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ABSTRACT

Training neural networks on image datasets generally require extensive experi-
mentation to find the optimal learning rate regime. Especially, for the cases of ad-
versarial training or for training a newly synthesized model, one would not know
the best learning rate regime beforehand. We propose an automated algorithm
for determining the learning rate trajectory, that works across datasets and mod-
els for both natural and adversarial training, without requiring any dataset/model
specific tuning. It is a stand-alone, parameterless, adaptive approach with no com-
putational overhead. We theoretically discuss the algorithm’s convergence behav-
ior. We empirically validate our algorithm extensively. Our results show that our
proposed approach consistently achieves top-level accuracy compared to SOTA
baselines in the literature in natural as well as adversarial training.

1 INTRODUCTION

Deep architectures are generally trained by minimizing a non-convex loss function via underlying
optimization algorithm such as stochastic gradient descent or its variants. It takes a fairly large
amount of time to find the best suited optimization algorithm and its optimal hyperparameters (such
as learning rate, batch size etc.) for training a model to the desired accuracy, this being a major
challenge for academicians and industry practitioners alike. Usually, such tuning is done by initial
configuration optimization through grid search or random search (Bergstra et al., 2011; Snoek et al.,
2012; Thornton et al.) . Recent works have also formulated it as a bandit problem (Li et al., 2017).

However, it has been widely demonstrated that hyperparameters, especially the learning rate often
needs to be dynamically adjusted as the training progresses, irrespective of the initial choice of
configuration. If not adjusted dynamically, the training might get stuck in a bad minima, and no
amount of training time can recover it. In this work, we focus on learning rate which is the foremost
hyperparameter that one seeks to tune when training a deep learning model to get favourable results.

Certain auto-tuning and adaptive variants of SGD, such as AdaGrad (Duchi et al., 2011),
Adadelta (Zeiler, 2012), RMSProp (Tieleman & Hinton, 2012), Adam (Kingma & Ba, 2015) among
others have been proposed that automatically adjust the learning rate as the training progresses, us-
ing functions of gradient. Yet others have proposed fixed learning rate and/or batch size change
regimes (Goyal et al., 2017), (Smith et al., 2018) for certain data set and model combination.

In addition to traditional natural learning tasks where a good LR regime might already be known
from past experiments, adversarial training for generating robust models is gaining a lot of pop-
ularity off late. In these cases, tuning the LR would generally require time consuming multiple
experiments, since the LR regime is unlikely to be known for every attack for every model and
dataset of interest1. Moreover, new models are surfacing every day courtesy the state-of-the-art
model synthesis systems, and new datasets are also becoming available quite often in different do-
mains such as healthcare, automobile industy etc. In each of these cases, no prior LR regime would
be known, and would require considerable manual tuning in the absence of a universal method, with
demonstrated effectiveness over a wide range of tasks, models and datasets.

Wilson et al. (2017) observed that solutions found by existing adaptive methods often generalize
worse than those found by non-adaptive methods. Even though initially adaptive methods might

1For example, one can see a piecewise LR schedule given by Madry et al. (2018) at https://github.
com/MadryLab/cifar10_challenge/blob/master/config.json for a particular model.
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display faster initial progress on the training set, their performance quickly plateaus on the test set,
and learning rate tuning is required to improve the generalization performance of these methods.
For the case of SGD with Momentum, learning rate (LR) step decay is very popular (Goyal et al.,
2017),(Huang et al., 2017), ReduceLRonPlateau2. However, in certain junctures of training, in-
creasing the LR can potentially lead to a quick, further exploration of the loss landscape and help
the training to escape a sharp minima (having poor generalisation Keskar et al. (2016)). Further,
recent works have shown that the distance traveled by the model in the parameter space determines
how far the training is from convergence Hoffer et al. (2017). This inspires the idea that increasing
the LR to take bigger steps in the loss landscape, while maintaining numerical stability might help
in better generalization.

The idea of increasing and decreasing the LR periodically during training has been demonstrated by
Smith (2017); Smith & Topin (2017) in their cyclical learning rate method (CLR). This has also been
shown by Loshchilov & Hutter (2016), in Stochastic Gradient Descent with Warm Restarts (SGDR,
popularly referred to as Cosine Annealing with Warm Restarts). In CLR, the LR is varied period-
ically in a linear manner, between a maximum and a minimum value, and it is shown empirically
that such increase of learning rate is overall beneficial to the training compared to fixed schedules.
In SGDR, the training periodically restarts from an initial learning rate, and then decreases to a min-
imum learning rate through a cosine schedule of LR decay. The period typically increases in powers
of 2. The authors suggest optimizing the initial LR and minimum LR for good performance.

