
Network Inversion
for

Training-Like Data Reconstruction

Pirzada Suhail∗
Department of Electrical Engineering

IIT Bombay
Mumbai, IN 400076

psuhail@iitb.ac.in

Amit Sethi
Department of Electrical Engineering

IIT Bombay
Mumbai, IN 400076
asethi@iitb.ac.in

Abstract

Machine Learning models are often trained on proprietary and private data that
cannot be shared, though the trained models themselves are distributed openly
assuming that sharing model weights is privacy preserving, as training data is
not expected to be inferred from the model weights. In this paper, we present
Training-Like Data Reconstruction (TLDR), a network inversion-based approach
to reconstruct training-like data from trained models. To begin with, we introduce a
comprehensive network inversion technique that learns the input space correspond-
ing to different classes in the classifier using a single conditioned generator. While
inversion may typically return random and arbitrary input images for a given output
label, we modify the inversion process to incentivize the generator to reconstruct
training-like data by exploiting key properties of the classifier with respect to the
training data along with some prior knowledge about the images. To validate our
approach, we conduct empirical evaluations on multiple standard vision classifica-
tion datasets, thereby highlighting the potential privacy risks involved in sharing
machine learning models.

1 Introduction

Machine learning models are often trained on proprietary or sensitive data, which cannot be shared
openly, yet the trained models themselves are commonly distributed to facilitate various applications
assuming that they do not expose the underlying training data. However, recent research suggests that
this assumption may not be valid, as it may be possible to infer and reconstruct training or similar
data by analyzing the model weights. This potential privacy risk arises from the fact that trained ML
models implicitly encode information about the data they were trained on.

Prior research to reconstruct training data has primarily focused on restricted scenarios, such as
binary classifiers with fully connected layers trained on a small dataset. In restricted settings,
over-parameterized models can easily memorize portions of the training data, leading to successful
reconstructions. For under-parameterized models, where there is no possibility of memorization
and the models generalize well, reconstructions are typically more difficult. Also in fully connected
layers, each input feature is assigned dedicated weights, which may make reconstruction easier as the
model captures more direct associations between inputs and outputs. While as in convolutional layers,
due to the weight-sharing mechanism, where the same set of weights is applied across different parts
of the input, the reconstruction becomes more challenging.

∗Corresponding Author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

In this paper, we introduce Training-Like Data Reconstruction (TLDR), a novel approach to recon-
struct training-like data from vision classifiers with convolutional layers trained on large, complex,
and multi-class datasets. At the core of our approach is a network inversion technique that learns the
input space corresponding to different classes within a classifier using a single conditioned generator
trained to generate a diverse set of samples from the input space with desired labels guided by a
combination of losses including cross-entropy, KL Divergence, cosine similarity and feature orthogo-
nality. Inverted samples generated through network inversion are often random, and while inversion
may occasionally produce training-like data, our goal is to specifically encourage the generator to
reconstruct training-like data. To achieve this, we exploit some key properties of the classifier in
relation to its training data.

The classifier is expected to be more confident in its predictions on training samples compared to
randomly generated, inverted samples. Mathematically, this can be expressed as:

P (yin|xin; θ) ≫ P (yood|xood; θ)

where P (y|x; θ) represents the softmax output of the classifier for a given input x, θ are the model’s
parameters, xin refers to in-distribution data, and xood refers to out-of-distribution data.

During training, the model learns to generalize across variations in the training data, making it
relatively more robust to perturbations around these samples and the same can be represented by:

∂fθ(xin)

∂xin
≪ ∂fθ(xood)

∂xood

Since the classifier has already been optimized on the train set, the gradient of the loss with respect to
the weights is expected to be lower for training data compared to random inverted samples, hence:

∥∇θL(fθ(xin), yin)∥ ≪ ∥∇θL(fθ(xood), yood)∥

where L represents the loss function, fθ(x) is the model output for input x, and ∇θ is the gradient
with respect to the model weights θ. Our main contributions in this paper include:

1. A comprehensive approach to inversion of convolutional vision classifiers using a single
conditioned generator.

2. The introduction of soft vector conditioning and intermediate matrix conditioning to encour-
age diversity in the inversion process.

