bermúdez-Chacón et al. (2018); Rozantsev et al. (2018; 2019), it can learn to use more
computation for one domain than for the other by setting (φs)

(i)
j > 0 for two different branches f (i)j

while having only a single non-zero (φt)
(i)
j , for a particular computational unit f (i).

So
ur

ce
 d

om
ai

n
Ta

rg
et

 d
om

ai
n

f
(

2

)

 3

f
(

2

)

 1

f
(

2

)

 2
f

(

1

)

 3

f
(

1

)

 1

f
(

1

)

 2

f
(

1

)

 3

f
(

1

)

 1

f
(

1

)

 2

f
(

2

)

 3

f
(

2

)

 1

f
(

2

)

 2
f

(

3

)

 3

f
(

3

)

 1

f
(

3

)

 2

f
(

3

)

 3

f
(

3

)

 1

f
(

3

)

 2

f
(

3

)

 4

f
(

3

)

 4f
(

1

)

 4

f
(

1

)

 4

Figure 3: Computational graphs for the source (top)
and target (bottom) domains, for the same network.
While both domains share the same computational
units, their outputs are obtained by different aggre-
gations of their inner operations, e.g., in the first unit,
the source domain does not use the middle two oper-
ations, whereas the target domain does; by contrast,
both exploit the fourth operation. In essence, this
scheme adapts the amount of computation that each
domain is subjected to.

The above formulation treats all branches for
each computational unit as potentially sharable
between domains. However, it is sometimes de-
sirable not to share at all. For example, batch-
normalization layers that accumulate and update
statistics of the data over time, even during the
forward pass, are best exposed to a single do-
main to learn domain-specific statistics. We al-
low for this by introducing computational units
whose gates are fixed, yet domain specific, and
that therefore act as multiplexers.

After the last computational unit, a small net-
work py operates directly on the encodings and
returns the class assignment ŷ = py(z), thus sub-
jecting the encodings for all samples to the same
set of operations.

3.2.2 MULTIPLE DOMAINS

The formulation outlined above extends naturally
to more than two domains, by assigning one set of
gates per domain. This enables us to exploit an-
notated data from different source domains, and
even to potentially handle multiple target domains simultaneously. In this generalized case, we in-
troduce governing sets of gates with activations φd1 , . . . , φdD for D different domains. They act in
the same way as in the two-domain case and the overall architecture remains similar.

3.2.3 TRAINING

When training our models, we jointly optimize the gate parameters (gd)
(i)
j , from Eq. 4, along with

the other network parameters using standard back-propagation. To this end, we make use of a
composite loss function, designed to encourage correct classification for labeled samples from the
source domain(s) and align the distributions of all domains, using labeled and unlabeled samples.
This loss can be expressed as

LDAMNet =
1

|`|

|`|∑
n=1

Ly(yn, ŷn) +
1

|` ∪ u|

|`∪u|∑
n=1

Ld(dn, d̂n) , (6)

where ` and u are the sets of labeled and unlabeled samples, respectively, and where we assumed,
without loss of generality, that the samples are ordered.

The first term in this loss, Ly(y, ŷ), is the standard cross-entropy, which compares the ground-
truth class probabilities y with the predicted ones ŷ = py(z), where, as discussed in Section 3.2.1,
z = f(x, d) is the feature encoding of sample x from domain d. For the second term, which encodes
distribution alignment, we rely on the domain confusion strategy of Ganin & Lempitsky (2015),
which is commonly used in existing frameworks. Specifically, for D domains, we make use of an
auxiliary domain classifier network pd that predicts a D-dimensional vector of domain probabilities
d̂ given the feature vector z. Following the gradient reversal technique of Ganin & Lempitsky

5

Published as a conference paper at ICLR 2020

(2015), we express the second term in our loss as Ld(d, d̂) = −
∑D
i=1 di log(d̂i) , where d is the

D-dimensional binary vector encoding the ground-truth domain, di indicates the i-th element of d,
and d̂ = pd(R(z)), with R the gradient reversal pseudofunction of Ganin & Lempitsky (2015) that
enables to incorporate adversarial training directly into back-propagation. That is, with this loss,
standard back-propagation trains jointly the domain classifier to discriminate the domains and the
feature extractor f(·) to produce features that fool this classifier.

When training is complete and the gates have reached a stable state, the branches whose activations
are close to zero are deactivated. This prevents the network from performing computations that are
irrelevant and allows us to obtain a more compact network to process the target data.

4 EVALUATION

4.1 BASELINES

Since we rely on the domain confusion loss to train our model, we treat the Domain-Adversarial
Neural Network (DANN) method of Ganin & Lempitsky (2015), as our first baseline.

To demonstrate the benefits of our approach over simply untying the source and target stream param-
eters, we compare our approach against the Residual Parameter Transfer (RPT) method of Rozantsev
et al. (2019), which constitutes the state of the art in doing so. Note that RPT also relies on the do-
main confusion loss, which makes our comparison fair. In addition, we report the results of directly
applying a model trained on the source domain to the target, without any domain adaptation, which
we refer to as “No DA”. We also provide the oracle accuracy of a model trained on the fully-labeled
target domain, referred to as “On TD”.