Schaul et al. (2013) had suggested an adaptive learning rate schedule that allows the learning rate
to increase when the signal is non-stationary and the underline distribution changes. This is a com-
putationally heavy method, requiring computing the Hessian in an online manner.

Recently, there has been some work that explore gradients in different forms for hyperaparameter
optimization. Maclaurin et al. (2015) suggest an approach by which they exactly reverse SGD with
momentum to compute gradients with respect to all continuous learning parameters (referred to as
hypergradients); this is then propagated through an inner optimization. Baydin et al. (2018) suggest
a dynamic LR-tuning approach, namely, hypergradient descent, that apply gradient-based updates
to the learning rate at each iteration in an online fashion.

We propose a new algorithm to automatically determine the learning rate for a deep learning job in
an autonomous manner that simply compares the current training loss with the best observed thus
far to adapt the LR. The proposed algorithm works across multiple datasets and models for different
tasks such as natural as well as adversarial training. It is an ‘optimistic’ method, in the sense that it
increases the LR to as high as possible by examining the training loss repeatedly. We show through
rigorous experimentation that in spite of its simplicity, the proposed algorithm performs surprisingly
well as compared to the state-of-the-art.

Our contributions:

• We propose a novel, and simple algorithmic approach for autonomous, adaptive learning
rate determination that does not require any manual tuning, inspection, or pre-experimental
discovery of the algorithmic parameters.

• Our proposed algorithm works across data sets and models with no customization and
reaches higher or comparable accuracy as standard baselines in literature in the same num-
ber of epochs on each of these datasets and models. It consistently performs well, finding
stable minima with good generalization and converges smoothly.

• Our algorithm works very well for adversarial learning scenario along with natural training
as demonstrated across different models and datasets.

• We provide extensive empirical validation of our algorithm and convergence discussion.

2 PROPOSED METHOD

We propose an autonomous, adaptive LR tuning algorithm 1 towards determining the LR trajectory
during the course of training. It operates in two phases: Phase 1: Initial LR exploration, that strives

2For eg. https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/
ReduceLROnPlateau.
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to find a good starting LR; Phase 2: Optimistic Binary Exploration. The pseudocode is provided at
Algorithm 1. For the rest of the paper, we refer to the Automated Adaptive Learning Rate tuning
algorithm as AALR in short.

Algorithm 1 Automated Adaptive Learning Rate Tuning Algorithm (AALR) for Training DNNs
Require: Model θ, N Training Samples (xi, yi)

N
i=1, Optimizer SGD, Momentum=0.9, Weight De-

cay, Batch size, Number of epochs T , Loss Function J(θ). Initial LR η0 = 0.1.
Ensure: Learning Rate ηt at every epoch t.

1: Initialize: θ, SGD with LR= η0, best loss L∗ ← J(θ) (forward pass through initial model).
2: PHASE 1: Start Initial LR Exploration.
3: Set patience p← 10, patience counter i← 0, epoch number t← 0
4: while i < p do
5: Evaluate new loss L← J(θ) after training for an epoch. Increment i and t by 1 each.
6: if L > L∗ or L is NAN then
7: Halve LR: η0 ← η0/2.
8: Reload θ, reset optimizer with LR= η0, and reset counter i = 0.
9: else

10: L∗ ← L (Update best loss).
11: end if
12: end while
13: Save checkpoint θ and L∗.
14: PHASE 2: Start Optimistic Binary Exploration
15: Double LR ηt ← 2η0. Patience p← 1.
16: while t < T do
17: Train for p epochs. Increment epoch number t.
18: Evaluate new loss L← J(θ).
19: if L is NAN then
20: Halve LR: ηt+1 ← ηt/2.
21: Load checkpoint θ and L∗. Reset optimizer with LR= ηt+1.
22: Double patience pt+1 ← 2pt. Continue.
23: end if
24: if L < L∗ then
25: Update L∗ ← L. Save checkpoint θ and L∗.
26: Double LR ηt+1 ← 2ηt. Set patience p = 1.
27: else
28: Train for another p epochs. Increment epoch number t.
29: Evaluate new loss L← J(θ).
30: if L < L∗ then
31: Update L∗ ← L. Save checkpoint θ and L∗.
32: Double LR ηt+1 ← 2ηt. Set patience p = 1.
33: else
34: Halve LR: ηt+1 ← ηt/2.
35: Double patience pt+1 ← 2pt.
36: if L is NAN then
37: Load checkpoint θ and L∗. Reset optimizer with LR= ηt+1.
38: end if
39: end if
40: end if
41: end while

