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ABSTRACT

We consider the problem of learning a binary classifier only from positive data and
unlabeled data (PU learning). Recent methods of PU learning commonly assume
that the labeled positive data are identically distributed as the unlabeled positive
data. However, this assumption is unrealistic in many instances of PU learning
because it fails to capture the existence of a selection bias in the labeling process.
When the data has selection bias, it is difficult to learn the Bayes optimal classifier
by conventional methods of PU learning. In this paper, we propose a method to
partially identify the classifier. The proposed algorithm learns a scoring function
that preserves the order induced by the class posterior under mild assumptions,
which can be used as a classifier by setting an appropriate threshold. Through
experiments, we show that the method outperforms previous methods for PU
learning on various real-world datasets.

1 INTRODUCTION

We consider a situation that there are only positive and unlabeled data, and train a binary classifier
only from them (PU learning). This problem arises in various practical situations, such as information
retrieval and outlier detection (Elkan & Noto, 2008; Ward et al., 2009; Scott & Blanchard, 2009;
Blanchard et al., 2010; Li et al., 2009; Nguyen et al., 2011). One of the milestones of PU learning
is Elkan & Noto (2008), who proposed a practically useful algorithm with theoretical analysis, and
there is subsequent research called unbiased PU learning (du Plessis & Sugiyama, 2014; du Plessis
et al., 2015) where an unbiased estimator of the classification risk is minimized.

We focus on the case-control scenario (a.k.a. the problem setting based on two samples of data; Ward
et al., 2009; Niu et al., 2016). In this scenario, positive data are obtained separately from unlabeled
data, and unlabeled data are sampled from the whole population. As Elkan & Noto (2008) explained,
we cannot identify a classifier without an assumption on how positive data are labeled. Therefore
“selected completely at random” (SCAR) is traditionally assumed, i.e., the positive labeled data are
identically distributed as the positive unlabeled data (Elkan & Noto, 2008; du Plessis et al., 2015).
The assumption of SCAR is, however, unrealistic in many instances of PU learning, e.g., a patient’s
electronic health record (Bekker & Davis, 2018a) and a recommendation system (Marlin & Zemel,
2009; Schnabel et al., 2016). In these cases, there is a selection bias (Heckman, 1979; Manski, 2008;
Angrist & Pischke, 2008); the distribution of the positive data may differ between the labeled data
and the unlabeled data.

Several recent related works have proposed alternative assumptions (Bekker & Davis, 2018a;b).
However, in order to weaken SCAR, they impose other additional assumptions. In this work, we
consider a more natural assumption such that SCAR becomes its special case. We assume that
p(o = +1|x, y = +1) and p(y = +1|x) induce the same ordering on the input space X , where
y ∈ {−1,+1} is the data label and o = +1 (resp. o = 0) denotes the event that the data is observed
(resp. not observed). We call this property the invariance of order. In the real-world application, there
are many situations with a selection bias which follows the invariance of order. Among them, we list
the following two examples.
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Example 1: (Anomaly Detection)
The goal of anomaly detection is to find anomaly data in an unlabeled dataset based on another
dataset that consists only of anomaly data. When the anomaly data is collected, the more likely a
datum is an anomaly, the more likely it is noticed and gets labeled.

Example 2: (Face Recognition)
The goal of this task is to identify a user from a set of face images based on some pictures of the
user. In this case, the positive data are the face images identified with the user, and the unlabeled data
consist of all the unidentified face images. The user may more likely provide pictures in which the
face can be seen clearly, while in the unlabeled data there may be many unclear images.

Our problem setting is similar to the problem called learning from instance-dependent noisy labels
(Du & Cai, 2015; Bootkrajang, 2016). In this problem setting, positive and negative data are
available, but the labels are subject to the noise that flips the label with instance-dependent probability.
Besides, there are existing works putting assumption similar to the invariance order (Du & Cai, 2015;
Bootkrajang, 2016). We explain the difference between their works and ours around Assumption 1 in
Section 2.1. We name our problem setting PU learning with a Selection Bias (PUSB).

In this paper, we propose a novel framework to deal with this problem setting. The experimental
results show that our proposed method is appropriate for real-world applications compared to existing
approaches for PU learning.

2 PROBLEM SETTING OF PU LEARNING WITH A SELECTION BIAS

We consider a binary classification problem to classify x ∈ X ⊂ Rd into one of the two classes
{−1,+1}. We assume that there exists a joint distribution p(x, y, o), where y ∈ {−1,+1} is the
class label of x, and o ∈ {0,+1} is the observation status of y (observed if o = +1 and unobserved
if o = 0). In other words, x is labeled if o = +1, and it is unlabeled otherwise.

In PU learning, there are two distinguished sampling schemes called one sample and two samples
of data (Niu et al., 2016). They are also called the censoring scenario and case-control scenario,
respectively (Elkan & Noto, 2008). In the censoring scenario, a set of unlabeled data is sampled
from the marginal density p(x). Then, if a data point x is positive, it gets labeled with probability
p(o = +1|x, y = +1); if x is negative, it is never labeled. In the case-control scenario, a set of
positive data is drawn from the positive conditional density p(x|y = +1) and a set of unlabeled data
is drawn from p(x). As Niu et al. (2016) stated, the case-control scenario is slightly more general
than the censoring scenario setting. It is because the censoring scenario assumes the access to samples
generated by p(x), p(x|o = +1), and p(x|o = 0) whereas the case-control scenario only assumes
the access to samples generated by p(x) and p(x|o = +1). Therefore we focus on the case-control
scenario.

Suppose that we have a positive dataset {xi}ni=1 and an unlabeled dataset {x′i}n
′

i=1

{xi}ni=1
i.i.d.∼ p(x|y = +1, o = +1), {x′i}n

′

i=1
i.i.d.∼ p(x).

We assume that negative data are never labeled.