4.2 IMPLEMENTATION DETAILS

We adapt different network architectures to the multibranch paradigm for different adaptation prob-
lems. For all cases, we initialize our networks’ parameters by training the original versions of those
architectures on the source domains, either from scratch, for simple architectures, or by fine-tuning
weights learned on ImageNet, for very deep ones. We then set the parameters of all branches to
the values from the corresponding layers. We perform this training on the predefined training splits,
when available, or on 75% of the images, otherwise. The initial values of the gate parameters are
defined so as to set the activations to 1

K , for each of the K branches. This prevents our networks
from initially favoring a particular branch for any domain.

To train our networks, we use Stochastic Gradient Descent with a momentum of 0.9 and a variable
learning rate defined by the annealing schedule of Ganin & Lempitsky (2015) as µp = µ0

(1+α·p)β ,
where p is the training progress, relative to the total number of training epochs, µ0 is the initial
learning rate, which we take to be 10−2, and α = 10 and β = 0.75 as in Ganin & Lempitsky (2015).
We eliminate exploding gradients by `2-norm clipping. Furthermore, we modulate the plasticity
of the activations at every gate as π(i) = 1 − p, that is, we make π(i) decay linearly as training
progresses. As data preprocessing, we apply mean subtraction, as in Ganin & Lempitsky (2015).
We train for 200 epochs, during which the network is exposed to all the image data from the source
and target domains, but only to the annotations from the source domain(s).

Our “On TD” oracle is trained on either the preset training splits, when available, or our defined
training data, and evaluated on the corresponding test data. For the comparison to this oracle to be
meaningful, we follow the same strategy for our DAMNets. That is, we use the unlabeled target data
from the training splits only and report results on the testing splits. This protocol differs from that
of Rozantsev et al. (2019), which relied on a transductive evaluation, where all the target images,
training and test ones, were seen by the networks during training.

4.3 IMAGE RECOGNITION

We evaluate our method in the task of image recognition for which we use several domain adapta-
tion benchmark problems: Digits, which comprises three domains: MNIST (LeCun et al., 1998),
MNIST-M (Ganin & Lempitsky, 2015), and SVHN (Netzer et al., 2011); Office (Saenko et al.,

6

Published as a conference paper at ICLR 2020

Table 1: Domain Adaptation datasets and results. We compare the accuracy of our DAMNet approach with
that of DANN (Ganin & Lempitsky, 2015) and of RPT (Rozantsev et al., 2019), for image classification tasks
commonly used to evaluate domain adaptation methods. Our DAMNets yield a significant accuracy boost in the
presence of large domain shifts, particularly when using more than one source domain. A more comprehensive
evaluation on all datasets is provided in Appendix D.

Digits: MNIST (M), MNIST-M (MM), SVHN (S) Office-Home: Art (A), Clipart (C), Product (P), Real (R)

Source(s) M S M MM M,MM M,MM A C C R A C P C,P A,C,P
Target MM M S S S S? P P A A R R R R R
No DA 52.25 54.90 25.57 27.49 33.52 22.88 37.03 36.67 29.65 50.91 53.12 43.03 46.42 59.39 58.72
DANN 76.66 73.90 31.69 37.43 44.16 49.02 58.50 70.50 47.93 57.68 56.40 57.90 62.30 70.53 72.00
RPT 82.24 78.70 34.72 37.90 n/a n/a 54.51 63.18 47.32 51.90 52.15 55.05 62.16 n/a n/a
Ours 88.80 81.30 37.95 39.41 51.83 79.45 59.30 77.50 51.24 60.74 59.90 62.70 65.00 72.25 77.65
On TD 96.21 99.26 89.23 89.23 89.23 96.07 87.66 87.66 64.42 64.42 77.80 77.80 77.80 77.80 77.80

2010), which contains three domains: Amazon, DSLR, and Webcam; Office-Home (Venkateswara
et al., 2017), with domains Art, Clipart, Product, and Real; and VisDA17 (Peng et al., 2018), with
Synthetic and Real images. As all these are well studied benchmark datasets, we provide full de-
scriptions and image examples evidencing the different degrees of domain shift in Appendix B.

Setup. As discussed in Section 3, our method is general and can work with any feed-forward net-
work architecture. To showcase this, for the digit recognition datasets, we apply it to the LeNet
and SVHNet architectures (Ganin & Lempitsky, 2015), which are very simple convolutional net-
works, well suited for small images. Following Ganin & Lempitsky (2015), we employ LeNet when
using the synthetic datasets MNIST and MNIST-M as source domains, and SVHNet when SVHN
acts as source domain. We extend these architectures to multibranch ones by defining the compu-
tational units as the groups of consecutive convolution, pooling and non-linear operations defined
in the original model. For simplicity, we use as many branches within each computational unit as
we have domains, and all branches from a computational unit follow the same architecture, which
we provide in Appendix A, Figures 1 and 2. As backbone network to process all the rest of the
datasets, we use a ResNet-50 (He et al., 2016), with the bottleneck layer modification of Rozantsev
et al. (2019). While many multibranch configurations can be designed for such a deep network, we
choose to make our gated computational units coincide with the layer groupings defined in He et al.
(2016), namely conv1, conv2 x, conv3 x, conv4 x, and conv5 x. The resulting multibranch network
is depicted in Appendix A, Figure 4. We feed our DAMNets images resized to 224× 224 pixels, as
expected by ResNet-50.

Results. The results for the digit recognition and Office-Home datasets are provided in Table 1.
Results for Office and VisDA17 datasets are presented in Appendix D. Our approach outperforms
the baselines in all cases.