3. The use of network inversion to reconstruct training-like data by exploiting key properties
of the classifier in relation to its training data.

To validate our approach, we conduct extensive inversion and reconstruction experiments on MNIST,
FashionMNIST, SVHN, and CIFAR-10, demonstrating that the proposed method is capable of
reconstructing training-like data across different domains highlighting the privacy risks.

2 Related Works

Network inversion has emerged as a powerful method for exploring and understanding the internal
mechanisms of neural networks. By identifying input patterns that closely approximate a given
output target, inversion techniques provide a way to visualize the information processing capabilities
embedded within the network’s learned parameters. These methods reveal important insights into
how models represent and manipulate data, offering a pathway to expose the latent structure of
neural networks. While inversion techniques primarily began as tools for understanding models,
their application to extracting sensitive data has sparked significant concerns. Neural networks
inherently store information about the data they are trained on, and this has led to the potential for
training data to be reconstructed through inversion attacks. Early works in this space, particularly
on over-parameterized models with fully connected networks, demonstrated that it was possible
to extract portions of the training data due to the model’s tendency to memorize data. This raises
significant privacy concerns, especially in cases where models are trained on proprietary or sensitive
datasets, such as in healthcare or finance.

2

Early research on inversion for multi-layer perceptrons in [Kindermann and Linden, 1990], derived
from the back-propagation algorithm, demonstrates the utility of this method in applications like
digit recognition highlighting that while multi-layer perceptrons exhibit strong generalization capa-
bilities—successfully classifying untrained digits—they often falter in rejecting counterexamples,
such as random patterns. Subsequently [Jensen et al., 1999] expanded on this idea by proposing
evolutionary inversion procedures for feed-forward networks that stands out for its ability to identify
multiple inversion points simultaneously, providing a more comprehensive view of the network’s
input-output relationships. The paper [Saad and Wunsch, 2007] explores the lack of explanation
capability in artificial neural networks (ANNs) and introduces an inversion-based method for rule
extraction to calculate the input patterns that correspond to specific output targets, allowing for the
generation of hyperplane-based rules that explain the neural network’s decision-making process.
[Wong, 2017] addresses the problem of inverting deep networks to find inputs that minimize certain
output criteria by reformulating network propagation as a constrained optimization problem and
solving it using the alternating direction method of multipliers.

Model Inversion attacks in adversarial settings are studied in [Yang et al., 2019], where an attacker
aims to infer training data from a model’s predictions by training a secondary neural network to
perform the inversion, using the adversary’s background knowledge to construct an auxiliary dataset,
without access to the original training data. The paper [Kumar and Levine, 2020] presents a method
for tackling data-driven optimization problems, where the goal is to find inputs that maximize an
unknown score function by proposing Model Inversion Networks (MINs), which learn an inverse
mapping from scores to inputs, allowing them to scale to high-dimensional input spaces. While
[Ansari et al., 2022] introduces an automated method for inversion by focusing on the reliability of
inverse solutions by seeking inverse solutions near reliable data points that are sampled from the
forward process and used for training the surrogate model. By incorporating predictive uncertainty
into the inversion process and minimizing it, this approach achieves higher accuracy and robustness.

The traditional methods for network inversion often rely on gradient descent through a highly
non-convex loss landscape, leading to slow and unstable optimization processes. To address these
challenges, recent work by [Liu et al., 2022] proposes learning a loss landscape where gradient
descent becomes efficient, thus significantly improving the speed and stability of the inversion
process. Similarly Suhail [2024] proposes an alternate approach to inversion by encoding the network
into a Conjunctive Normal Form (CNF) propositional formula and using SAT solvers and samplers to
find satisfying assignments for the constrained CNF formula. While this method, unlike optimization-
based approaches, is deterministic and ensures the generation of diverse input samples with desired
labels. However, the downside of this approach lies in its computational complexity, which makes it
less feasible for large-scale practical applications.