The notation used in the following description is as follows. Patience: p, Learning rate: η, best loss
L∗, current loss L. Model θ, Loss function J(θ). L∗ is initialized as the J(θ) after initializing the
model, before training starts.

Phase 1: Initial LR exploration
Phase 1 starts from an initial learning rate η = 0.1, and patience p = 10. It trains for an epoch,
evaluates the loss L, and compares to the best loss L∗. If L < L∗, the L∗ is updated, and it
continues training for another epoch. Otherwise, the model θ is reloaded and re-initialized, LR
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is halved η = η/2, and optimizer is reset with the new LR. The patience counter is reset. This
continues till a stable LR is determined by the algorithm, in which it trains at this LR for p epochs.
The loss L∗, the model θ and the optimizer state after Phase 1 is saved in a checkpoint.

Phase 2: Optimistic Binary Exploration
In this phase, AALR keeps the learning rate η as high as possible for as long as possible at any given
state of the training. Phase 2 starts by doubling LR to 2η, and setting p = 1. After training for p+ 1
epochs, firstly AALR checks if the loss is NAN. In this case, the checkpoint (model θ and optimizer)
corresponding to the best loss along with the best loss value L∗ are reloaded. Then LR is halved
η = η/2, patience is doubled, and the training continues. If instead, the loss is observed to decrease
compared to the best loss, L < L∗, then L∗ is updated, and the corresponding model θ, optimizer
and L∗ are updated in checkpoint. This is followed by doubling the LR η = 2η, resetting p to 1 and
continuing training for the next p+ 1 epochs.

On the other hand, if L ≥ L∗, AALR trains for another p + 1 epochs and check the loss L. This is
because as informally stated before, AALR is ‘optimistic’ and persists in the high LR for some more
time. (In case, the newly evaluated loss is NAN, the previous approach is followed.) However, if the
new lossL ≥ L∗, then AALR finally lowers the LR. AALR halves the LR η = η/2, doubles patience
p = 2p, and continues training for p + 1 epochs. If however, the loss had decreased, L < L∗, the
previous approach is followed: i.e., it doubles the LR η = 2η, resets the patience p = 1, updates best
loss and checkpoint, and repeats training for p+ 1 epochs. The above cycle repeats till the stopping
criterion is met. For ease of exposition, the pseudocode is given in Algorithm 1

3 MOTIVATION AND RELATED WORK

Increasing the LR optimistically can potentially help the training to escape saddle points that slow
down the training, as well as find flatter minima with good generalization performance. This is
inspired mainly from the following observations in the literature.

Dauphin et al. (2014) suggest that saddle points slow down the training of deep networks. Xing
et al. (2018) states that SGD moves in valley like regions of the loss surface in deep networks by
jumping from one valley wall to another at a height above the valley floor which is determined by
the LR. Large LR can help in generalization by helping SGD to quickly cross over the valley floor as
well as its barriers, to travel far away from the initialization point in a short time. Similarly, Hoffer
et al. (2017) describe the initial training phase as a high-dimensional “random walk on a random
potential” process, with an “ultra-slow” logarithmic increase in the distance of the weights from
their initialization.

From the above discussion, it seems that if one could increase the step size or LR continuously
(as long as stability is maintained), it might considerably speed up the increase in distance of the
weights from the initialization point, making the initial ultra-slow diffusion process faster. In this
way, further exploration of the loss landscape might be possible, leading to better generalization.

The idea of increasing the LR has been explored by algorithms like SGDR and CLR. In SGDR, the
LR is reset to a high value in a periodic manner; this is referred to as warm restart. After this, the
LR decays to a low value following a cosine annealing schedule. In CLR, the LR is increased and
decreased linearly in a periodic manner. While the regular increase in LR in most cases, probably
helps generalization and helps in finding flatter minima, they follow a preset method, that does not
depend on the training state or progress. Detection of convergence also becomes difficult due to
heavy fluctuation in the training output (which happens due to the periodic nature of these methods).
Moreover, the authors of each of these methods suggest tuning the parameters of the algorithm for
better performance. Even though Schaul et al. (2013) suggest a method that uses information about
the state and distribution, it is computationally heavy method. Similarly, hypergradient descent due
to Baydin et al. (2018) requires additional computation of gradients. Moreover, it requires tuning
of initial LR and introduces additional hyperparameters to be tuned, such as the learning rate for the
LR itself.