For the Digits datasets, in addition to the traditional two-domain setup, we also report results when
using two source domains simultaneously. Note that the reference method RPT (Rozantsev et al.,
2019) does not apply to this setting, since it was designed to transform a single set of source parame-
ters to the target ones. Altogether, our method consistently outperforms the others. Note that the first
two columns correspond to the combinations reported in the literature. We believe, however, that
the SVHN . MNIST one is quite artificial, since, in practice, one would typically annotate simpler,
synthetic images and aim to use real ones at test time. We therefore also report synthetic . SVHN
cases, which are much more challenging. The multi-source version of our method achieves a signif-
icant boost over the baselines in this scenario. To further demonstrate the potential of our approach
in this setting, we replaced its backbone with the much deeper ResNet-50 network and applied it
on upscaled versions of the images. As shown in the column indicated by a ?, this allowed us to
achieve an accuracy close to 80%, which is remarkable for such a difficult adaptation task.

On Office-Home, the gap between DAMNet and the baselines is again consistent across the dif-
ferent domain pairs. Note that, here, because of the relatively large number of classes, the overall
performance is low for all methods. Importantly, our results show that we gain performance by
training on more than one source domain, and by leveraging all synthetic domains to transfer to the
real one, our approach reaches an accuracy virtually equal to that of using full supervision on the
target domain. Despite our best efforts, we were unable to obtain convincing results for RPT using
the authors’ publicly available code, as results for this dataset were not originally reported for RPT.

Gate dynamics. To understand the way our networks learn the domain-specific branch assign-
ments, we track the state of the gates for all computational units over all training epochs. In Figure 4,

7

Published as a conference paper at ICLR 2020

we plot the corresponding evolution of the gate activations for the DSLR+Webcam . Amazon task
on Office. Note that our DAMNet leverages different branches over time for each domain before
reaching a firm decision. Interestingly, we can see that, with the exception of the first unit, which
performs low-level computations, DSLR and Webcam share all branches. By contrast, Amazon,
which has a significantly different appearance, mostly uses its own branches, except in two compu-
tational units. This evidences that our network successfully understands when domains are similar
and can thus use similar computations.

4.4 OBJECT DETECTION

Method
Average
precision

No adaptation 0.377
DANN (Ganin & Lempitsky, 2015) 0.715
ADDA (Tzeng et al., 2017) 0.731
Two-stream (Rozantsev et al., 2018) 0.732
RPT (Rozantsev et al., 2019) 0.743
DAMNet 0.792

Table 2: Average precision of our
DAMNet approach with several other ref-
erence methods, for domain adaptation
from synthetic to real images of drones.

We evaluate our method for the detection of drones from
video frames, on the UAV-200 dataset (Rozantsev et al.,
2018), which contains examples of drones both generated
artificially and captured from real video footage. Full de-
tails and example images are provided in Appendix B.3

Setup. Our domain adaptation leverages both the syn-
thetic examples of drones, as source domain, and the limited
amount of annotated real drones, as target domain, as well
as the background negative examples, to predict the class
of patches from the validation set of real images. We fol-
low closely the supervised setup and network architecture
of Rozantsev et al. (2019), including the use of AdaDelta as
optimizer, cross-entropy as loss function, and average preci-
sion as evaluation metric. Our multibranch computational units are defined as groupings of succes-
sive convolutions, nonlinearities, and pooling operations. The details of the architecture are provided
in Appendix A, Figure 3.

Results. Our method considerably surpasses all the others in terms of average precision, as shown
in Table 2, thus validating DAMNets as effective models for leveraging synthetic data for domain
adaptation in real-world problems.

4.5 DAMNET AS A GENERAL FEATURE EXTRACTOR

Table 3: We boost the method of Saito
et al. (2018) by replacing their feature
extraction with our DAMNets.

MCD accuracy

No DAMNet with DAMNet

MNIST-M . SVHN 38.54 41.51
DSLR . Amazon 67.24 67.81

Webcam . Amazon 64.33 66.19
Clipart . Real 63.50 63.87

We validate the effectiveness of our method as a feature ex-
tractor, by combining it with the Maximum Classifier Dis-
crepancy (MCD) method of Saito et al. (2018). As MCD op-
erates on the extracted encodings, we replace the encoding
strategy that MCD uses, which is the same as DANN, with our
DAMNet. Or, in other words, we replace the domain classifier
in our approach with the corresponding MCD term. Specifi-
cally, we use a single computational unit with two branches,
each of which replicates the architectures proposed in Saito
et al. (2018).

We present the results of combining MCD with DAMNet in Table 3. In all tested scenarios, we
obtain improvements over using MCD as originally proposed.

4.6 BRANCH ARCHITECTURES

To obtain more insights about specific branch decisions, we evaluate the effects of adding extra
branches to the network, as well as using branches with different capacities.