In reconstruction [Haim et al., 2022] studies the extent to which neural networks memorize training
data, revealing that in some cases, a significant portion of the training data can be reconstructed from
the parameters of a trained neural network classifier. The paper introduces a novel reconstruction
method based on the implicit bias of gradient-based training methods and demonstrate that it is
generally possible to reconstruct a substantial fraction of the actual training samples from a trained
neural network, specifically focusing on binary MLP classifiers. Later [Buzaglo et al., 2023] improve
upon these results by showing that training data reconstruction is not only possible in the multi-class
setting but that the quality of the reconstructed samples is even higher than in the binary case. Also
revealing that using weight decay during training can increase the susceptibility to reconstruction
attacks.

The paper [Balle et al., 2022] addresses the issue of whether an informed adversary, who has
knowledge of all training data points except one, can successfully reconstruct the missing data
point given access to the trained machine learning model. The authors explore this question by
introducing concrete reconstruction attacks on convex models like logistic regression with closed-
form solutions. For more complex models, such as neural networks, they develop a reconstructor
network, which, given the model weights, can recover the target data point. Subsequenlty [Wang
et al., 2023] investigates how model gradients can leak sensitive information about training data,
posing serious privacy concerns. The authors claim that even without explicitly training the model
or memorizing the data, it is possible to fully reconstruct training samples by gradient query at a
randomly chosen parameter value. Under mild assumptions, they demonstrate the reconstruction of
training data for both shallow and deep neural networks across a variety of activation functions.

3

In this paper, we explore the intersection of network inversion and training data reconstruction. Our
approach to network inversion aims to strike a balance between computational efficiency and the
diversity of generated inputs by using a carefully conditioned generator trained to learn the data
distribution in the input space of a trained neural network. The conditioning information is encoded
into vectors in a concealed manner to enhance the diversity of the generated inputs by avoiding easy
shortcut solutions. This diversity is further enhanced through the application of heavy dropout during
the generation process, the minimization of cosine similarity and encouragement of orthogonality
between a batch of the features of the generated images.

While network inversion may occasionally produce training-like samples, we encourage this process
by exploiting key properties of the classifier with respect to its training data. The classifier tends
to be more confident in predicting in-distribution training samples than random, out-of-distribution
samples, and it exhibits greater robustness to perturbations around the training data. Furthermore, the
gradient of the loss with respect to the model’s weights is typically lower for training data, which
helps guide the generator toward reproducing these samples. Additionally, we incorporate prior
knowledge in the form of variational loss to create noise-free images and pixel constraint loss to keep
pixel values within the valid range, ensuring the generated images are both semantically and visually
aligned with the original training data. By leveraging these insights, we steer the inversion process to
reconstruct training-like data and extend prior work on training data reconstruction, which primarily
focused on models with fully connected layers, to under-parametrized models with convolutional
layers and standard activation functions, trained on larger datasets with regularisation techniques to
prevent memorisation.

3 Methodology & Implementation

Our approach to Network Inversion and subsequent training data reconstruction uses a carefully
conditioned generator that learns diverse data distributions in the input space of the trained classifier.

3.1 Classifier

In this paper inversion and reconstruction is performed on a classifier which includes convolution
and fully connected layers as appropriate to the classification task. We use standard non-linearity
layers like Leaky-ReLU [Xu et al., 2015] and Dropout layers [Srivastava et al., 2014] in the classifier
for regularisation purposes to discourage memorisation. The classification network is trained on a
particular dataset and then held in evaluation mode for the purpose of inversion and reconstruction.

3.2 Generator

The images in the input space of the classifier will be generated by an appropriately conditioned
generator. The generator builds up from a latent vector by up-convolution operations to generate the
image of the given size. While generators are conventionally conditioned on an embedding learnt of
a label for generative modelling tasks, we given its simplicity, observe its ineffectiveness in network
inversion and instead propose more intense conditioning mechanism using vectors and matrices.

3.2.1 Label Conditioning

Label Conditioning of a generator is a simple approach to condition the generator on an embedding
learnt off of the labels each representative of the separate classes. The conditioning labels are then
used in the cross entropy loss function with the outputs of the classifier. While Label Conditioning
can be used for inversion, the inverted samples do not seem to have the diversity that is expected of
the inversion process due to the simplicity and varying confidence behind the same label.