We propose the simple idea of exploring LR in a binary fashion, without requiring any parameter
tuning. This is an adaptive LR tuning algorithm that tries to follow the training state and set the
LR accordingly. Increasing LR for better generalization through exploration (and also, potential
acceleration of initial phase of SGD) are the main motivations for the optimistic doubling. At the
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same time, once SGD is in the vicinity of a good minimum, LR might need to be reduced to access
the valley. Hence, if the algorithm observes that the loss is not reducing even after a few ‘patience’
iterations, it halves the LR. The reduction is kept conservative at 1/2 to encourage finding flatter
minima.

The automated adaptive LR algorithm we propose achieves good generalization in all cases, in-
cluding adversarial scenario, and converges smoothly in roughly the same time as LR-tuned SGD
baselines available in the literature and community.

4 CONVERGENCE DISCUSSION

Convergence analysis of SGD typically requires that the sequence of step sizes, or, learning rates
used during training satisfy the following conditions:

∑∞
t=1 ηt =∞ and

∑∞
t=1 η

2
t <∞.

Consider an optimal stochastic gradient approach OPT that any point in time has oracle access to
(and applies) the highest value of learning rate, that would be amenable for good training (ensuring
fast convergence and good generalization). The sequence of LRs chosen by OPT satisfy the above
condition. The sequence ensure that OPT will converge (to a good generalization), at the same time,
the convergence is the fastest since the step sizes or LRs are kept as high as possible. Let the LR of
OPT at any epoch t be denoted as ρt.

One can define OPT as the following:

Definition: An optimal oracle SGD, with LR ρt at any epoch t, such that the following properties
hold:

1.
∑∞

t=1 ρt =∞,

2.
∑∞

t=1 ρ
2
t <∞,

3. Any first order stochastic gradient-based algorithm that has the same location in parameter
space as OPT at the start of an epoch t must have LR ≤ ρt, otherwise training will diverge
here onward (in other words, gradients will explode and the training of the network cannot
be recovered from here).

4. Any first order stochastic gradient based algorithm starting from the same location in pa-
rameter space as OPT and achieving similar generalization for a given training task, will
require at least as many epochs as OPT for convergence.

We will compare AALR with OPT, and show that the sequence of LRs chosen by AALR follow
the sequence of LRs of OPT with a bounded delay under some assumptions. We also show that
divergence will not happen.

A typical well-tuned SGD algorithm can be thought to be a proxy for OPT for a given scenario, and
hence this analysis will bound the convergence time of AALR with respect to LR-tuned SGD for
the same problem.

In a typical step decay LR-regime for SGD, the LR does not increase, but generally decreases at
certain intervals by some factor γ ∈ {2, . . . , 10}. For standard LR schedules, one can see that the
following rule-of-thumb holds: the number of epochs ∆ in between two consecutive LR changes is
directly proportional to γ. In fact one can see that for standard regimes, ∆ ≥ cγ, where c ≥ 2. (For
example, change by a factor of 2 happens at every 5 epochs or more, or, change by a factor of 10
happens every 30 epochs or more). Such typical LR regimes are often designed out of observing of
loss plateauing. We assume that OPT has a similar behaviour in the following analysis.

4.1 BOUNDING THE DELAY IN CONVERGENCE DUE TO DOUBLING

Let the LR of OPT at any epoch t be denoted as ρt and that of AALR be denoted as ηt. We assume
that Phase 1 has estimated a stable initial LR η0 ≤ ρ0, and that both AALR and OPT are roughly in
the same space in the loss valley at the start of Phase 2, denoted as epoch 1 (for simplicity). In the
following, we refer to decrease in loss compared to the best observed loss thus far as an improvement
in state.
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Assuming that the loss surface is smooth, the loss will continue to decrease for AALR, as long as
ηt ≤ ρt, and it will start increasing otherwise.