4.6.1 BRANCHES WITH DIFFERENT CAPACITIES

When computational units are composed of branches of different capacities, DAMNets often assign
branches with more capacity to more complex domains. To exemplify this, we trained a modified
multibranch SVHNet for adaptation between MNIST and SVHN. Instead of the identical branches
originally used, we replace the second branch in each computational unit with a similar branch where
the convolution operation is performed by 1x1 rather than 5x5 kernels. These second branches, with

8

Published as a conference paper at ICLR 2020

conv1 conv2_x conv3_x conv4_x conv5_x

Of
fi
ce
 A
ma
zo
n

Of
fi
ce
 W
eb
ca
m

Of
fi
ce
 D
SL
R

0 20 6040 12010080 140

0.2

0.8

0.6

0.4

0.0

1.0

0.2

0.8

0.6

0.4

0.0

1.0

0.2

0.8

0.6

0.4

0.0

1.0

0 20 6040 12010080 140 0 20 6040 12010080 140 0 20 6040 12010080 140 0 20 6040 12010080 140

Branch 1
Branch 2
Branch 3

Epoch Epoch Epoch Epoch Epoch

Branch 1
Branch 2
Branch 3

Branch 1
Branch 2
Branch 3

Branch 1
Branch 2
Branch 3

Branch 1
Branch 2
Branch 3

Branch 1
Branch 2
Branch 3

Branch 1
Branch 2
Branch 3

Branch 1
Branch 2
Branch 3

Branch 1
Branch 2
Branch 3

Branch 1
Branch 2
Branch 3

Branch 1
Branch 2
Branch 3

Branch 1
Branch 2
Branch 3

Branch 1
Branch 2
Branch 3

Branch 1
Branch 2
Branch 3

Branch 1
Branch 2
Branch 3

Figure 4: Evolution of the gates’ activations for each of the computational units in a multibranch ResNet-
50 network, for the Office DSLR + Webcam . Amazon domain adaptation problem. In the top two rows, we
show the gates for the source domains and in the bottom row for the target one. All branches are initialized to
parameters obtained from a single ResNet-50 trained on ImageNet. Note how for the first computational unit,
conv1, each domain chooses to process the data with different branches. In the remaining units, the two source
domains, which have similar appearance, share all the computations. By contrast, the target domain still uses
its own branches in conv3 x, and conv4 x to account for its significantly different appearance. When arriving
at conv 5x, the data has been converted to a domain-agnostic representation, and hence the same branch can
operate on all domains.

25 times fewer parameters each, are mostly used by the simpler domain—MNIST in this case. We
provide the gate evolution that reflects this in Appendix C, Figures 5 and 6.

4.6.2 ADDITIONAL BRANCHES

We explore the effects of using more branches than domains, so as to provide the networks with
alternative branches from where to choose. In particular, we explore the case where K = D + 1.
We evaluate multibranch LeNet and ResNet architectures under this setting. We show the gate
activation evolution in Appendix C, Figures 7 and 8. During the training process, we have observed
that the networks quickly choose to ignore extra branches when K > D. This suggests that they
did not contribute to the learning of our feature extraction. We did not find experimental evidence
to support that K > D is beneficial.

5 CONCLUSION

We have introduced a domain adaptation approach that allows for adaptive, separate computations
for different domains. Our framework relies on computational units that aggregate the outputs of
multiple parallel operations, and on a set of trainable domain-specific gates that adapt the aggrega-
tion process to each domain. Our experiments have demonstrated the benefits of this approach over
the state-of-the-art weight untying strategy; the greater flexibility of our method translates into a
consistently better accuracy.

Although we only experimented with using the same branch architectures within a computational
unit, our framework generalizes to arbitrary branch architectures, the only constraint being that their
outputs are of commensurate shapes. An interesting avenue for future research would therefore be to
automatically determine the best operation to perform for each domain, for example by combining
our approach with neural architecture search strategies.

9

Published as a conference paper at ICLR 2020

REFERENCES

K. Ahmed and L. Torresani. Connectivity Learning in Multi-Branch Networks. In NIPS Meta-
learning Workshop, 2017.

R. Bermúdez-Chacón, P. Márquez-Neila, M. Salzmann, and P. Fua. A Domain-Adaptive Two-
Stream U-Net for Electron Microscopy Image Segmentation. In International Symposium on
Biomedical Imaging, pp. 400–404, April 2018.

P. Bhatia, K. Arumae, and E. B. Celikkaya. Dynamic transfer learning for named entity recognition.
In International Workshop on Health Intelligence, pp. 69–81. Springer, 2019.

Y. Chen, W. Li, and L. Van Gool. ROAD: Reality Oriented Adaptation for Semantic Segmentation
of Urban Scenes. In Conference on Computer Vision and Pattern Recognition, pp. 7892–7901,
2018.

W. Dai, Q. Yang, G.R. Xue, and Y. Yu. Boosting for Transfer Learning. In Machine Learning, pp.
193–200, 2007.

B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised Visual Domain Adaptation
Using Subspace Alignment. In International Conference on Computer Vision, pp. 2960–2967,
2013.

Y. Ganin and V. Lempitsky. Unsupervised Domain Adaptation by Backpropagation. In International
Conference on Machine Learning, pp. 1180–1189, 2015.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. S.
Lempitsky. Domain-Adversarial Training of Neural Networks. Journal of Machine Learning
Research, 17:591–5935, 2016.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and
V. S. Lempitsky. Domain-Adversarial Training of Neural Networks. In Domain Adaptation in
Computer Vision Applications., pp. 189–209. 2017.

A. Graves. Adaptive Computation Time for Recurrent Neural Networks. In arXiv Preprint, 2016.

A. Gretton, K.M. Borgwardt, M.J. Rasch, B. Schölkopf, and A.J. Smola. A Kernel Method for
the Two-Sample Problem. In Advances in Neural Information Processing Systems, pp. 513–520,
2007.

A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Schölkopf. Covariate Shift
by Kernel Mean Matching. Journal of the Royal Statistical Society, 3(4):5–13, 2009.