3.2.2 Vector Conditioning

In order to achieve more diversity in the generated images, the conditioning mechanism of the
generator is altered by encoding the label information into an N -dimensional vector for an N -class
classification task. The vectors for this purpose are randomly generated from a normal distribution
and then soft-maxed to represent an input conditioning distribution for the generated images. The

4

argmax index of the soft-maxed vectors now serves as the de facto conditioning label, which can be
used in the cross-entropy loss function without being explicitly revealed to the generator.

3.2.3 Intermediate Matrix Conditioning

Vector Conditioning allows for a encoding the label information into the vectors using the argmax
criteria. This can be further extended into Matrix Conditioning which apparently serves as a better
prior in case of generating images and allows for more ways to encode the label information for a
better capture of the diversity in the inversion process. In its simplest form we use a Hot Conditioning
Matrix in which an NXN dimensional matrix is defined such that all the elements in a given row and
column (same index) across the matrix are set to one while the rest all entries are zeroes. The index
of the row or column set to 1 now serves as the label for the conditioning purposes. The conditioning
matrix is concatenated with the latent vector intermediately after up-sampling it to NXN spatial
dimensions, while the generation upto this point remains unconditioned.

3.2.4 Vector-Matrix Conditioning

Since the generation is initially unconditioned in Intermediate Matrix Conditioning, we combine
both vector and matrix conditioning, in which vectors are used for early conditioning of the generator
upto NXN spatial dimensions followed by concatenation of the conditioning matrix for subsequent
generation. The argmax index of the vector, which is the same as the row or column index set to high
in the matrix, now serves as the conditioning label.

3.3 Network Inversion

The main objective of Network Inversion is to generate images that when passed through the classifier
will elicit the same label as the generator was conditioned to. Achieving this objective through a
straightforward cross-entropy loss between the conditioning label and the classifier’s output can lead
to mode collapse, where the generator finds shortcuts that undermine diversity. With the classifier
trained, the inversion is performed by training the generator to learn the data distribution for different
classes in the input space of the classifier as shown schematically in Figure 1 using a combined loss
function LInv defined as:

LInv = α · LKL + β · LCE + γ · LCosine + δ · LOrtho

where LKL is the KL Divergence loss, LCE is the Cross Entropy loss, LCosine is the Cosine Simi-
larity loss, and LOrtho is the Feature Orthogonality loss. The hyperparameters α, β, γ, δ control the
contribution of each individual loss term defined as:

LKL = DKL(P∥Q) =
∑
i

P (i) log
P (i)

Q(i)

LCE = −
∑
i

yi log(ŷi)

LCosine =
1

N(N − 1)

∑
i ̸=j

cos(θij)

LOrtho =
1

N2

∑
i,j

(Gij − δij)
2

where DKL represents the KL Divergence between the input distribution P and the output distribution
Q, yi is the set encoded label, ŷi is the predicted label from the classifier, cos(θij) represents the
cosine similarity between features of generated images i and j, Gij is the element of the Gram matrix,
and δij is the Kronecker delta function. N is the number of feature vectors in the batch.

Thus, the combined loss function ensures that the generator matches the input and output distributions
using KL Divergence and also generates images with desired labels using Cross Entropy, while
maintaining diversity in the generated images through Feature Orthogonality and Cosine Similarity.

5

Figure 1: Proposed Approach to Network Inversion

3.3.1 Cross Entropy

The key goal of the inversion process is to generate images with the desired labels and the same
can be easily achieved using cross entropy loss. In cases where the label information is encoded
into the vectors without being explicitly revealed to the generator, the encoded labels can be used in
the cross entropy loss with the classifier outputs for the generated images. In contrast to the label
conditioning, vector conditioning complicate the training objectives to the extent that the generator
does not immediately converge, instead the convergence occurs only when the generator figures out
the encoded conditioning mechanism allowing for a better exploration of the input space.