We first argue that AALR will not diverge. From Algorithm 1, it can be seen that every time state
improves, the checkpoint is updated. If and when, due to doubling (or due to initial LR), loss
diverges and goes to NAN, the last checkpoint is reloaded, LR is halved and training continues. This
will continue till a stable LR is reached, and loss is no longer NAN. In this way, AALR can avoid
losing way due to exploding gradients, caused by undue increase in LR.

Now, let us consider the case, when OPT has increased its LR. AALR, by design is always opti-
mistically doubling the LR whenever state improves. For an increase in ρt by a factor γ, it can be
seen that AALR will require 2 log2 γ epochs. This is because, when state improves, patience p will
be reset to 1, LR will be doubled, and the state will be checked again after training for p + 1 = 2
epochs.

We would next show that AALR reaches the same or lower LR as OPT (with some delay) every time
OPT reduces LR.

AALR starts with η1 = 2ρ0 and trains for p + 1 = 2 epochs and checks the state. If OPT has
maintained ρ(t) at ρ0, then state will not improve. AALR will train for another 2 epochs, and then
reduce LR by half, and double the patience. It trains at this LR for 2p + 1 = 3 epochs. Therefore,
effective training for AALR is for 3 epochs out of the 7 epochs it spent. Now if the state improves,
AALR would double the LR and the above cycle would repeat till we come to the state where OPT
needs to reduce the LR for making progress. Let there be k such cycles, such that OPT has trained
for 3(k − 1) < q ≤ 3k epochs and AALR has trained for 7k epochs to arrive at roughly the same
location in parameter space (assuming bounded gradients) and both have the same LR.

Now, let OPT reduce its LR by γ, i.e., ρq+1 = ρp/γ (For simplicity, let us assume that γ is a power
of 2). AALR would be first doubling the LR to η7k+1 = 2η7k = 2ρq (since its state was improving
till 7k epochs), and patience p will be reset to 1. It will need to reduce its LR 1+log2 γ times before
it observes an improves in state (by assumption on OPT maintaining the highest possible LR for
training progress). It will train for 2(p + 1) = 2(1 + 1) = 4 epochs, then halve the LR, double p,
train for 2(p + 1) = 2(2 + 1) = 6 epochs, and repeat this for n = 1 + log2 γ times. One can see
by induction that AALR will be spending a total of NAALR =

∑
n−1
i=0 2(2i+1)=2n+2n+1−1 epochs. At

this time, p = 2n−1. Now, AALR will train for 2(p + 1) = 2n + 2 epochs at this LR, after which
it will observe an improvement in state. Note that by the earlier observation regarding typical LR
regimes and the behavior of OPT, OPT would train for at least ∼ 2γ = 2n epochs at this new LR.
Hence, AALR has trained for a total of roughly twice the number of epochs as OPT, and at the new
LR for roughly the same number of epochs as OPT. Therefore, both are now at a similar location in
parameter and loss space. After this AALR would again double the LR, and the earlier cycle would
repeat for another k′ times, such that OPT would have trained for 3(k′ − 1) < p′ ≤ 3k′ epochs and
AALR would have trained for 7k′ epochs till the next LR change happens in OPT. Therefore, one
can see that AALR would take 2 times the number of epochs as OPT to reach the same or lower
LR, every time OPT lowers the LR.

Since the LR sequence of AALR follows the LR sequence of OPT with some finite delay, it can
be argued that the following convergence requirements on the LR sequence hold for AALR: (1)∑∞

t=1 ηt =∞, and, (2)
∑∞

t=1 η
2
t <∞. In practice, we observe that AALR converges in around the

same time as LR-tuned SGD.

5 EXPERIMENTS

We trained with AALR on several model-datasets combinations, in multiple scenarios such as nat-
ural training, as well as adversarial training. We observed that AALR achieve similar or better
accuracy as the state-of-the-art baselines.

We have compared to standard SOTA (SGD or other) LR tuned values reported in the literature and
with three other adaptive LR tuning algorithms, SGDR (Cosine Scheduling with Warm Restarts),
CLR (Cyclic Learning Rates), ADAM, and Hypergrad (Baydin et al., 2018) (few runs were not
complete). Since the principle claim of AALR is that it is a completely autonomous adaptive ap-
proach that does not require any tuning, for fair comparison, we have not tuned the parameters of
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any other adaptive approaches compared with. Since AALR does not have any tunable parameters
by design, sensitivity analyses experiments were not performed for AALR.