P. Häusser, T. Frerix, A. Mordvintsev, and D. Cremers. Associative Domain Adaptation. In Inter-
national Conference on Computer Vision, pp. 2784–2792, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In Conference
on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

J. Hoffman, E. Tzeng, T. Park, J. Zhu, P. Isola, K. Saenko, A. Efros, and T. Darrell. CyCADA: Cycle
Consistent Adversarial Domain Adaptation. In International Conference on Machine Learning,
pp. 1989–1998, 2018.

W. Hong, Z. Wang, M. Yang, and J. Yuan. Conditional Generative Adversarial Network for Struc-
tured Domain Adaptation. In Conference on Computer Vision and Pattern Recognition, pp. 1335–
1344, 2018.

L. Hu, M. Kan, S. Shan, and X. Chen. Duplex Generative Adversarial Network for Unsupervised
Domain Adaptation. In Conference on Computer Vision and Pattern Recognition, pp. 1498–1507,
2018.

P. Koniusz, Y. Tas, and F. Porikli. Domain Adaptation by Mixture of Alignments of Second- or
Higher-Order Scatter Tensors. In Conference on Computer Vision and Pattern Recognition, pp.
4478–4487, 2017.

10

Published as a conference paper at ICLR 2020

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied to Document
Recognition. Proceedings of the IEEE, pp. 2278–2324, 1998.

C. Liu, B. Zoph, J. Shlens, W. Hua, L. Li, L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy. Progres-
sive Neural Architecture Search. In European Conference on Computer Vision, 2018.

H. Liu, K. Simonyan, and Y. Yang. DARTS Differentiable Architecture Search. In International
Conference on Learning Representations, 2019.

M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning Transferable Features with Deep Adaptation
Networks. In International Conference on Machine Learning, pp. 97–105, 2015.

M. Long, J. Wang, and M.I. Jordan. Deep Transfer Learning with Joint Adaptation Networks. In
International Conference on Machine Learning, pp. 2208–2217, 2017.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng. Reading Digits in Natural Images
with Unsupervised Feature Learning. In Advances in Neural Information Processing Systems,
2011.

A. Noy, N. Nayman, T. Ridnik, N. Zamir, S. Doveh, T. Friedman, R. Giryes, and L. Zelnik-Manor.
ASAP: Architecture search, anneal and prune. arXiv preprint arXiv:1904.04123, 2019.

S.J. Pan, I. Tsang, J. Kwok, and Q. Yang. Domain adaptation via transfer component analysis. IEEE
Transactions on Neural Networks, 22(2):199–210, 2010.

X. Peng, B. Usman, N. Kaushik, D. Wang, J. Hoffman, and K. Saenko. VisDA: A synthetic-to-real
benchmark for visual domain adaptation. Conference on Computer Vision and Pattern Recogni-
tion Workshops, 2018.

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient Neural Architecture Search via Parameter
Sharing. In International Conference on Machine Learning, 2018.

E. Real, A. Aggarwal, Y. Huang, and Quoc V Le. Regularized evolution for image classifier ar-
chitecture search. In American Association for Artificial Intelligence Conference, volume 33, pp.
4780–4789, 2019.

A. Rozantsev, M. Salzmann, and P. Fua. Residual Parameter Transfer for Deep Domain Adaptation.
In Conference on Computer Vision and Pattern Recognition, pp. 4339–4348, 2018.

A. Rozantsev, M. Salzmann, and P. Fua. Beyond Sharing Weights for Deep Domain Adaptation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(4):801–814, 2019.

K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting Visual Category Models to New Domains.
In European Conference on Computer Vision, pp. 213–226, 2010.

K. Saito, K. Watanabe, Y. Ushiku, and T. Harada. Maximum Classifier Discrepancy for Unsuper-
vised Domain Adaptation. In Conference on Computer Vision and Pattern Recognition, 2018.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outrageously Large
Neural Networks: The Sparsely-Gated Mixture-Of-Experts Layer. In International Conference
on Learning Representations, 2017.

S. Shkodrani, M. Hofmann, and E. Gavves. Dynamic adaptation on non-stationary visual domains.
In European Conference on Computer Vision, 2018.

R. Shu, H. Bui, H. Narui, and S. Ermon. A DIRT-T approach to unsupervised domain adaptation.
In International Conference on Learning Representations, 2018.

J. Su, Y. Tsai, K. Sohn, B. Liu, S. Maji, and M. Chandraker. Active adversarial domain adaptation.
Conference on Computer Vision and Pattern Recognition Workshops, 2019.

B. Sun and K. Saenko. Deep CORAL: Correlation Alignment for Deep Domain Adaptation. In
European Conference on Computer Vision, pp. 443–450, 2016.

11

Published as a conference paper at ICLR 2020

B. Sun, J. Feng, and K. Saenko. Correlation Alignment for Unsupervised Domain Adaptation. arXiv
Preprint, 2016.

B. Sun, J. Feng, and K. Saenko. Correlation Alignment for Unsupervised Domain Adaptation. In
Domain Adaptation in Computer Vision Applications., pp. 153–171. 2017.

E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep Domain Confusion: Maximizing
for Domain Invariance. In arXiv Preprint, 2014.

E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultaneous Deep Transfer Across Domains and
Tasks. In International Conference on Computer Vision, pp. 4068–4076, 2015.

E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial Discriminative Domain Adaptation.
In Conference on Computer Vision and Pattern Recognition, pp. 7167–7176, 2017.

A. Veit and S. Belongie. Convolutional Networks with Adaptive Inference Graphs. In European
Conference on Computer Vision, pp. 3–18, 2018.