3.3.2 KL Divergence

KL Divergence is used to train the generator to learn the data distribution in the input space of
the classifier for different conditioning vectors. During training, the KL Divergence loss function
measures and minimise the difference between the output distribution of the generated images, as
predicted by the classifier, and the conditioning distribution used to generate these images.

3.3.3 Cosine Similarity

To enhance the diversity of the generated images, we use cosine similarity to assesses and minimises
the angular distance between the features of a batch of generated images across the last fully connected
layers, promoting variability in the generated images. The combination of cosine similarity with
cross-entropy loss not only ensures that the generated images are classified correctly but also enforces
diversity among the images produced for each label.

3.3.4 Feature Orthogonality

In addition to the cosine similarity loss, we incorporate feature orthogonality as a regularization
term to further enhance the diversity of generated images by minimizing the deviation of the Gram
matrix of the features from the identity matrix. By ensuring that the features of generated images
are orthogonal, we promote the generation of distinct and non-redundant representations for each
conditioning label.

6

Figure 2: Schematic Approach to Training-Like Data Reconstruction using Network Inversion

3.4 Training-Like Data Reconstruction

While Network Inversion enables access to a diverse set of images in the input space of the model
for different classes, the inverted samples are completely random. However, Network Inversion
can be used for training data reconstruction as shown schematically in Figure 2 by exploiting key
properties of the training data in relation to the classifier including model confidence, robustness to
perturbations, and gradient behavior along with some prior knowledge about the training data.

In order to take model confidence into account, we use hot conditioning vectors in reconstruction
instead of soft conditioning vectors used in inversion, to generate samples that are confidently labeled
by the classifier. Since the classifier is expected to handle perturbations around the training data
effectively, the perturbed images should retain the same labels and also be confidently classified.
Hence, we introduce an L∞ perturbation to the generated images and pass both the original and
perturbed images represented by dashed lines, through the classifier and use them in the loss evaluation.
We also introduce a gradient minimization loss to penalise the large gradients of the classifier’s output
with respect to its weights when processing the generated images ensuring that the generator produces
samples that have small gradient norm, a property expected of the training samples. Furthermore,
we incorporate prior knowledge through pixel constraint and variational losses to ensure that the
generated images have valid pixel values and are noise-free.

Hence the previously defined inversion loss LInv is augmented to include the above aspects into a
combined reconstruction loss LRecon defined as:

LRecon = α·LKL+α′ ·Lpert
KL +β ·LCE+β′ ·Lpert

CE +γ ·LCosine+δ ·LOrtho+η1 ·LVar+η2 ·LPix+η3 ·LGrad

where Lpert
KL and Lpert

CE represent the KL divergence and cross-entropy losses applied on perturbed
images, weighted by α′ and β′respectively while LVar, LPix and LGrad represent the variational loss,
Pixel Loss and penalty on gradient norm each weighted by η1, η2, and η3 respectively and defined for
an Image I as:

LVar =
1

N

N∑
i=1

∑
h,w

(
(Ii,h+1,w − Ii,h,w)

2
+ (Ii,h,w+1 − Ii,h,w)

2
)

LPix =
∑

max(0,−I) +
∑

max(0, I − 1) LGrad = ∥∇θL(fθ(I), y)∥

7

3.4.1 Pixel Loss

The Pixel Loss is used to ensure that the generated images have valid pixel values between 0 and 1.
Any pixel value that falls outside this range is penalized hence encouraging the generator to produce
valid and realistic images.

3.4.2 Gradient Loss

The Gradient Loss aims to minimize the gradient of the model’s output with respect to its weights
for the generated images ensuring that the generated images are closer to the training data, which is
expected to have lower gradient magnitudes.

3.4.3 Variational Loss

The Variational Loss is designed to promote the generation of noise-free images by minimizing large
pixel variations by encouraging smooth transitions between adjacent pixels, effectively reducing
high-frequency noise and ensuring that the generated images are visually consistent and realistic.