Note that we do not assume SCAR. Therefore, p(x|y = +1) may differ from p(x|y = +1, o = +1).
In the case they differ, we say that there is a selection bias.

The quantity π = p(y = +1) is called the class-prior. In our problem setting, we assume that π is
known. For example, in anomaly detection, the percentage of anomaly in the whole batch of products
can be reported based on past experiences. Although there are various methods for estimating
the class-prior in the traditional framework of the case-control scenario (du Plessis et al., 2016;
Ramaswamy et al., 2016; Jain et al., 2016; Kato et al., 2018), we cannot estimate the class-prior in our
problem setting under a theoretical guarantee. In Section 5, we show how misspecified class priors
affect the performance of a classifier. As we explain later, even if we do not know the class-prior,
we only have to change the last step of our algorithm. In summary, our goal is to obtain a classifier
h : X → {−1, 1} only from {xi}ni=1, {x′i}n

′

i=1, and π under a weaker assumption than SCAR.
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2.1 IDENTIFICATION STRATEGY

As stated by Elkan & Noto (2008), even if the class prior is given, we cannot estimate p(y = +1|x)
only from positive data and unlabeled data without any assumption in PU learning. In the case-control
scenario, a standard assumption is SCAR, i.e. p(x|y = +1, o = +1) = p(x|y = +1, o = 0), so
that p(y = +1|x) can be estimated from the data in principle. However, in many instances of PU
learning, the SCAR assumption is unreasonable as discussed before. Therefore, we relax SCAR and
accommodate a selection bias. We can see how SCAR makes the class posterior identifiable in the
following equation:

p(y = +1|x) = p(x, y = +1)

p(x)
=
p(x|y = +1)π

p(x)
=︸︷︷︸

SCAR

p(x|y = +1, o = +1)π

p(x)
.

Here, p(x|y = +1, o = +1) can be estimated from the sample. This estimate can be used to obtain
an estimate of p(x|y = +1) and hence that of p(y = +1|x) if we assume SCAR. However, without
assuming SCAR, p(x|y = +1) may differ from p(x|y = +1, o = +1), and p(y = +1|x) is not
identifiable.

Therefore, instead of estimating p(y = +1|x), we consider extracting some useful information of
p(y = +1|x) to learn a classifier. This kind of approach is known as “partial identification” (Manski,
2008) in statistics and economics. First, we introduce an assumption that is weaker than SCAR.
Assumption 1 (Invariance of Order). For any xi,xj ∈ X , we have

p(y = +1|xi) ≤ p(y = +1|xj)⇔ p(o = +1|xi) ≤ p(o = +1|xj).

Although Assumption 1 does not allow one to construct an unbiased estimator of the risk functional,
we try to partially identify p(y = +1|x) under this assumption. Our problem setting can be regarded
as a generalization of the traditional case-control scenario because SCAR is a special case of the
invariance of order.

2.2 RELATED WORKS

A similar assumption can be found in the literature of learning from instance-dependent noisy
labels (Du & Cai, 2015; Bootkrajang, 2016), which considers a probabilistic label flipping that is
proportional to p(y = +1|x). However, in order to apply methods of learning from noisy labels
to PU learning, we need to assume the censoring scenario and these methods cannot be applied to
our problem setting based on the case-control scenario. The censoring scenario is a special case of
learning from noisy labels where only negative data is contaminated, i.e., some positive labels flip to
negative labels. Thus, in the censoring scenario, unlabeled data can be regarded as negative-labeled
data contaminated by positive data. On the other hand, in the case-control scenario, unlabeled data
is generated from the marginal distribution p(x), i.e., we cannot observe samples generated from
p(x|o = 0). Therefore, our problem setting, namely the case-control scenario with invariance of
order, is different from the existing works of learning from instance-dependent noisy labels. In
addition, our method is also applicable to the censoring scenario when the invariance of order holds
because the unlabeled data of the case-control scenario can be made from positive and unlabeled data
of the censoring scenario.

In Example 1, p(y = +1|x) is the probability that a given input x is anomaly, while p(o = +1|x) is
the probability that a given input x gets labeled in the dataset. In Example 2, a positively labeled data
is an image x that is known to belong to a user. Here, p(o = +1|x) is the probability that the user
provides the picture x as a training datum.

3 STRATEGY FOR PARTIAL IDENTIFICATION AND CLASSIFICATION

As discussed in Section 2.1, we cannot estimate p(y = +1|x) when there is a selection bias even if
the class prior is given. Our idea of partial identification is based on the following theorem with the
density ratio

r(x) =
p(x|y = +1, o = +1)

p(x)
. (1)
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Algorithm 1 Conceptual Algorithm in Population

Input: p(x|y = +1), p(x) and the class-pror π.
Using p(x|y = +1) and p(x), calculate r(x) by minimization of either (4) or (7).
Using r(x), calculate θπ in (2).
Using the density ratio r(x) and the threshold θπ , obtain a classifier h(x) = sign(r(x)− θπ).

Theorem 1 (Order Preserving Property of the score Function). Suppose that Assumption 1 holds.
Then, for any xi,xj ∈ X ,

p(y = +1|xi) ≤ p(y = +1|xj)⇔ r(xi) ≤ r(xj).

A proof is provided in Appendix A.

Even though we cannot estimate p(y = +1|·), Theorem 1 implies that we can still extract the total
order in X induced by p(y = +1|·) if we can estimate r(·). Therefore, we propose to estimate r
and use it as a score function that captures the total order induced by p(y = +1|·). After obtaining
an estimator of r (denoted by r̂), we set a threshold θ ∈ R and use h(x) = sign(r(x) − θ) as a
classifier. There are various ways of determining the threshold. For instance, we put labels from data
with the highest density ratio under a constraint on the number of data to which we can put labels
(Hido et al., 2011). Here, we introduce one useful principle for choosing θ. We consider using a
threshold θπ defined by the following equation,

π =

∫
1[r(x) ≥ θπ]p(x)dx. (2)

The intuition behind the definition of θπ is that the proportion of the positive data in the test data
points should not deviate so much from the class-prior. This intuition becomes clearer in Section 4.3.