H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan. Deep Hashing Network for
Unsupervised Domain Adaptation. Conference on Computer Vision and Pattern Recognition, pp.
5018–5027, 2017.

Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. Davis, K. Grauman, and R. Feris. Blockdrop: Dy-
namic Inference Paths in Residual Networks. In Conference on Computer Vision and Pattern
Recognition, pp. 8817–8826, 2018.

H. Yan, Y. Ding, P. Li, Q. Wang, Y. Xu, and W. Zuo. Mind the Class Weight Bias: Weighted
Maximum Mean Discrepancy for Unsupervised Domain Adaptation. In Conference on Computer
Vision and Pattern Recognition, pp. 2272–2281, 2017.

W. Zhang, W. Ouyang, W. Li, and D. Xu. Collaborative and Adversarial Network for Unsupervised
Domain Adaptation. In Conference on Computer Vision and Pattern Recognition, pp. 3801–3809,
2018.

B. Zoph and Q. Le. Neural Architecture Search with Reinforcement Learning. In International
Conference on Learning Representations, 2017.

B. Zoph, V. Vasudevan, J. Shlens, and Q. Le. Learning transferable architectures for scalable image
recognition. In Conference on Computer Vision and Pattern Recognition, pp. 8697–8710, 2018.

12

Published as a conference paper at ICLR 2020

Appendices

A MULTIBRANCH ARCHITECTURES

Below, we provide the network architectures and detailed building blocks of our Domain Adaptive
Multibranch Networks, for the single source domain case (D = 2). Each computational unit is
enclosed by dotted lines. The input and output shapes for all layer groupings are provided.

conv1

Co
nv

 5
x5

,
32

 c
h

Re
LU

Ma
xP

oo
l

2x
2

28
x2

8x
3

12
x1

2x
32

conv2

Co
nv

 5
x5

,
48

 c
h

Re
LU

Ma
xP

oo
l

2x
2

12
x1

2x
32

4x
4x

48

Feature
classifier

Fu
ll

y-
co

nn
.

10
0

Re
LU

Fu
ll

y-
co

nn
.

10
0

Re
LU

Fu
ll

y-
co

nn
.

10

76
8

10

Domain
classifier

Fu
ll

y-
co

nn
.

10
0

Re
LU

Fu
ll

y-
co

nn
.

D

76
8 D

Source
Domain

Target
Domain

conv1

Domain
classifierconv1

conv2

conv2

Feature
classifier

Figure 1: Multibranch LeNet. This architecture is a multibranch extension to the LeNet used by DANN (Ganin
& Lempitsky, 2015).

conv2

Co
nv

 5
x5

,
64

 c
h

Re
LU

Ma
xP

oo
l

3x
3

st
r

2

15
x1

5x
64

7x
7x

64

Feature
classifier

Fu
ll

y-
co

nn
.

30
72

Re
LU

Fu
ll

y-
co

nn
 2

04
8

Re
LU

Fu
ll

y-
co

nn
.

10

62
72 10

Domain
classifier

Fu
ll

y-
co

nn
.

10
24

Re
LU

Fu
ll

y-
co

nn
.

10
24

Re
LU

Fu
ll

y-
co

nn
.

D

62
72 D

conv3

Co
nv

 5
x5

,
12

8
ch

Re
LU

7x
7x

64

7x
7x

12
8

conv1

Co
nv

 5
x5

,
64

 c
h

Re
LU

Ma
xP

oo
l

3x
3

st
r

2

32
x3

2x
3

15
x1

5x
64

Source
Domain

Target
Domain

conv1

conv1

conv2

conv2 Domain
classifier

conv3

conv3

Feature
classifier

Figure 2: Multibranch SVHNet. This architecture is a multibranch extension to the SVHNet used by
DANN (Ganin & Lempitsky, 2015).

conv2

Co
nv
 3
x3
,
64
 c
h

Re
LU

Ma
xP
oo
l
2x
2
st
r
2

18
x1
8x
32

8x
8x
64

Feature
classifier

Fu
ll
y-
co
nn
.
51
2

Re
LU

Fu
ll
y-
co
nn
.
2

11
52 2

Domain
classifier

Fu
ll
y-
co
nn
.
51
2

Re
LU

Fu
ll
y-
co
nn
.
12
8

Re
LU

Fu
ll
y-
co
nn
.
D

11
52 D

conv3

Co
nv
 3
x3
,
12
8
ch

Re
LU

Ma
xP
oo
l
2x
2
st
r
2

8x
8x
64

3x
3x
12
8

conv1

Co
nv
 5
x5
,
32
 c
h

Re
LU

Ma
xP
oo
l
2x
2
st
r
2

40
x4
0x
1

18
x1
8x
32

Source
Domain

Target
Domain

conv1

conv1

conv2

conv2 Domain
classifier

conv3

conv3

Feature
classifier

Figure 3: Multibranch architecture for drone detection. This architecture is a multibranch extension to the
one used by Rozantsev et al. (2019).