4 Experiments & Results

In this section, we present the experimental results obtained by applying our network inversion and
reconstruction technique on the MNIST [Deng, 2012], FashionMNIST [Xiao et al., 2017], SVHN and
CIFAR-10 [Krizhevsky et al.] datasets by training a generator to produce images with desired labels.
The classifier is initially normally trained on a dataset and then held in evaluation for the purpose of
inversion and reconstruction. The images generated by the conditioned generator corresponding to
the latent and the conditioning vectors are then passed through the classifier.

The classifier is a simple convolutional neural network with dropout, batch normalization, and
leaky-relu activation followed by fully connected layers and softmax for classification. While the
generator is based on Vector-Matrix Conditioning in which the class labels are encoded into random
softmaxed vectors concatenated with the latent vector followed by transposed convolutions, batch
normalization [Ioffe and Szegedy, 2015] and dropout layers [Srivastava et al., 2014] to encourage
diversity in the generated images. Once the vectors are upsampled to NXN spatial dimensions they
are concatenated with a conditioning matrix for subsequent generation upto the required image size.

Figure 3: Inverted Images for all 10 classes in MNIST, FashionMNIST, SVHN & CIFAR-10.

The inverted images are visualized to assess the diversity of the generated samples in Figure 3
for MNIST, FashionMNIST, SVHN and CIFAR-10 respectively. While each row corresponds to a
different class each column corresponds to a different generator and as can be observed the images
within each row represent the diversity of samples generated for that class. It is observed that
high weightage to cosine similarity increases both the inter-class and the intra-class diversity in the
generated samples of a single generator. These inverted samples that are confidently classified by the
generator are unlike anything the model was trained on, and yet happen to be in the input space of
different labels highlighting their unsuitability in safety-critical tasks.

The reconstruction experiments were carried out on models trained on datasets of varying size and
as a general trend the quality of reconstructed samples degrades with increasing number of training
samples. In case of MNIST and FashionMNIST reconstructions performed using three generators
each for models trained on datasets of size 1000, 10000 and 60000 are shown in Figure 4.

8

Figure 4: Reconstructed Images for all 10 classes in MNIST and FashionMNIST respectively .

While as for SVHN we held out a cleaner version of the dataset in which every image includes a
single digit. In case of CIFAR-10 given the low resolution of the images the reconstructions in some
cases are not perfect although they capture the semantic structure behind the images in the class very
well. The reconstruction results on SVHN and CIFAR-10 using three different generators on datasets
of size 1000, 5000, and 10000 are presented in Figure 5.

Figure 5: Reconstructed Images for all 10 classes in SVHN and CIFAR-10 respectively.

5 Conclusion & Future Work

In this paper, we propose Training-Like Data Reconstruction (TLDR), a novel approach for recon-
structing training-like data using Network Inversion from convolutional neural network (CNN) based
machine learning models. We begin by introducing a comprehensive network inversion technique
using a conditioned generator trained to learn the input space associated with different classes within
the classifier using a combination of losses. By exploiting key properties of the classifier in relation
to its training data we encouraged the reconstruction of training-like data and demonstrated that
machine learning models remain vulnerable to inversion attacks.

As part of the future work, we plan to extend the TLDR approach to more complex architectures to
understand privacy vulnerabilities in more advanced neural networks. Further improving the quality
of reconstructed samples by leveraging the implicit bias of gradient-based optimization, which tends
to memorize a subset of training samples near decision boundaries, will also be explored. Lastly,
it would be of interest to evaluate the potential for learning generative models in cooperation with
classifiers through network inversion guided by successive weight updates in the classifier during the
training process.

9

References
Navid Ansari, Hans-Peter Seidel, Nima Vahidi Ferdowsi, and Vahid Babaei. Autoinverse: Uncertainty

aware inversion of neural networks, 2022. URL https://arxiv.org/abs/2208.13780.

Borja Balle, Giovanni Cherubin, and Jamie Hayes. Reconstructing training data with informed
adversaries. In 2022 IEEE Symposium on Security and Privacy (SP), pages 1138–1156, 2022. doi:
10.1109/SP46214.2022.9833677.