Additionally, we have done some experiments examining the relationship of batchsize andor entropy
with the learning rate. We find the AALR finds LR trajectory that roughly obey the square root rule
as suggested by Hoffer et al. (2017) and

5.1 SETTINGS, DATASETS AND MODELS

Experiments were done in PyTorch in x86 systems using 6 cores and 1 GPU. Where baselines
for SGDR (Loshchilov & Hutter, 2016) and CLR are not available in literature, the PyTorch
provided implementations of the corresponding LR schedulers with default settings were used
(available here https://pytorch.org/docs/stable/_modules/torch/optim/lr_
scheduler.html. For Hypergrad (we have tried SGDHD optimizer), we have used the code
available at https://github.com/gbaydin/hypergradient-descent.

We have tested on datasets CIFAR10 and CIFAR100 using standard data augmentation for both,
on models Resnet-18, WideResnet-28-10 with dropout and cutout, WideResnet-34-10 (for adversar-
ial scenario only), SimplenetV1, and Vgg16 with and without batch normalization. For Resnet-
18, WideResNets and Vgg16 models, we ran all algorithms for 200 epochs at a batch size of
128 for both datasets. For SimplenetV1, we ran for 540 epochs and used batch size of 100
and 64 for CIFAR10 and CIFAR100 respectively for all algorithms. The code for SimpleNetV1
was obtained from https://github.com/Coderx7/SimpleNet_Pytorch. The code for
Resnet-18 and WideResnets was obtained from https://github.com/uoguelph-mlrg/
Cutout. The code for Vgg16 was obtained from https://github.com/chengyangfu/
pytorch-vgg-cifar10/blob/master/main.py. We use cross entropy loss in all cases.

The batchsize and number of epochs used in each case was as per the baselines in literature,
i.e., the reported SOTA results for LR-tuned SGD. The baseline (and in where available, adaptive
algorithms’) results were reported from the cited sources. For the relationship of batchsize with
learning rate, we use FMNIST on ResNet-20.

5.2 OBSERVATIONS

Our experiments comprehensively show that AALR is a state-of-the-art automated adaptive LR tun-
ing algorithm that works universally across models-datasets for both natural and adversarial training.
It is either better or comparable to LR-tuned baselines and other adaptive algorithms uniformly and
consistently, with a smooth convergence behavior. It effective across batchsizes, without requiring
any tuning. This makes the case that for new models andor datasets, AALR should be a reliable LR
algorithm of choice, in the absence of any prior tuning or experimentation.

For the adaptive algorithms we compared with, SGDR though performs comparable with AALR
in most cases of or natural training, it catastrophically failed for at least two natural training cases
(which indicates it require tuning of either initial LR or some other parameters, and hence not a
completely stand alone automated approach) and moreover, it generally did significantly worse than
AALR for adversarial training. CLR achieved slightly lower accuracy compared to AALR in most
cases of natural training, and in adversarial training its performance fluctuated on a case by case
basis. ADAM generally converged to lower accuracy and significantly lower in adversarial scenario,
and furthermore, it catastrophically failed in two cases of natural training, which shows it requires
extensive tuning of parameters.

AALR was consistently top-level in every case, which makes the case for its universal and reliable
applicability, especially when new models/datasets/training tasks surface for which prior tuning or
information is not available.

5.3 NATURAL TRAINING

The baseline values reported have the following sources:

• Resnet-18, CIFAR10 as reported by DeVries & Taylor (2017),
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• WideResnet-28-10, CIFAR10 and CIFAR100 baseline as reported by Zagoruyko & Ko-
modakis (2016), and corresponding SGDR values as reported by Loshchilov & Hutter
(2016)

• WideResnet-28-10 with Dropout and Cutout, CIFAR10 and CIFAR100 as reported by De-
Vries & Taylor (2017)

• SimplenetV1, CIFAR10 and CIFAR100 as reported at HasanPour et al. (2016) and
https://github.com/Coderx7/SimpleNet_Pytorch

• Vgg16 with and without Batch Normalization for CIFAR10 as reported at https:
//github.com/chengyangfu/pytorch-vgg-cifar10 and http://torch.
ch/blog/2015/07/30/cifar.html (the former values are higher). (CIFAR100 for
Vgg16 values were not reported at these places, hence not provided in the table.)