In Section 4, we discuss detailed methods for estimating r and setting θ based on data. Our approach
is summarized in the form of a pseudo-code in Algorithm 1. In the rest of this section, we theoretically
justify θπ defined in (2).

Property of θπ: Let us consider the case where a classifier is given as h(x) = sign(r(x) − θ).
Then four population quantities, true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN) (Lipton et al., 2014), that depend on r(·) and θ is written as follows:

TP =

∫
{x:r(x)≥θ}

p(y = +1|x)p(x)dx, FP =

∫
{x:r(x)≥θ}

p(y = −1|x)p(x)dx,

TN =

∫
{x:r(x)<θ}

p(y = −1|x)p(x)dx, FN =

∫
{x:r(x)<θ}

p(y = +1|x)p(x)dx.

Then, the precision and the recall of a classifier are expressed as precision =
(

TP
TP+FP

)
and

recall =
(

TP
TP+FN

)
, respectively. For θπ , we have the following result.

Theorem 2. If we use θ = θπ , then precision = recall holds.

A proof is shown in Appendix B. The threshold θπ is known as precision–recall breakeven point
(BEP) (Sammut & Webb, 2010), which makes the precision and the recall the same. BEP is originally
used to evaluate a generic classification model with a score function and a threshold. Besides, we can
interpret BEP as a point which balances a prediction result; as explained by Powers (2015), a classifier
using BEP as a threshold puts the same cost to the false positives and false negatives. Knowing BEP
is also useful for deciding on a threshold which put unbalanced weight on the precision and the recall
because we can tell if we are weighing precision more or recall more.

4 ALGORITHM

Here, we propose two directions for estimating r(x) = p(x|y=+1,o=+1)
p(x) under the assumption of

invariance of order, namely minimizing a pseudo classification risk and direct density ratio estimation.
We discuss how to set θ based on the data. A pseudo-code of our algorithm is shown in Algorithm 2.
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Algorithm 2 PUSB

Input: A positive dataset {xi}ni=1, an unlabeled dataset {x′i}n
′

i=1, a test dataset {xte
i }n

te

i=1 and the
class-pror π.
Using {xi}ni=1 and {x′i}n

′

i=1, estimate r(x) by any of (5), (6) or (8) and obtain r̂(x).
Using r̂(x), estimate θπ by (9) and obtain θ̂π .
Using an estimator r̂(x) and θ̂, obtain a classifier h(x) = sign(r̂(x)− θ̂π).

4.1 ESTIMATION OF r BY MINIMIZING PSEUDO CLASSIFICATION RISK

First, we introduce the minimization of the pseudo classification risk. The idea is to minimize the
classification risk used in traditional PU learning (du Plessis et al., 2014; 2015) as if there is no
selection bias. Under a selection bias, we cannot construct unbiased risk function, but the minimizer
can be substituted for the density ratio in (1).

Conventional PU risk formulation: Let ` : R × {±1} → R+ be a loss function, where R+ is
the set of non-negative real values, and F be the set of measurable functions from X to [ε, 1 − ε],
where ε ∈ (0, 1/2) is a small positive value. This constant ε is introduced to make the following
optimization problem well-defined.

du Plessis et al. (2015) showed that the classification risk of f ∈ F in the traditional PU problem
setting with SCAR can be expressed as

RPU(f) = πEp[`(f(X),+1)]− πEp[`(f(X),−1)] + Eu[`(f(X),−1)], (3)

where Ep and Eu are the expectations over p(x|y = +1) and p(x), respectively. When there is no
selection bias, we can replace the expectations with the corresponding sample averages to obtain an
unbiased estimator of the classification risk.

The pseudo classification risk: In our problem setting, we only have samples from p(x|y =
+1, o = +1) and not from p(x|y = +1). Therefore, we cannot use our sample to obtain an empirical
version of RPU. However, we still consider the pseudo classification risk of f ∈ F :

Rbias
PU (f, `) = πEbias

p [`(f(X),+1)]− πEbias
p [`(f(X),−1)] + Eu[`(f(X),−1)],

where Ebias
p is the expectation over p(x|y = +1, o = +1). We call this functional the pseudo

classification risk because it is not the true classification risk. An unbiased estimator for the
pseudo classification risk can be obtained by replacing the expectations with the corresponding
sample averages even if there is a selection bias. For the loss function, we use the logarithmic
loss: `(f(x),+1)) = − log(f(x)) and `(f(x),−1) = − log(1 − f(x)). In this case, the pseudo
classification risk of f ∈ F becomes

Rbias
PU (f) = −πEbias

p [log(f(X))] + πEbias
p [log(1− f(X))]− Eu[log(1− f(X))]. (4)

Justification for minimizing the pseudo classification risk: For the pseudo classification risk
with the logarithmic loss function, the following theorem justifies its use. Let us denote a minimizer
of (4) by f∗, that is,

f∗ ∈ argmin
f∈F

Rbias
PU (f).

For the minimizer of (4), we show the following theorem.
Theorem 3. It holds almost everywhere that

f∗(x) =


ε (x /∈ D1),
πp(x|y=+1,o=+1)

p(x) (x ∈ D1 ∩D2),

1− ε (x /∈ D2),

where D1 = {x|πp(x|y = 1, o = +1) ≥ εp(x)} and D2 = {x|πp(x|y = 1, o = +1) ≤
(1− ε)p(x)}.

A proof is provided in Appendix C. Theorem 3 implies that the minimization of the empirical version
of the pseudo classification risk allows us to estimate r.
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Empirical Estimation: When we train a classifier with training samples, we can naively replace
the expectations with the corresponding sample averages. For a hypothesis setH, which is a set of
measurable functions, let us define the following risk minimization problem,

f̂1 = argmin
f∈H

[
−πÊbias

p [log(f(X))] + πÊbias
p [log(1− f(X))]− Êu[log(1− f(X))] +R(f)

]
,

(5)

where Êbias
p denotes the averaging operator over positive data with a selection bias, Êu denotes the

averaging over the unlabeled data, and R is a regularization term. du Plessis et al. (2015) showed
that, under SCAR, the empirical version of the risk becomes unbiased toward the classification risk.