13

Published as a conference paper at ICLR 2020

Source
D

om
ain

Target
D

om
ain

conv1

conv1

conv2_x

conv2_x

conv3_x

conv3_x

conv4_x

conv4_x

conv5_x

conv5_x
Domain

classifier

Feature
classifier

bottleneck

conv1

Conv 7x7, 64 ch

ReLU

MaxPool 3x3 str 2

BatchNorm

224x224x3

56x56x64

conv2_x

conv2_b

conv2_c

conv2_a

56x56x64

56x56x256

Feature
classifier

Fully-conn. N

256

N

Domain
classifier

Fully-conn. 1024

ReLU

Fully-conn. 1024

ReLU

Fully-conn. D

256

D

bottleneck

Average Pool 7x7

Fully-conn. 256

7x7x2048

256

conv3_x

conv3_aconv3_a

conv3_b

conv3_c

conv3_d

56x56x256

28x28x512

conv4_x

conv4_a

conv4_b

conv4_c

conv4_d

conv4_e

conv4_f

28x28x512

14x14x1024

conv5_x

conv5_a

conv5_b

conv5_c

14x14x1024

7x7x2048

ReLU

+

Conv 1x1, 64 ch

BatchNorm

ReLU

Conv 3x3, 64 ch

BatchNorm

ReLU

Conv 1x1, 256 ch

BatchNorm

conv2_{b,c}

56x56x256

56x56x256

conv3_a

56x56x256

28x28x512

ReLU

+

Conv 1x1, 128 ch

BatchNorm

ReLU

Conv 3x3, 128 ch

BatchNorm

ReLU

Conv 1x1,512 ch

BatchNorm

Conv 1x1, 512 ch
BatchNorm

ReLU

+

Conv 1x1, 128 ch

BatchNorm

ReLU

Conv 3x3, 128 ch

BatchNorm

ReLU

Conv 1x1, 512 ch

BatchNorm

conv3_{b,c,d}

28x28x512

28x28x512

conv4_a

28x28x512

14x14x1024

ReLU

+

Conv 1x1, 256 ch

BatchNorm

ReLU

Conv 3x3, 256 ch

BatchNorm

ReLU

Conv 1x1, 1024 ch

BatchNorm

Conv 1x1, 1024 ch
BatchNorm

ReLU

+

Conv 1x1, 256 ch

BatchNorm

ReLU

Conv 3x3, 256 ch

BatchNorm

ReLU

Conv 1x1, 1024 ch

BatchNorm

conv4_{b,c,d,e,f}

14x14x1024

14x14x1024

conv5_a

14x14x1024

7x7x2048

ReLU

+

Conv 1x1, 512 ch

BatchNorm

ReLU

Conv 3x3, 512 ch

BatchNorm

ReLU

Conv 1x1, 2048 ch

BatchNorm

Conv 1x1, 2048 ch
BatchNorm

ReLU

+

Conv 1x1, 512 ch

BatchNorm

ReLU

Conv 3x3, 512 ch

BatchNorm

ReLU

Conv 1x1, 2048 ch

BatchNorm

conv5_{b,c}

7x7x2048

7x7x2048

conv2_a

56x56x64

56x56x256

ReLU

+

Conv 1x1, 64 chConv 1x1, 64 ch

BatchNorm

ReLU

Conv 3x3, 64 ch

BatchNorm

ReLU

Conv 1x1, 256 ch

BatchNorm

BatchNorm
Conv 1x1, 256 ch

Figure 4: Multibranch ResNet-50. This architecture is adapted from the original ResNet-50 (He et al., 2016).
We preserve the groupings described in the original paper (He et al., 2016). N denotes the number of classes
in the dataset.

14

Published as a conference paper at ICLR 2020

B BENCHMARK DATASET DESCRIPTIONS

B.1 DIGIT RECOGNITION

MNIST (LeCun et al., 1998) consists of black and white images of handwritten digits from 0 to 9. All
images are of size 28×28 pixels. The standard training and testing splits contain 60,000 and 10,000 examples,
respectively.
MNIST-M (Ganin & Lempitsky, 2015) is synthetically generated by randomly replacing the foreground
and background pixels of random MNIST samples with natural images. Its image size is 32 × 32, and the
standard training and testing splits contain 59,001 and 9,001 images, respectively.
SVHN (Netzer et al., 2011), the Street View House Numbers dataset, consists of natural scene images of
numbers acquired from Google Street View. Its images are also of size 32 × 32 pixels, and its preset training
and testing splits are of 73,257 and 26,032 images, respectively. The SVHN images are centered at the desired
digit, but contain clutter, visual artifacts, and distractors from its surroundings.

0 1 2 3 4 5 6 7 8 9

MNIST

MNIST-M

SVHN

B.2 OBJECT RECOGNITION

Office (Saenko et al., 2010) is a multiclass object recognition benchmark dataset, containing images of 31
categories of objects commonly found in office environments. It contains color images from three different
domains: 2,817 images of products scraped from Amazon, 498 images acquired using a DSLR digital camera,
and 795 images captured with a webcam. The images are of arbitrary sizes and aspect ratios.

Backpack Bicycle
Bike

helmet Bookcase Bottle Calculator Chair
Desk
lamp Computer

File
cabinet Headphones

Amazon

DSLR

Webcam

Office-Home (Venkateswara et al., 2017) comprises a larger corpus of color, arbitrarily-sized images from
65 different classes of objects commonly found in office and home environments, coming from four different
domains. It contains 2,427 images extracted from paintings (Art), 4,365 clipart images (Clipart), 4,439 pho-
tographs of products (Product), and 4,357 pictures captured with a regular consumer camera (Real world).

Alarm
clock Backpack Battery Bed Bicycle Bottle Bucket Calculator Calendar Candle Chair Clipboard Computer

Art

Clipart

Product

Real
world

15

Published as a conference paper at ICLR 2020

VisDA 2017 (Peng et al., 2018) includes images of diverse sizes from 12 different categories, coming from
two different domains: 55,368 synthetic renders of 3D models, and 152,397 photographs of the real-world
objects. It is larger than the other two datasets, and exhibits a more significant domain shift.