Model Baseline AALR SGDR CLR ADAM Hypergrad
Resnet-18 95.28 94.94 94.81 93.85 93.07 84.48

SimpleNet-V1 95.51 95.17 95.44 93.66 93.99 87.01
Vgg16 91.4, 92.63, 92.16 10.00 91.95 10.00 (78.46*) 10.00

Vgg16-BN 92.45, 93.86 93.23 93.56 92.65 91.48 85.05
WRN-28-10 (Dropout) 96.00 95.75 95.91 95.34 94.01 -

WRN-28-10 (Dropout + Cutout) 96.92 96.44 96.6 95.42 95.46 -

Table 1: Natural Training on CIFAR10. Comparison of test accuracy of model trained with AALR
with baselines and with those obtained by training using different adaptive learning rate techniques
on various models.*:With AALR, ADAM drastically improves. Peak accuracy 78.46 from 10.

Model Baseline AALR SGDR CLR ADAM
WRN-28-10 (Dropout) 79.96 80.45 80.26 78.63 73.67

SimpleNet-V1 78.51 78.21 77.47 74.02 73.48
Vgg16 - 65.03 10.00 67.79 10.00

Table 2: Natural Training on CIFAR100: Comparison of test accuracy of model trained with AALR
with baselines and with those obtained by training using different adaptive learning rate techniques
on various models.

5.4 ADVERSARIAL TRAINING

Here we outline the results and observations from adversarial training. We observe that AALR is
particularly effective in Adversarial Training and achieves (to the best of our knowledge) state-of-
the-art adversarial test accuracy for FGSM attack in a White Box model3.

It generally does significantly better compared to the other adaptive algorithms compared with and
convergence is easier to detect, unlike the other methods. It would be interesting to explore theoreti-
cal justification regarding the effectiveness of AALR in first-order adversarial training, and it might
be related to the loss landscape of the min-max saddle point problem defined by Madry et al. (2018).

In the process of these experiments, we discover that SimpleNetV1 is a very effective adversarially
strong model with respect to CIFAR10, when trained especially with AALR for FGSM attack (ε =
8/255 and α = 2/255) in White Box model. This is a light weight model. Adversarial training
generally being a compute heavy and time consuming process, becomes much easier and faster
with it. The effectiveness of AALR in training models for different and new scenarios is clearly

3For readers unfamiliar with adversarial training and FGSMPGD attacks, details can be found in Madry
et al. (2018). We have given a short description here. Adversarial training aims at solving the min-max
saddle point problem defined as: minθ ρ(θ) where ρ(θ) = E(x,y)∼D[maxδ∈S L(θ, x + δ, y)] in contrast
to standard training which simply aims at minimizing E(x,y)∼D[L(θ, x, y)]. FGSM simply perturbs the
data as x + ε sgn(∇xL(θ, x, y)), whereas PGD does it for k steps iteratively as follows: Πx+S(xt +
αεsgn(∇xL(θ, x, y))). White Box attack refers to the attacker having access to the model parameters.
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underlined by these experiments. All attacks are `∞ within [0, 1] ball. All models were trained on
CIFAR10 for 200 epochs, using batch size of 128.

The baseline we could find is as follows. For FGSM White Box atack on CIFAR10, Madry et al.
(2018) report 56.1%. For other cases, we could not find baseline figures for these. Therefore, we
consider 56.1% as the representative baseline for each of the cases in FGSM.

For PGD, Madry et al. (2018) had reported 50.0% for k = 7 steps, and 45.8% for k = 20 steps. We
performed PGD for k = 10 steps on AALR on CIFAR10 on WRN-28-10, and obtained 52.83%. On
SimpleNetV1, PGD with 10 steps on CIFAR10 with AALR gives 45.32%.

We use cross entropy loss in all cases (next set of experiments would examine the performance with
CW loss for adversarial attacks).

Model AALR SGDR CLR ADAM
Resnet-18 (ε = 8/255, α = 2/255) 66.91 59.89 68.19 33.26

WRN-34-10 (ε = 4/255, α = 2/255) 65.86 61.55 55.63 16.13
SimpleNet-V1 (ε = 8/255, α = 2/255) 65.02 55.4 62.43 17.88

WRN-28-10 (ε = 8/255, α = 2/255), 200 epochs 68.25 62.32 63.06 17.69

Table 3: Adversarial Training on CIFAR10: Peak Adversarial Accuracy on FGSM White Box attack,
obtained on different models by training with AALR and other adaptive algorithms.