However, Kiryo et al. (2017) pointed out that unbiased PU learning does not work with deep neural
networks. Minimizing an empirical risk of (3) with deep neural networks easily causes over-fitting
because the risk is not bounded from below by 0. In order to implement PU learning with deep neural
networks, Kiryo et al. (2017) proposed the following non-negative risk,

f̂2 = argmin
f∈H

[
−πÊbias

p [log(f(X))] +
(
πÊbias

p [log(1− f(X))]− Êu[log(1− f(X))]
)
+
+R(f)

]
,

(6)

where (·)+ := max{0, ·}. After obtaining f̂ , we construct an estimator of the density ratio r by
r̂ = 1

π f̂1 or r̂ = 1
π f̂2.

4.2 ESTIMATION OF r BY DIRECT DENSITY RATIO ESTIMATION

For another approach, we consider estimating the density ratio r(x) = p(x|y=+1,o=+1)
p(x) directly. We

can estimate the probability density functions of the numerator and the denominator. However, as
known as Vapnik’s principle, we should avoid solving more difficult intermediate problems than the
target problem. Sugiyama et al. (2012) summarized methods estimating the density ratio directly.
Among existing methods, we employ Least-squares importance fitting (LSIF), which uses the squared
loss for density-ratio function fitting. The reason for this choice is that there is an algorithm called
unconstrained Least-Squares Importance Fitting (uLSIF) with a computational advantage. We can
obtain the closed-form solution just by solving the linear equations. Thus, uLSIF is numerically stable
when it is regularized properly. Moreover, the leave-one-out cross-validation score for uLSIF can
also be computed analytically, which significantly improves the computational efficiency in model
selection.

Here, we introduce the formulation of LSIF. Let S be the class of non-negative measurable functions
s : X → R+. We consider minimizing the following squared error between s and r:

RDR(s) = Eu[(s(X)− r(X))2] = Eu[(r(X))2]− 2Ebias
p [s(X)] + Eu[(s(X))2]. (7)

The first term of the last equation does not affect the result of minimization and we can ignore the
term, i.e., the density ratio is estimated through the following minimization problem:

s∗ = argmin
s∈S

RDR(s) = argmin
s∈S

[
1

2
Eu[(s(X))2]− Ebias

p [s(X)]

]
.

Empirical Estimation: As mentioned above, to minimize the empirical version of (7), we use
uLSIF (Kanamori et al., 2009). Given a hypothesis classH, we obtain r̂ by

r̂ = argmin
s∈H

[
1

2
Êu[(s(X))2]− Êbias

p [s(X)] +R(s)
]
, (8)

whereR is a regularization term.

4.3 ESTIMATION OF θπ

We consider replacing the threshold defined by (2) with a value which can be calculated only from
samples. By using the test inputs or held-out training data, {xte

i }n
te

i=1 ∼ p(x), we find θ̂π that satisfies
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Table 1: Dataset statistics (Pos. frac.: Positive fraction, Dim: Dimension).

Dataset # of samples Pos. frac. Dim.
mushrooms 8,124 0.517 112
shuttle 58,000 0.786 9

pageblocks 5,473 0.898 10
usps 9,298 0.524 256

connect-4 67,557 0.658 126
spambase 4,601 0.394 57
MNIST 70,000 0.511 784

CIFAR-10 60,000 0.400 3,072

the following equation,

dπntee =
nte∑
i=1

1[r̂(xte
i ) > θ̂π]. (9)

Here, we used the knowledge of π, the class-prior. This choice of θ̂π amounts to classifying top-π
test data as positive after ranking the inputs by r̂.

5 EXPERIMENTS

In this section, we report experimental results which were conducted using synthetic data and real-
world datasets1). We used seven classification datasets, mushrooms, shuttle, pageblocks,
usps, connect-4, spambase, and MNIST, from UCI repository2), CIFAR-103) and a document
dataset obtained from SwissProt (Boeckmann et al., 2003)4). MNIST and CIFAR-10 originally have
10 and 10 classes, respectively, and we constructed the positive and negative datasets from them as
follows: MNIST was preprocessed in such a way that 0, 2, 4, 6, 8 constitute the positive class, while
1, 3, 5, 7, 9 constitute the negative class; for CIFAR-10, the positive dataset is formed by ‘airplane’,
‘automobile’, ‘ship’ and ‘truck’, and the negative dataset is formed by ‘bird’, ‘cat’, ‘deer’, ‘dog’,
‘frog’ and ‘horse’. Except for the document dataset, we show the details of datasets in Table 1 and
made positive data with a selection bias based on estimators of p(y = +1|x) as we show in each
experiments. For six datasets of the UCI repository and the CIFAR-10, we made positive datasets
with a selection bias artificially, but, for the document dataset, we have an unlabeled dataset and a
positive dataset, which is gathered for classifying the labels in the unlabeled dataset.

We call unbiased PU learning proposed by du Plessis et al. (2015) “PU”, unbiased PU learning with a
threshold estimated by (9) “PUSB”, uLSIF with a threshold estimated by (9) “DRSB”, nonnegative
PU learning “nnPU” and nonnegative PU learning with a threshold estimated by (9) “nnPUSB”.