Gon Buzaglo, Niv Haim, Gilad Yehudai, Gal Vardi, and Michal Irani. Reconstructing training data
from multiclass neural networks, 2023. URL https://arxiv.org/abs/2305.03350.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing training data
from trained neural networks, 2022. URL https://arxiv.org/abs/2206.07758.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.
mlr.press/v37/ioffe15.html.

C.A. Jensen, R.D. Reed, R.J. Marks, M.A. El-Sharkawi, Jae-Byung Jung, R.T. Miyamoto, G.M.
Anderson, and C.J. Eggen. Inversion of feedforward neural networks: algorithms and applications.
Proceedings of the IEEE, 87(9):1536–1549, 1999. doi: 10.1109/5.784232.

J Kindermann and A Linden. Inversion of neural networks by gradient descent. Parallel Computing,
14(3):277–286, 1990. ISSN 0167-8191. doi: https://doi.org/10.1016/0167-8191(90)90081-J. URL
https://www.sciencedirect.com/science/article/pii/016781919090081J.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). URL http://www.cs.toronto.edu/~kriz/cifar.html.

Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 5126–5137. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
373e4c5d8edfa8b74fd4b6791d0cf6dc-Paper.pdf.

Ruoshi Liu, Chengzhi Mao, Purva Tendulkar, Hao Wang, and Carl Vondrick. Landscape learning for
neural network inversion, 2022. URL https://arxiv.org/abs/2206.09027.

Emad W. Saad and Donald C. Wunsch. Neural network explanation using inversion. Neural Networks,
20(1):78–93, 2007. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2006.07.005. URL
https://www.sciencedirect.com/science/article/pii/S0893608006001730.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.
html.

Pirzada Suhail. Network inversion of binarised neural nets. In The Second Tiny Papers Track at ICLR
2024, 2024. URL https://openreview.net/forum?id=zKcB0vb7qd.

Zihan Wang, Jason Lee, and Qi Lei. Reconstructing training data from model gradient, provably.
In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent, editors, Proceedings of The 26th
International Conference on Artificial Intelligence and Statistics, volume 206 of Proceedings
of Machine Learning Research, pages 6595–6612. PMLR, 25–27 Apr 2023. URL https://
proceedings.mlr.press/v206/wang23g.html.

Eric Wong. Neural network inversion beyond gradient descent. In WOML NIPS, 2017. URL
https://api.semanticscholar.org/CorpusID:208231247.

10

https://arxiv.org/abs/2208.13780
https://arxiv.org/abs/2305.03350
https://arxiv.org/abs/2206.07758
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://www.sciencedirect.com/science/article/pii/016781919090081J
http://www.cs.toronto.edu/~kriz/cifar.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/373e4c5d8edfa8b74fd4b6791d0cf6dc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/373e4c5d8edfa8b74fd4b6791d0cf6dc-Paper.pdf
https://arxiv.org/abs/2206.09027
https://www.sciencedirect.com/science/article/pii/S0893608006001730
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://openreview.net/forum?id=zKcB0vb7qd
https://proceedings.mlr.press/v206/wang23g.html
https://proceedings.mlr.press/v206/wang23g.html
https://api.semanticscholar.org/CorpusID:208231247

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network, 2015. URL https://arxiv.org/abs/1505.00853.

Ziqi Yang, Jiyi Zhang, Ee-Chien Chang, and Zhenkai Liang. Neural network inversion in adversarial
setting via background knowledge alignment. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’19, page 225–240, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450367479. doi: 10.1145/3319535.3354261.
URL https://doi.org/10.1145/3319535.3354261.

11

https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1505.00853
https://doi.org/10.1145/3319535.3354261

	Introduction
	Related Works
	Methodology & Implementation
	Classifier
	Generator
	Label Conditioning
	Vector Conditioning
	Intermediate Matrix Conditioning
	Vector-Matrix Conditioning

	Network Inversion
	Cross Entropy
	KL Divergence
	Cosine Similarity
	Feature Orthogonality

	Training-Like Data Reconstruction
	Pixel Loss
	Gradient Loss
	Variational Loss

	Experiments & Results
	Conclusion & Future Work