Aeroplane Bicycle Bus Car Horse Knife Motorcycle Person Plant Skateboard Train Truck

Real

Synthetic

B.3 OBJECT DETECTION

UAV-200 aggregates 200 images of real drones and around 33,000 synthetic ones, as well as around 190,000
patches obtained from the background of the video, which do not contain drones, used as negative examples.
All examples are of size 40×40 pixels. We evaluate performance on a validation set comprising 3,000 positive
and 135,000 negative patches.

Real

Synthetic

Background

16

Published as a conference paper at ICLR 2020

C ADDITIONAL EXPERIMENTS

unit1 unit3unit2

mn
is

t
sv

hn

Figure 5: Gate evolution for a multibranch SVHN network with branches of different capacities. Branch 1 is the
original branch that applies 5x5 convolutions to the image, whereas branch 2 is a similar architecture but with
1x1 convolutions instead. The network quickly recognizes that SVHN requires a more complex processing and
hence assigns the respective branch to it for computational units 1 and 3.

mn
is

t
sv

hn

unit1

Figure 6: Gate evolution for a multibranch LeNet network with branches of different capacities. We have
simplified the architecture to encapsulate the feature extraction into a single computational unit in this case.
Similarly to the above, we modify the second branch for a simpler computation. The original branches apply
convolution operations to extract 32 channels with a 5x5 kernel, and then to extract 48 channels from those
with a 5x5 kernel. We replace them in the second branch with 24 channels 3x3 kernel and 48 channels 1x1
kernel convolutions, respectively, which yields commensurate shapes with the original branch, but with more
than 20 times fewer parameters. Unlike in the above experiment, we do not force the gates to open or close. The
network still assigns combinations of branches that reflect the difference in visual complexity of the domains.

17

Published as a conference paper at ICLR 2020

unit1 unit2

mn
is

t
sv

hn

Figure 7: Effect of adding extra branches to a LeNet multibranch network. We augment the original multibranch
LeNet with a third branch under the same branch architecture as the original one. The network rapidly decides
to ignore this overparametrization. The additional branch does not have an effect in the final activation of the
gates, nor does it help during training.

conv1 conv4_xconv3_xconv2_x conv5_x

of
fi

ce
_d

sl
r

of
fi

ce
_a

ma
zo

n
of

fi
ce

_w
eb

ca
m

Figure 8: Augmenting a multibranch ResNet-50 has a similar effect as the above. One of the branches is
discarded early on by each computational unit.

18

Published as a conference paper at ICLR 2020

D FULL RESULTS

Table 4: Domain Adaptation results. We compare the accuracy of our DAMNet approach with that of
DANN (Ganin & Lempitsky, 2015) and of RPT (Rozantsev et al., 2019), for image classification tasks com-
monly used to evaluate domain adaptation methods. As illustrated in Appendix B, different source and target
domain combinations present various degrees of domain shift, and some combinations are clearly more chal-
lenging than others. Our DAMNets yield a significant accuracy boost in the presence of large domain shifts,
particularly when using more than one source domain.

Datasets Source(s) . Target No DA DANN RPT DAMNet On TD

Digits

MNIST . MNIST-M 52.25 76.66† 82.24 88.80 96.21
SVHN . MNIST 54.90 73.90† 78.70† 81.30 99.26

MNIST . SVHN 25.57 31.69 34.72 37.95 89.23
MNIST-M . SVHN 27.49 37.43 37.90 39.41 89.23

MNIST + MNIST-M . SVHN 33.52 44.16 n/a 51.83 89.23
MNIST + MNIST-M . SVHN? 22.88 49.02 n/a 79.45 96.07

Office

Webcam . DSLR 93.60 99.20† 99.40† 99.62 95.20
Amazon . DSLR 32.80 79.10† 82.70† 84.14 95.20

DSLR . Webcam 90.45 97.70† 98.00† 98.11 98.49
Amazon . Webcam 34.67 78.90† 81.50† 85.28 98.49
Webcam . Amazon 41.42 62.80† 63.60† 65.67 85.11

DSLR . Amazon 34.47 63.60† 64.70† 64.82 85.11

DSLR + Webcam . Amazon 45.82 64.86 n/a 68.87 85.11

Office-Home

Art . Product 37.03 58.50 54.51 59.30 87.66
Clipart . Product 36.67 70.50 63.18 77.50 87.66
Clipart . Art 29.65 47.93 47.32 51.24 64.42

Real world . Art 50.91 57.68 51.90 60.74 64.42
Art . Real world 53.12 56.40 52.15 59.90 77.80

Clipart . Real world 43.03 57.90 55.05 62.70 77.80
Product . Real world 46.42 62.30 62.16 65.00 77.80

Clipart + Product . Real world 53.39 70.53 n/a 72.25 77.80
Art + Clipart + Product . Real world 58.72 72.00 n/a 77.65 77.80

VisDA 2017
Synthetic . Real 35.46 59.90 61.10 61.40 84.72

Real . Synthetic 51.12 83.10 82.15 85.20 99.34

UAV-200 Synthetic . Real∗ 0.377 0.715 0.743 0.792 0.858

†Accuracy reported in Ganin & Lempitsky (2015) and Rozantsev et al. (2019)
?Evaluated with a ResNet-50

∗Results reported as Average Precision

19