For the hypothesis classH in the density ratio estimation (8), we use the linear-in-parameter model:
H :=

{
s(x) = β>ϕ(x)

∣∣β ∈ Rm+1
}
, (10)

where ϕ(x) = [1, ϕ1(x), ..., ϕm(x)]> is a vector of basis functions. For basis functions, we used the
Gaussian kernel located at sample points ϕ`(x) = exp

(
−‖x− c`‖2/(2σ2)

)
, where {c1, ..., cm} =

{x1, ...,xn,x
′
1, ...,x

′
n′} and m = n+ n′. For the hypothesis classH in the risk minimization of PU

learning (5), we use the following model with the sigmoid function:

H :=

{
f(x) =

1

1 + exp(−β>ϕ(x))

∣∣∣∣β ∈ Rm+1

}
.

In this case, the loss is the same as the logistic loss and unbiased PU learning becomes convex. For
the hypothesis classH in the risk minimization of nonnegative PU learning (6), we use deep neural
networks. The specifications of deep neural networks are given in the following sections for each
dataset. We mainly used the same structure proposed in Kiryo et al. (2017) in order to compare the
performances. For the regularization term R, we used the `2 norm of the parameters scaled by a
positive scalar λ. For the linear models, hyperparameters were selected via cross-validation.

1)The source code is available at https://github.com/MasaKat0/PUlearning.
2)The UCI data were downloaded from https://archive.ics.uci.edu/ml/index.php and

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/.
3)See https://www.cs.toronto.edu/~kriz/cifar.html.
4)The data can be downloaded from http://www.cs.ucsd.edu/users/elkan/posonly.
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Figure 1: Two Gaussians: The horizontal axis is the value of x and the vertical axis is the probability
density. The vertical lines represent the decision boundaries of the classifiers. The distribution of
positive data, negative data, unlabeled data and p(x|o = +1, y = +1) are plotted.

5.1 TEST WITH SYNTHETIC DATA

This experiment shows the classifier given by PUSB. We used samples from a mixture distribution of
the following two class-conditional distributions:

p(x|y = +1) = N (1, 22) and p(x|y = −1) = N (−1, 22),

where N (µ, σ2) denotes the univariate normal distribution with mean µ and variance σ2. A positive
dataset with a selection bias was sampled from

p(x|o = +1, y = +1) ∝ (p(y = +1|x))10.

We generated 1, 000 positive samples and 10, 000 unlabeled samples. We made two datasets with
different class-priors π = 0.3 and π = 0.7. Figure 1 shows classifiers constructed by PU and PUSB
along with the Bayes optimal classifier sign(p(y = +1|x)− 1/2). The classifier of PUSB is closer
to the Bayes optimal classifier than that of PU.

5.2 TEST WITH BENCHMARK DATA

Here, we investigate the experimental performance in detail.

Linear-in-parameter model: We used the mushrooms, shuttle, pageblocks, usps,
connect-4 and spambase datasets. First, we estimated p(y = +1|x) using the logistic re-
gression with the same linear model. Then, we obtained the labeled positive data by labeling some
instances of the positive data following

p(o = +1|x, y = +1) ∝ (p(y = +1|x))20.

Then, we trained a classifier by minimizing the empirical risk of PU learning (4) and the density ratio
estimation (7).

For each binary labeled dataset, we made 12 different pairs of positive and unlabeled data with 4 dif-
ferent class-priors, {0.2, 0.4, 0.6, 0.8}, and 3 different numbers of unlabeled data, {800, 1600, 3200}.
The number of positive data was fixed at 400. We used 1000 test data sampled from the same
distribution as the unlabeled data. We ran the experiments 100 times and calculated the mean and
standard deviation for the test dataset with PU, PUSB, and DRSB. The results are shown in Table 2.
The classifiers obtained by our algorithm always show preferable performance to existing methods.

Neural network model: We used the MNIST and CIFAR-10 datasets. For MNIST, a 3-layer
multilayer perceptron (MLP) with ReLU activation (Nair & Hinton, 2010) was used. For CIFAR-10,
an all convolutional net (Springenberg et al., 2015) was used. Details of the network structure are
shown in Appendix D.
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Table 2: The error rate of classification in test data (%) are shown for the different class-priors and
the different number of samples. For all experiments, the linear-in-parameter model was used. Best
and equivalent methods (under 5% t-test) are bold.

PU PUSB DRSB
Dataset π 800 1600 3200 800 1600 3200 800 1600 3,200

mushrooms 0.2 5.1 (.076) 5.0 (.055) 5.5 (.083) 4.1 (.007) 3.8 (.007) 4.0 (.007) 10.7 (.010) 9.9 (.011) 9.9 (.012)
0.4 7.0 (.012) 6.6 (.010) 6.8 (.025) 6.9 (.012) 6.7 (.010) 6.8 (.010) 15.8 (.014) 15.0 (.016) 15.2 (.012)
0.6 10.8 (.020) 11.3 (.015) 11.3 (.016) 8.2 (.013) 8.5 (.010) 8.3 (.011) 18.5 (.014) 18.8 (.012) 18.5 (.013)
0.8 21.1 (.022) 21.6 (.021) 21.7 (.016) 8.1 (.015) 8.0 (.012) 7.6 (.014) 14.2 (.013) 14.3 (.014) 14.4 (.011)

shuttle 0.2 23.8 (.006) 23.8 (.007) 23.8 (.007) 5.2 (.008) 5.0 (.007) 5.0 (.007) 5.1 (.008) 5.1 (.008) 5.1 (.007)
0.4 15.5 (.023) 15.5 (.019) 15.0 (.016) 7.8 (.011) 7.7 (.011) 7.6 (.012) 6.7 (.025) 7.6 (.029) 7.2 (.027)
0.6 26.1 (.018) 26.4 (.017) 26.4 (.016) 11.1 (.015) 10.8 (.012) 11.0 (.015) 7.8 (.028) 7.4 (.028) 7.1 (.028)
0.8 14.6 (.006) 14.6 (.005) 14.8 (.007) 12.3 (.014) 12.4 (.014) 12.3 (.012) 7.9 (.021) 7.6 (.023) 7.4 (.022)

