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ABSTRACT

In this work, we study the topical behavior in a large scale. Both the temporal and
the spatial relationships of the behavior are explored with the deep learning archi-
tectures combing the recurrent neural network (RNN) and the convolutional neural
network (CNN). To make the behavioral data appropriate for the spatial learning
in the CNN, several reduction steps are taken in forming the topical metrics and
placing them homogeneously like pixels in the images. The experimental result
shows both temporal and spatial gains when compared against a multilayer per-
ceptron (MLP) network. A new learning framework called the spatially connected
convolutional networks (SCCN) is introduced to better predict the behavior.

1 INTRODUCTION

Understanding and predicting the behavior of an entity over a large domain of different actions is
a challenging problem. The problem is even more difficult when the behavioral data is massively
collected with lots of noise. There are various studies in using behavioral data as a global indica-
tor. For instance, large scale user activity data from Google is used to measure and track the user
experience such as happiness and engagement (Rodden et al., 2010). The web behavioral data in-
cluding searches and page views is used by Microsoft to decide the advertisement delivered to the
user (Chandramouli et al.,|2012). Similarly, Yahoo also conducts study on how education and other
factors can affect the web browsing behavior, which can also be applied to improve advertisement
targeting (Goel et al., 2012). The predictor to track stock index can be composed from the catego-
rized moods based on the overall Twitter activities (Bollen & Mao, |2011)). It is also possible to aim
on lots of different business intelligence targets with the behavioral data at hand (Chen et al.|[2012).

However, the aforementioned large scale behavioral analytics use cases have one aspect in common:
they heavily simplified the response domain to have one or few learnable targets. In this work,
we attempt to predict the response whose space is the same as the input space, using the historical
behavioral data — not only from the target entity itself, but also from the peer entities. First, we
organize the activities into topics. The topical activities on each topic is then quantified and measured
for each entity. Over several periods of time, we observe the topical behavior over the same set of
topics for all entities in the experiment. Several combinations of deep neural network are explored
to predict topical behavior. Specifically, the long short-term memory units (LSTM) (Hochreiter &
Schmidhuber} [1997)) and other types of RNN (Funahashi & Nakamural [1993)) are employed to learn
the temporal variation patterns of the topical behavior. The CNN and the locally-connected network
(LCN) (LeCun et al.l [1998)) are used to learn the spatial composition of the topical behavior. The
relationship between topics needs to be abstracted and evenly distributed like pixels for the CNN
and the LCN to learn (Su, 2016). The experiment result is compared to the benchmark MLP result.

2 METHOD

To keep the behavior prediction within a trackable scope, we summarize the input behavioral data
into topics. Starting from the activity log of all entities in the system, the clustering algorithm such
as the latent latent Dirichlet allocation (Blei et al., 2003) is applied to find the topics in a high
dimension word vector space. For each entity, the vectorized log entries are summarized on these
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Figure 1: Topical behavior. (a) data points in high dimensional space; (b) cluster centers (topics)
after dimension reduction; (c¢) topics after homogeneous mapping; (d) topical metrics for an entity
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Figure 2: Different learning architecture for topical behavior prediction.

topics to form quantitative metrics. For example, the topical volume over topic ¢ of entity e can be

measured as 5
V2 < log(( Y ra+1)), (1)

a€Be T

where 7, is the relevancy for activity a to topic ¢, and B is the set of activities defined by the unique
content documents of all activities logged within the time period 7.

To better explored the intra-topic relationship in the behavioral data, we want to capture the co-
occurrence detail between any pair of topics. Furthermore, we want to learn the detail in the order of
the distance between the topic pair - the co-occurrence means more when the two topics are closer
to each other. CNN has shown great success in classifying images (Krizhevsky et al.l 2012), text
(Kalchbrenner et al.| [2014)), videos (Karpathy et al., 2014). In order to arrange the topical metrics
to be similar to the pixels in an image into the CNN, the topical metrics need to go through the
following two steps, as illustrated in Figure[I]

1. Dimension reduction: this step maps the topical metrics into a 2D or 3D space, while
maintaining the spatial relationship on topics before the mapping. Some popular methods
include principal component analysis and t-SNE (Van der Maaten & Hinton, 2008)).

2. Homogeneous mapping: on the visualization space that the CNN can digest, the topical
metrics also need to be placed evenly. The spatial relationship among the topics also needs
to be maintained with best efforts. One way to achieve this goal is the split-diffuse (SD)
algorithm (Sul 2016).
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Figure 3: Performance on various learning architectures

3 TEMPORAL AND SPATIAL LEARNING

We adopt various architectures to study how the temporal and the spatial information help the topical
learning, as in Figure[2] In the MLP, the topical metrics over different time periods are cascaded into
one single 1D vector for each sample. The number of neurons reduces over layers, with the output
layer being the number of topics. Separately, we use one layer of LSTMs to track the topical metrics
for each time period, and then another layer of LSTMs to track the output states of the LSTMs from
the previous layer, forming the time distributed recurrent network (TDRN) in Figure [2{b).

In Figure Ekc), the long-term recurrent convolutional networks (LRCN) (Donahue et al.,2015)) com-
bines the convolutional layers with the temporal recursion, to exploit both the temporal and the
spatial relationship among the topics. In the proposed spatially connected convolutional networks
(SCCN) in Figure 2[d), the convolutional units in LRCN are replaced by the LCNs. The LCNs do
not share the trained weights between different position. Instead, the same set of weights is applied
to the same position of different samples. The regulation is more effective on the locally customized
patch dictionaries in the LCN, compared to that on a global dictionary in the CNN.

In predicting the trending or risky topic, the cost of missed future trend is higher than the cost of
false positives. One of the possible loss metrics, the risk loss error (RLE), is defined as

RLE = % PBRIGEEN )

| ‘ Yvey

The data set comes from more than 150 million activity entries of 98, 881 network entities, which
generate around 9.5 million topical trails. These entities are split into 69,407 training samples,
7,712 validation samples, and 21, 762 testing samples. The predicted target values in the testing
samples are from the time periods that are later then all the time periods in the training samples.
The learning architectures in our implementation are built with Keras (Chollet, |2015) with Theano
(Theano Development Team), [2016) backend. Both dropout (Hinton et al.||2012) and L5 regulation
(Ngl 2004) are applied to all the architectures to keep the learned models generalized.

4 RESULT

Figure [3| shows the experimental result on loss metrics RLE. Experiments were also conducted
on other metrics (the results being omitted). The epochs when the validation data has the best five
RLEs are chosen to form the RLE5 by averaging the corresponding RLE's from the testing data.
With only the temporal relationship explored by the TDRN, the prediction gain against the MLP
ranging from 11.32% to 16.73% depending on the loss metric and the evaluation scenario. The
LRCN explores both temporal relationship and spatial relationship over topics. The additional spa-
tial information among topics tracked by CNN further improve the prediction gain from 13.73%
to 20.53%. Replacing the CNN spatial tracking with the LCNs, the SCCN provides a compara-
ble 14.20% to 19.85% prediction gain to the LRCN. It is faster to train and to make prediction.
Meanwhile, it is better regulated, making it more suitable for larger scale behavioral learning.
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