WRN-28-10(A) SimpleNetV1(A) ResNet-18(A) SimpleNetV1(B)
52.83 45.32 50.3 31.76

Table 4: AALR for adversarial Training on CIFAR10 and 100: Peak Adversarial Accuracy on
(A)PGD attack on CIFAR10, (B)FGSM on CIFAR100.

5.5 RELATIONSHIP OF BATCHSIZE AND ENTROPY WITH LEARNING RATE

The relationship of learning rate with batchsize for training DNNs is a well-studied topic. In partic-
ular, a linear relationship is suggested by Goyal et al. (2017); Smith (2017) and also by Chaudhari
& Soatto (2017). The linear scaling rule suggests that the ratio of learning rate to batch size: η/B
should remain constant for similar generalization across batch sizes for a given dataset and model).
This has been exploited to achieve good generalization across batchsizes by Goyal et al. (2017) and
Smith (2017). Chaudhari & Soatto (2017) suggest that this ratio should not be too small to maintain
the implicit regularization of SGD, otherwise the entropy would go to zero and generalization would
be poor. This observation is in line to that by Keskar et al. (2016) where small batchsizes were seen
to be essential for good generalization. A square root scaling rule of learning rate and batchsize
(η ∝

√
B) was suggested by Hoffer et al. (2017).,

We performed a simple experiment (thanks to the suggestion by anonymous reviewers) to observer
if AALR can work across batch sizes, adjusting the LR to achieve same generalization. (Note
that in the earlier experiments the batch sizes chosen were as per the baseline settings as given in
the literature, which already shows the effectiveness of AALR across batch sizes, however this is
a more direct experiment to observe the same). We used a different dataset and model than the
ones tested earlier: FMNIST on Resnet-20, and tried batch sizes 32, 128 and 512. We obtained
similar generalization performance across all the batch sizes. In particular, the peak accuracy were
as follows: 95.33 for BS 128, 95.3 for BS 512, and 94.85 for BS 32. (The baseline for the above
is 95.63 given by Zhong et al. (2017). On BS 128, we tried this with Random Erasing (p = 0.5),
and again got similar generalization: 95.47 (reported baseline is 95.98). The corresponding LR
trajectory is given in Figure 1. Interestingly, AALR seems to find trajectories that follow the square
root rule (with a lot of fluctuations), rather than linear. In particular, if one observes closely around
epochs 120 and 200 (places where the LR changes across the batchsizes), this would be apparent.
Around 120, BS 32 has LR oscillating between 0.0 and 0.025, BS 128 has LR oscillating between
0.1 and 0.5 and BS 512 has LR oscillating between 0.2 and 0.1. Around epoch 200, for BS 32, LR
is between 0.025 and 0.0125, for BS 128 between 0.5 and 0.025, for BS 512, between 0.1 and 0.5.
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Figure 1: FMNIST, LR trajectory across batch sizes.

Figure 2: FMNIST, LR trajectory with and without random erasing on same batchsize.

Furthermore, we compared the trajectory obtained on FMNIST, ResNet-20 on the same batch size
128, with and without random erasing (Figure 2). Random erasing is the process of randomly re-
placing the image pixels with random values for certain rectangular patches with certain probability,
commonly used for data augmentation for generating more robust models and improving generaliza-
tion. Clearly random erasing is a regularizing technique that increases entropy. Interestingly, the LR
trajectory shows that AALR is much more conservative in the case of random erasing, in the sense
that it maintains a much lower LR compared to the standard case. This fits very well with the ob-
servation by Chaudhari & Soatto (2017) that the entropy or implicit regularization in SGD depends
on the ratio of η/B. Since in this case, the entropy or regularization is high due to random erasing,
AALR lowers η and decreases the implicit entropy of SGD to maintain stability and converge to the
similar generalization.

6 CONCLUSION

We have presented an autonomous adaptive algorithm AALR that works without tuning across mod-
els, datasets, batchsizes and natural or adversarial training to achieve generalization performance
comparable or better than SOTA LR-tuned values. Moreover, it is a stable algorithm and consis-
tently converges smoothly, unlike other SOTA adaptive algorithms compared with. This is very
promising as it possibly implies that AALR can be reliably applied for new datasets or models or
adversarial attacks without requiring extensive manual experimentation. In the future, we would like
to try this on tasks other than image classification, and develop a rigorous theoretical justification
behind its consistent performance.
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