pageblocks 0.2 39.5 (.009) 39.6 (.010) 39.6 (.008) 41.6 (.021) 42.5 (.022) 43.7 (.019) 23.1 (.016) 23.1 (.015) 22.2 (.012)
0.4 56.5 (.011) 56.7 (.011) 56.6 (.008) 33.7 (.020) 33.7 (.019) 33.5 (.024) 23.6 (.012) 23.7 (.014) 23.6 (.014)
0.6 22.4 (.023) 23.4 (.033) 28.1 (.028) 20.9 (.016) 21.1 (.016) 21.5 (.020) 18.7 (.011) 18.6 (.012) 18.1 (.017)
0.8 19.8 (.003) 20.0 (.001) 20.0 (.001) 13.9 (.022) 13.6 (.023) 16.7 (.043) 15.4 (.011) 14.8 (.014) 14.3 (.019)

usps 0.2 9.0 (.011) 8.5 (.009) 8.2 (.010) 8.0 (.009) 7.7 (.007) 7.4 (.009) 18.2 (.016) 19.6 (.013) 19.7 (.014)
0.4 10.5 (.012) 10.3 (.013) 10.0 (.010) 10.5 (.013) 10.2 (.012) 10.0 (.010) 30.5 (.029) 30.2 (.022) 29.9 (.023)
0.6 12.5 (.015) 12.3 (.015) 12.1 (.013) 11.2 (.016) 10.9 (.015) 10.6 (.013) 32.9 (.026) 33.2 (.031) 33.1 (.030)
0.8 19.8 (.020) 19.8 (.016) 19.5 (.017) 10.3 (.016) 9.8 (.014) 9.6 (.014) 25.9 (.028) 25.3 (.027) 25.8 (.030)

connect-4 0.2 22.3 (0.017) 21.9 (.014) 21.6 (.013) 21.8 (.013) 21.5 (.012) 21.2 (.011) 26.7 (.012) 26.6 (.012) 26.4 (.011)
0.4 31.2 (.015) 31.0 (.015) 30.7 (.016) 31.2 (.015) 31.0 (.015) 30.7 (.016) 39.4 (.016) 39.6 (.018) 39.2 (.016)
0.6 32.0 (.017) 32.1 (.013) 31.9 (.015 31.7 (.016) 31.7 (.013) 31.4 (.016) 40.9 (.015) 41.1 (.017) 41.0 (.017)
0.8 33.6 (.018) 33.5 (.016) 33.4 (.017) 24.2 (.013) 23.9 (.013) 23.8 (.013) 29.8 (.011) 29.6 (.013) 29.5 (.012)

spambase 0.2 20.1 (0.002) 20.1 (.002) 20.1 (.003) 13.6 (.013) 13.8 (.014) 14.0 (.014) 18.1 (.026) 18.3 (.025) 17.9 (.023)
0.4 36.2 (.024) 35.9 (.025) 30.7 (.024) 19.0 (.020) 18.7 (.021) 18.9 (.018) 27.4 (.042) 27.8 (.043) 27.7 (.039)
0.6 40.0 (.001) 39.9 (.001) 31.9 (.001 20.8 (.019) 20.7 (.018) 20.0 (.017) 31.2 (.037) 30.3 (.035) 31.2 (.035)
0.8 20.0 (.000) 20.0 (.000) 20.0 (.000) 18.0 (.015) 17.7 (.013) 17.3 (.013) 24.5 (.058) 23.9 (.017) 24.2 (.017)

Figure 2: Experimental results of training deep neural networks. Left: MNIST; Center: CIFAR-10;
Right: RealData: All measures are calculated for test data sampled from the marginal distribution
p(x). The horizontal axis is the epoch of training the network, the vertical axes of the top figures are
the error rates and the vertical axes of the bottom figures are the precision and the recall.

First, we estimated p(y = +1|x) using the logistic regression with the same network structure
using the positive and negative datasets in the unlabeled dataset. Next, from the positive dataset, we
resampled positive dataset with an observation, which follows

p(o = +1|x, y = +1) ∝ (p(y = +1|x))10.
Then, we trained a classifier by minimizing (6) with the model defined above. We used 10, 000 test
data sampled from the same distribution as the unlabeled data. We ran the experiments 100 times and
calculated the mean of the error rate, the standard deviation of the error rate, the mean of recall and
the mean of precision for each epoch in training with nnPU and nnPUSB. The results are shown on
the left side and center of Figure 2. In the upper row, we show the mean and standard deviation of
the error rate. In the lower row, we show the mean of recall and the mean of precision. As shown in
Figure 2, the mean of the error rate of our algorithm is lower and the variance is also lower than the
existing method. As we discussed in Section 4.3, FP = FN is also empirically observed.
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Figure 3: Results of the second experiment of Section 5.4 using the RealData dataset with the
estimated class prior 0.1095 (the true class prior is 0.0709). The horizontal axes are the epochs of
training the network, the vertical axis of the right figure is the error rate and the vertical axis of the
left figure is the value of the precision and the recall.

5.3 TEST WITH REAL-WORLD DATA

In the previous sections, we artificially made positive data with a selection bias. Here we demonstrate
the effectiveness of our algorithm in real-world data with a selection bias. We used a document dataset
based on the SwissProt database released by Elkan & Noto (2008). We call this dataset RealData.
The dataset originally contained 2,453 labeled positive examples (P) and 4,906 unlabeled examples
(U). The unlabeled examples were labeled later by Das et al. (2007). As a result, the dataset is
likely to have a natural observation bias in the P data while it allows an access to the ground-truth
labels for all data. Out of the U data, 348 examples are positive and the rest are negative. The
class prior is π = 348/4, 906 = 0.0709. We used Bag-of-Words to represent the documents as
78, 894-dimensional vectors.

Details of the network structure are shown in Appendix D. We trained a classifier using positive and
unlabeled data. Then, after finding a threshold estimated by (9), we evaluated the same evaluation
measures as the previous experiments by classifying U, i.e., we regarded the unlabeled data as test
data. As shown on the right of Figure 2, the result of our algorithm outperforms the existing method.

5.4 TEST FOR UNKNOWN CLASS PRIOR

In order to evaluate how our algorithm works for the case that the class prior is unknown, we
empirically tested our algorithm with an estimator of the class prior. We used the RealData dataset
in Section 5.3, whose class prior is 0.0709. For the class prior estimator, we used the KM2 method by
Ramaswamy et al. (2016), which is considered to be the state-of-the-art method in the case-control
scenario under SCAR. The estimated class prior was 0.1095 and the result is shown in Figure 3.
We can see from the figure that our method works well with an estimated class prior in so far as
RealData dataset is concerned. We also show results for the classifiers trained under misspecified
class priors in Appendix E, which also shows that our method works stably for misspecified class
priors.

6 CONCLUSION

In this paper, we proposed a novel framework for PU learning with a selection bias in positive data.
We put the assumption of the invariance of order and showed the density ratio of labeled positive data
and unlabeled data has the same order as the class-conditional distribution for inputs. Based on this
result, we proposed a method based on partial identification in which we first estimate the density
ratio and then use it as a classifier by setting a threshold. We conducted experiments to confirm the
effectiveness of our approach. As we showed in the experiments, our method outperforms previous
PU methods on real-world data.
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A PROOF OF THEOREM 1

Proof. We assumed that no negative data can be labeled. As a result, we have p(o = +1|x, y =
−1) = 0 for arbitrary x ∈ X . Therefore,

p(o = +1|x) = p(y = +1|x)p(o = +1|x, y = +1) + p(y = −1|x)p(o = +1|x, y = −1)
= p(y = +1|x)p(o = +1|x, y = +1). (11)
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By Bayes’ theorem, we can expand the density ratio in (1) as follows:

r(x) =
p(x|o = +1, y = +1)

p(x)

=
p(y = +1|x, o = +1)p(x|o = +1)

p(y = +1|o = +1)

1

p(x)

= p(y = +1|x, o = +1)
1

p(y = +1|o = +1)

p(x|o = +1)

p(x)

=
p(y = +1|x)p(o = +1|x, y = +1)

p(o = +1|x)
1

p(y = +1|o = +1)p(o = +1)

p(o = +1)p(x|o = +1)

p(x)
.

Because p(y=+1|x)p(o=+1|x,y=+1)
p(o=+1|x) = 1 from (11), this is equivalent to

r(x) = Cp(o = +1|x),

where C = 1
p(y=+1,o=+1) . Hence, if Assumption 1 holds, for any xi,xj ∈ X ,

p(y = +1|xi) ≤ p(y = +1|xj)⇔ r(xi) ≤ r(xj).

B PROOF OF THEOREM 2

Before proving Theorem 2, we consider a threshold defined as follows:

π =

∫
1[p(y = +1|x) ≥ γ]p(x)dx. (12)

Then, we state the following lemma on the relationship between γ and θπ .

Lemma 1. The equation x ∈ X , (r(x)− θπ)(p(y = +1|x)− γ) ≥ 0 holds almost everywhere with
respect to p(x).

Proof. By (2) and (12), the following equation also hold,∫
1[r(x) > θπ]p(x)dx =

∫
1[p(y = +1|x) > γ]p(x)dx.

Hence, we can derive ∫
(1[r(x) > θπ]− 1[p(y = +1|x) > γ])p(x)dx = 0.

This is equivalent to ∫
(1[(r(x)− θπ)(p(y = +1|x)− γ) < 0]p(x)dx = 0.

From this equation, (r(x)− θπ)(p(y = +1|x)− γ) ≥ 0 holds almost surely.

Using Lemma 1 we prove Theorem 2.

Proof. π =
∫
1[p(y = +1|x) ≥ γ]p(x)dx is equivalent to∫

p(y = +1|x)p(x)dx =

∫
1[p(y = +1|x) ≥ γ]p(x)dx,

where the left hand side is equal to∫
{x|p(y=+1|x)<γ}

p(y = +1|x)p(x)dx+

∫
{x|p(y=+1|x)≥γ}

p(y = +1|x)p(x)dx,
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and the right hand side is equal to∫
{x|p(y=+1|x)≥γ}

p(y = +1|x)p(x)dx+

∫
{x|p(y=+1|x)≥γ}

p(y = −1|x)p(x)dx.

Hence, (12) is equivalent to the following equation,∫
{x|p(y=+1|x)<γ}

p(y = +1|x)p(x)dx =

∫
{x|p(y=+1|x)≥γ}

p(y = −1|x)p(x)dx.

From the definitions of TP, FP, TN, and FN, the left hand side of the above equation is equal to
FP and the right hand side of the above equation is equal to FN . Hence, FP = FN . We showed
FP = FN for a threshold γ, but we can also insist that the same result holds when we use r(x) as a
score function and θπ as a threshold. According to Lemma 1, the sign of p(y = +1 + x)− γ and
r(x)− θπ are the same almost everywhere with respect to p(x). Therefore,∫

{x|p(y=+1|x)<γ}
p(y = +1|x)p(x)dx =

∫
{x|r(x)<θπ}

p(y = +1|x)p(x)dx∫
{x|p(y=+1|x)≥γ}

p(y = −1|x)p(x)dx =

∫
{x|r(x)≥θπ}

p(y = −1|x)p(x)dx.

In these equations, the right hand sides mean FP and FN of a score function r(x) with a threshold
θπ , respectively. Because precision =

(
TP

TP+FP

)
and recall =

(
TP

TP+FN

)
, FP = FN means that

precision = recall.

C PROOF OF THEOREM 3

Proof. We first consider minimizing Rbias
PU in the space of all functions from X to [ε, 1− ε] instead

of minimizing it in F . Later, we will see that the minimizer matches f∗ as stated in Theorem 3 which
belongs to F . The minimization of

Rbias
PU (f) =

∫
(−πp(x|y = +1, o = +1)(log f(x)− log(1− f(x)))− log(1− f(x))p(x)) dx

over all functions f taking values in [ε, 1− ε] is reduced to the following point-wise minimization
problem

argmin
z∈[ε,1−ε]

C(z,x) := −πp(x|y = +1, o = +1)(log z − log(1− z))− log(1− z)p(x).

Denoting the solution by z∗, the Karush-Kuhn-Tucker (KKT) condition of this minimization problem
is

πp(x|y = +1, o = +1)

(
1

z∗
+

1

1− z∗

)
− p(x)

1− z∗
− λ+ µ = 0,

λ(z∗ − 1− ε) = 0, µz∗ = 0,

λ, µ ≥ 0,

z∗ ∈ [ε, 1− ε],

where λ and µ are the Lagrange multipliers. The first equation is equivalent to

(µ− λ)(z∗)2 + (p(x) + λ− µ)z∗ − πp(x|y = +1, o = +1) = 0. (13)

We investigate the solution by dividing the KKT condition into the following four cases.

1. If we assume λ = µ = 0, then the KKT condition is reduced to

z∗ =
πp(x|y = +1, o = +1)

p(x)
,

z∗ ∈ [ε, 1− ε].
In this case, z∗ ∈ [ε, 1− ε] is equivalent to x ∈ D1 ∩D2.
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2. If we assume λ > 0 and µ = 0, the KKT condition is reduced to

z∗ = 1− ε,

λ =
(1− ε)p(x)− πp(x|y = +1, o = +1)

(1− ε)2 + (1− ε)
.

In this case, λ > 0 is equivalent to x 6∈ D2.

3. If we assume λ = 0 and µ > 0, the KKT condition is reduced to

z∗ = ε,

µ =
p(x)ε− πp(x|y = +1, o = +1)

ε2 − ε
.

In this case, λ > 0 is equivalent to x 6∈ D1.

4. If λ, µ > 0, there is no feasible solution.

In summary, the solution for the optimization problem argminz∈[ε,1−ε] C(z,x) is

z∗ =


ε (x /∈ D1),
πp(x|y=+1,o=+1)

p(x) (x ∈ D1 ∩D2),

1− ε (x /∈ D2).

Finally, we define f∗(x) := argminz∈[ε,1−ε] C(z,x). It can be confirmed that f∗ ∈ F because
p(x|y = 1, o = +1) and p(x) are measurable and f∗ takes values in [ε, 1−ε]. Therefore, the solution
of the original optimization problem

argmin
f∈F

Rbias
PU (f)

is equal to f∗ almost everywhere.

D NETWORK STRUCTURE USED IN SECTIONS 5.2 AND SECTIONS 5.3

In Section 5.2, we used the MNIST and CIFAR-10 datasets. The model for the MNIST dataset
was a 3-layer multilayer perceptron (MLP) with ReLU (Nair & Hinton, 2010) (more specifically,
784-100-1). The model for the CIFAR-10 dataset was an all convolutional net (Springenberg et al.,
2015): (32×32×3)-[C(3×3, 96)]×2-C(3×3, 96, 2)-[C(3×3, 192)]×2-C(3×3, 192, 2)-C(3×
3, 192)-C(1× 1, 192)-C(1× 1, 10)-1000-1000-1, where the input is a 32× 32 RGB image, C(3×
3, 96) means 96 channels of 3× 3 convolutions followed by ReLU, [·]× 2 means there are two such
layers, C(3× 3, 96, 2) means a similar layer but with stride 2, etc.; it is one of the best architectures
for CIFAR-10. Batch normalization (Ioffe & Szegedy, 2015) was applied before hidden layers.

In Section 5.3, the model for this dataset was a 5-layer multilayer perceptron (MLP) with ReLU
(more specifically, 78894-300-300-300-300-1).

E EXPERIMENTAL RESULTS OF THE FIRST EXPERIMENT OF SECTION 5.4

In the first experiment, we trained a classifier under misspecified class priors, 0.0209(= 0.0709−
0.0500), 0.1209(= 0.0709+0.0500), 0.1709(= 0.0709+0.1000), and 0.2709(= 0.0709+0.2000).
The results are shown in Figures 4–6. In Figure 4, the test error in each misspecified class priors are
shown. In Figure 5, the precision and recall in each misspecified class prior is shown. In both the
existing method and our method, misspecified class priors had a bad influence. However, our method
was less influenced by the misspecification and showed better performance than the existing method.
Besides, the difference between the precision and recall of our algorithm is narrower than that of the
existing method as expected. In order to discuss how misspecified class prior affects the precision
and recall, we show the difference the recall from the precision and show the values in Figure 6. This
result shows how the difference broadens as the class prior is misspecified worse.
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Figure 4: Experimental results of training deep neural networks using the RealData dataset with
misspecified class priors (the true class prior is 0.0709). Upper Left: π = 0.0209; Upper Right:
π = 0.1209; Lower Left: π = 0.1709; Lower Right: π = 0.2709: All measures are calculated for
test data sampled from the marginal distribution p(x). The horizontal line is epoch of training the
network, the vertical line of the upper is error rate.
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Figure 5: Experimental results of training deep neural networks using the RealData dataset with
misspecified class priors (the true class prior is 0.0709). Upper Left: π = 0.0209; Upper Right:
π = 0.1209; Lower Left: π = 0.1709; Lower Right: π = 0.2709: All measures are calculated for
test data sampled from the marginal distribution p(x). The horizontal line is epoch of training the
network, the vertical line of the upper is value of the precision and the recall.

Figure 6: Experimental results of training deep neural networks using the RealData dataset, whose
true class prior is 0.0709, with misspecified class priors, 0.0209, 0.1209, 0.1709, and 0.2709.: All
measures are calculated for test data sampled from the marginal distribution p(x). The horizontal line
is epoch of training the network, the vertical line of the right graph is value of the precision− recall.
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